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Abstract 

We examine the operational efficiency of one of the large Canadian banks’ branches, which is primarily affected by 
its strategy of allocating staff and the service quality provided to customers. Two Data Envelopment Analysis (DEA) 
models are proposed in this research: (1) a staff allocation evaluation model pertinent to employee numbers and 
transaction volumes, and (2) a customer satisfaction benchmark model to check if the staff allocation scheme meets 
the expectations of the bank's management. Constant Returns to Scale (CRS) and Variable Returns to Scale (VRS) 
model results for different branch sizes and geographical regions are presented for analysis. The findings are 
compared to the bank’s current models, validating the use of the proposed DEA models for evaluating operational 
efficiency from a staff allocation viewpoint in the banking industry. One of the interesting aspects of this work is that 
the requirement for best practice is not full efficiency but something less. The rationale is that if staff is pushed to the 
limit, they break and leave – the costs of training and integrating new staff is very high and service levels suffer. 
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1. Introduction 

As one of the major institutions close to Canadians’ daily lives, banks have a major influence not only on the 
country’s economic development, but also on its entire society. Owing to the increasing number of financial products 
and customer services aimed at providing convenience and flexibility to their clients, the efficiency of service at the 
branch is of paramount importance for corporate success. The diverse client base, ranging from individuals, to 
businesses, large corporations, governments, and non-profit organizations, helps banks grow and deploy their assets. 
Cumulatively, banks handle approximately 70% of total domestic assets in Canada; the ‘Big Five’ domestic banks 
account for over 90% of the assets held by the banking industry and operate through an extensive network that 
includes over 6,200 branches across Canada (Canadian Bankers Association, 2012). Despite the rapid rise in the use 
of technology in banking, such as online banking, telephone banking and Automatic Banking Machines (ABM), it 
was found that, in Canada, 52% of bank customers still conducted transactions with staff at a branch of a financial 
institution (TNS Canada, 2012). The Canadian Bankers Association found that in 2012, banks employed 275,280 
Canadians, and that industry employment, overall, has increased by 14.4% over the past ten years while full-time 
industry employment has increased by 25.4% over the same period (Canadian Bankers Association, 2012).  

To remain competitive customer service is a critical success factor, hence, it is essential to evaluate bank branch 
operational efficiency; the work here examines several approaches to enlighten management. Optimizing branch staff 
allocation is still one of the key elements in increasing customer satisfaction, while at the same time reducing costs 
and increasing productivity. The concept of resource optimization and evaluation is not new; however, the 
increasingly complex products and services the banks presently offer have made evaluation of the appropriate 
employee requirements for branches rather difficult. In addition, client-driven activities are usually difficult to 
predict, adding to the challenge faced by management. Banks traditionally evaluated their performance through 
different financial measures; however, such conventional methods are often inconclusive and do not reflect the 
complex banking industry well (Giokas, 2008). Moreover, to evaluate the accuracy of branch staff allocation models, 
namely how promptly employees respond to customer transaction requirements, most banks are utilizing single ratios 
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such as quick-response transactions to total transactions. Such a method does not include the impact from staff 
numbers and fails to capture the multi-dimensionality and complexity of different branch activities (Oral & Yolalan, 
1990). 

In this study, Data Envelopment Analysis (DEA), a non-parametric multi-dimensional approach, is used as it is one 
of the widely employed methodologies to evaluate resource optimization for complex business units, such as bank 
branches. This approach is more effective than traditional methods as they evaluate the branches’ relative efficiency 
against similar units, and identify best performing units to build a frontier for reference instead of just referring to an 
average value. Among its most significant features is its ability to simultaneously handle multiple indicators of 
performance as inputs and outputs, hence, it provides an unbiased comparison of similar units without prior 
specifications of the unknown underlying relationships between these inputs and outputs.  

The objective of this study is to develop two DEA models for one of the “Big Five” banks in Canada in order to 
evaluate its branches' operational efficiency from a staff allocation perspective. The first model evaluates the branches’ 
staff allocation approach to identify best performing branches and the overall effectiveness of the bank's current 
model for resource allocation. The second evaluates the branches’ accuracy of staff allocation in the context of 
meeting desired customer satisfaction benchmarks set by bank management. Results are compared with the bank’s 
existing models, allowing the models to validate against each other. In this process the analyst discovers improvement 
opportunities in the models that should lead to better staff resource allocation. The segregated regional and branch size 
analysis results identify the size characteristics to be employed when adjusting the model to fit different regional and 
branch size attributes. 

The remainder of this paper is organized as follows: Section 2 gives a brief literature review of branch operational 
efficiency assessment while Section 3 reviews previous studies and presents a detailed introduction to the process of 
constructing DEA models. Section 4 explores a new approach and discusses its relevance to the application of DEA 
models in the Canadian banking industry, and various results are compared with traditional bank models. The paper 
is completed in Section 5, which includes the conclusions and suggests future research directions. 

 

2. Literature Review 

Ratio analysis marked the start of performance measurement efforts and is still the most commonly used method 
across different levels of management and decision-making processes in the banking industry. While ratio analysis is 
still valid and useful, the rapidly increasing complexity in the banking industry demanded a more sophisticated 
approach. In response, frontier methodologies have emerged as an important performance measurement approach, 
allowing more complex use of information to provide insights into performance. Frontier methodologies can 
generally be categorized into two main approaches, parametric and non-parametric, where the latter is the method we 
are using in this work.  

2.1 Ratio Analysis 

Because of its simple form and ease of computation, ratio analysis is one of the most prevalent methods used by the 
banking sector to measure operational efficiency (Giokas, 2008). The method compares two parameters to capture 
their relationship, offering insights into different aspects of bank operations, such as profitability, liquidity, asset 
quality, risk management strategies, etc. Traditional accounting ratios such as return on assets (ROA) and return on 
equity (ROE) have also been used to measure bank branch efficiency.  

Although ratio analysis does provide certain specific insights into performance, it is often incomplete and cannot 
account for complex operations with its one-dimensional form. Only one aspect at a time can be compared and there 
is no single aspect of an organization that can fully characterize the operation of a business (Board of Governors of 
the Federal Reserve System Division of Banking Supervision and Regulation, 2003). Studies have attempted to 
combine ratios to form a more representative measure of performance in banks and branches (Paradi, Vela, & Yang, 
2004). Combining ratios is challenging since it is difficult to determine suitable weights a priori for each efficiency 
component (ratio), to establish a representative combination (Paradi, Rouatt, & Zhu, 2011). Another problem with 
ratio analyses is that it is difficult to objectively determine how far above the average is efficient or inefficient 
(Giokas, 2008).  

2.2 Parametric Methods 

By virtue of the advantages of allowing for random error and the resulting lower misidentification between 
inefficiency and noise, parametric methods, such as Stochastic Frontier Analysis (SFA), Distribution Free Approach 
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(DFA), Thick Frontier Analysis (TFA), etc. have been of interest in efficiency analysis of financial institutions. 
Nevertheless, such parametric methods are criticized due to the need to impose certain parameters when specifying a 
functional form (Bauer et al., 1998), which might be inappropriate and thus lead to inaccurate efficiency evaluation 
results (Greboval, 1999).  

SFA has been the most-used parametric method since it was independently introduced in 1977 by Aigner et al., and 
Meeusen and Van Den Broeck (Reinhard, Lovell, & Thijssenc, 2000; Post, Cherchye, & Kuosmanen, 2002). This 
method formulates a frontier for single input to multiple outputs or single output to multiple inputs scenarios, 
assuming a standard normal distribution with a mean of zero and modeling inefficiency using an asymmetric 
half-normal distribution (Berger, Hunter, & Timme, 1993). However, the half-normal distribution of inefficiency is 
relatively inflexible and assumes that most units are clustered near full efficiency. Studies including that of Berger 
and Humphrey (Berger & Humphrey, 1997) have shown that specifying a more general truncated normal distribution 
for inefficiency yields statistically significant, but different results compared to the half-normal distribution. Despite 
such increased flexibility, it is still difficult to separate inefficiency from random error, a limitation to this approach.  

DFA also specifies a functional form for the frontier, which assumes that random error averages out to zero over time, 
while efficiency remains stable over time (Bauer et al., 1998). It allows inefficiencies to adopt any distributional 
shape provided that they remain non-negative. The inefficiency of each unit is calculated as the difference between 
its average residual and the average residual of a unit on the efficient frontier.  

TFA uses the same functional form for the frontier as SFA, but measures the overall efficiency rather than the 
efficiency of an individual unit, and thus does not assume any distributions for random error or inefficiency. Units in 
the lowest average-cost quartile are assumed to have above-average efficiency and form a thick frontier, hence the 
name. Such a property reduces the effect of extreme points in the data; however, it limits the understanding provided 
of an individual unit’s efficiency. 

2.3 Non-parametric Methods 

As a representative non-parametric method, DEA focuses on comparing the efficiency of a number of Decision 
Making Units (DMUs), and constructs a rather objective production frontier formed by the dominant DMUs. The 
most efficient units located on the efficient frontier are those for which no other unit, or linear combination of units, 
has as much or more of every output (for a set of given inputs) or as little or less of every input (for a set of given 
outputs) (Charnes, Cooper, & Rhodes, 1978). This condition is also referred to as Pareto-Koopmans Efficiency and it 
defines an efficient DMU where it is not possible to improve any input or output without worsening some of its other 
inputs or outputs (Cooper, Seiford, & Tone, 2007). DEA differs from its parametric counterparts in that it requires no 
explicit assumption or knowledge about the relationship between inputs and outputs, and hence DEA does not 
require any specification of the functional form of the frontier. However, DEA does not account for random error, 
causing its frontier to be sensitive to the presence of outliers and statistical noise (Bauer, 1990). 

There are a few studies that have compared multiple approaches in bank performance evaluation (Knaup & Wagner, 
2012; Lee et al., 2011; Wang et al., 2014; Matthews, 2013; Barros, Managi, & Matousek, 2012); however, there is no 
simple way to determine which of the various methods best evaluate bank performance. The choice of measurement 
methods appears to strongly affect the calculated efficiency, and results have shown differences in ranking and 
inefficient unit percentages depending on the method employed. It follows that different methods could offer an 
advantage in representing the studied relationship depending on the problem at hand. 

DEA has shown promising results in bank operational efficiency analysis ever since its introduction and researchers 
have produced a large and growing body of studies over the last 30 years (Emrouznejad, Parker, & Tavares, 2008; 
Paradi & Zhu, 2013). DEA determines a comparative ratio of the weighted sum of outputs to the weighted sum of 
inputs for each unit under evaluation. This relative score expressed as a number between 0 and 1 provides an 
efficiency measurement comparable to that from parametric methods. Furthermore, DEA’s ability to analyze multiple 
inputs and outputs at the same time, is a strong advantage in evaluating a complex operation such as a bank or a bank 
branch. These non-parametric properties point to an easier, yet sophisticated, approach to tackle an industry problem, 
and DEA was judged to be particularly suitable for this study.  

2.4 Evaluating Bank Branch Efficiency & Rational Inefficiency 

Bank branches have been studied from various aspects including production, profitability, intermediation, cost 
efficiency, service quality, environment and technology, mergers and acquisition, etc. (Paradi & Zhu, 2013). For all 
these aspects, the number of employees is generally considered to be an important input affecting the production 
efficiency of the branch; e.g., the production efficiency of the bank branch is analyzed by Paradi et al. (Paradi, 
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Rouatt, & Zhu, 2011), and the obtained efficiency score is considered to be an input in the second stage model to 
arrive at the overall operating efficiency of the branch. Instead of using employees, some researchers focused on the 
service quality of the branch; whereas others have divided staff into more detailed categories such as representatives, 
tellers, typing, accounting, etc. These categorised staff are then viewed as inputs to produce transactions or financial 
services (Asmild, Bogetoft, & Hougaard, 2013; Akthera, Fukuyama, & Weber, 2013). But none of the research 
studied the branch efficiency from both staff allocation and customer satisfaction aspects. This research examines the 
traditional staff allocation model being used by the bank, and abstracts the pivotal types of staff as inputs to the DEA 
model to evaluate branch efficiency from the staff allocation aspect. 

Bogetoft & Hougaard (2003) discussed ratioanl inefficiency in their work as that inefficiency can benefit a firm in 
the long run. However, they only analyzed inefficency from the viewpoint of capital usage, which emphasized that 
the firm paying its employees more than their opportunity costs, in order to keep them working efficiently, chould be 
rational. In fact, rational inefficiency can also be seen from the aspect of relieving employee pressure. The banks 
measure whether the current staff allocation scheme of bank branches meet their capability requirements, mainly 
from the view of whether and how customers are satisfied. Specifically, most banks set a target for branches to 
complete 85% of transactions in a fixed time period, such as 5 or 10 minutes, which ensures that most of the 
branches are keeping their staff neither excessively idle nor overwhelmingly stressed. The reason why the banks did 
not set the threshold shorter than 5 minutes or raise their target higher than 85% was precisely because stressed staff 
would leave and in turn waste more resources. Thus, a relaxed customer satisfaction level can create loyal employees 
and thereby reduce costly turnover in the labor force (Bogetoft & Hougaard, 2003). On the other hand, rational 
inefficiency is also reflected in the DEA methodology, as it does not require a branch to be fully optimal in all 
aspects, but rather one or several merits can make it efficient. This trait of DEA is named sensitivity to extreme 
values. A more detailed explanation accounting for this will be provided in Section 4.2. 

 

3. Methodology 

To introduce a DEA approach for evaluating bank branch staff allocation efficiency, we firstly provide an overview 
about the models currently used by banks. The bank under study employs a complex staff allocation model based on 
a queuing algorithm and a single ratio of prompt to total transactions to assess a branch’s effectiveness in allocating 
employees and meeting customer requirements. Based on the understanding of the bank's current models and data 
characteristics, a further correlation analysis between the results from the bank’s method and DEA models are 
presented to show the weak points in its models, and the validity of DEA in staff allocation analysis.  

3.1 Bank’s Current Model and Corresponding Benchmark 

3.1.1 Bank’s Current Model in Staff Allocation 
The Full Time Equivalent (FTE) measure represents one full time employee’s base hours of work in a week, which is 
37.5 hours/week. But an FTE can also be made up of two part time staff whose work hours add up to the 37.5 hours 
per week, so the number of FTEs does not represent the number of different individuals working in the branch. In 
this study, FTEs are used to measure the number of Customer Service Representative (CSR) units that are 
responsible for all direct over-the-counter (OTC) transactions in a branch, and are commonly referred to as ‘tellers’ 
interacting with customers. The CSR team typically performs three distinct roles: (1) professional services to clients 
with predominantly transactional banking needs provided by the familiar Common Tellers; (2) personal and business 
clients' requirements for all their cash handling and transactional banking needs provided by Central Tellers (CT); 
and (3) complex transactions, such as foreign exchange provided by Client Service Representatives Experts (CSR: 
Expert). 

The CSR resource allocation process involves a complex model as well as management’s input to prescribe 
appropriate staff resource deployment to each branch. Such a process is a cycle where the bank’s model uses 
historical transaction volume data and other model levers to estimate the optimum FTEs per branch by team, which 
then goes under management’s adjustments to add in other factors, such as coverage, to determine the Net FTE by 
branch. This Net FTE is then used to determine the final maximum number of approved FTEs per branch, and the 
actual paid FTE data (Paid Data) enters its internal data server with other information including transaction times and 
the number of transactions. As shown in Figure 1, the cycle is completed as the model uses the updated historical 
data to re-calculate the optimum resource distribution for the next allocation.  
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Figure 1. The Bank’s CSR Resource Allocation Process 

The bank is currently utilizing a commercially available product calibrated to its objectives to determine the 
optimum FTE counts for CSR teams by branch. Since the bank’s model is a commercial software package, it is 
considered to be a black box model that uses the following model levers and inputs to produce the outputs as shown 
in Table 1. 

Table 1. List of Inputs, Outputs and Model Levers for the Bank’s Staff Allocation Model 

Model Inputs Model Levers (Management Inputs)  Model Output 

• Historical 
Volume Data 

• Desired Serve Time 
• Wait Time 
• Number of Teams 
• Number of Mapped Assets 

• Required 
FTEs 

The model recommends for each branch the required FTEs by teams according to the previously designated number 
of teams allocated by corporate management rules. The model uses historical transaction volumes and corporate 
management’s designated inputs, such as desired serve time (minutes), to estimate the transaction volume and 
recommend the FTE count required to service this volume within a desired transactional time for each branch. 

The bank mainly uses Throughput and Client Service ratios to measure branches’ CSR allocation efficiencies, which 
can be broken down into actual paid and recommended ratios, respectively, as shown in Eq. (1-4). Total Paid FTE is 
the actual paid FTE counts for the branch, and the Net Recommended FTE is the bank recommended FTE counts for 
the branch. Throughput demonstrates the branch’s performance by calculating the average number of transactions 
completed by one FTE at a branch, and the Client Service ratio demonstrates branch performance by calculating the 
average percent of time one FTE spends interacting with customers to complete transactions. Total Transaction Time 
is measured in minutes and it is the total amount of transaction time clocked in a week for the branch. 
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also to indicate the changes over the year. However, such one-dimensional ratio analysis does not clearly 
demonstrate the staff allocation efficiency of a branch network as aforementioned in the literature review. For 
instance, all branches require a certain minimum number of FTEs to operate even if all resources are not fully used to 
meet the transactional volume demand. Such a discrepancy cannot be accounted for in the above ratio analyses and 
discriminate against smaller branches in comparison to larger branches.   

3.1.2 Bank’s Benchmark of Staff Allocation 

Desired Serve Time (minutes) is the desired average transactional time for the corresponding branch, and its value is 
decided by corporate management. Wait time is a benchmark that the bank aims to meet and is another key model 
lever used to determine the FTE count. It is based on the percent of transactions that were completed under a certain 
amount of time. The bank currently aims to complete 85% of transactions under either 5 minutes (85/5) or 10 
minutes (85/10) depending on branch characteristics. In fact, 70% of the branches currently operate under the 85/5 
benchmark and only smaller branches operate under 85/10 benchmarks. Smaller branches are measured against this 
more lenient benchmark since all branches require a minimum number of employees to function as a branch and the 
85/5 benchmark may be an unreachable standard for smaller branches, which do not require many dedicated 
representatives as CSRs for their transaction volume. 

The bank utilizes a percentage value as the benchmark to measure how well a branch satisfies customers, or in other 
words, prompt transactions performed by CSRs with respect to the current staff allocation scheme. The branch aims 
to complete this given percentage of the total transactions under a certain time (5 or 10 minutes) to ensure prompt 
service and to set a goal for the CSR team to reduce wait time while increasing face time. Such a benchmark can be 
calculated as follows: 

    
   

   

Number of Transactionsunder Benchmark
Transactions Meeting Benchmark

Number of TotalTransaction
=   (5) 

3.2 A DEA Approach 

To address the inherent shortcomings mentioned in the preceding sections, we investigate the method of using DEA, 
a non-parametric tool, to evaluate the complex bank branches’ staff allocation efficiency, including the corresponding 
benchmarks. In this section, the design and definitions of the proposed DEA models, i.e. the inputs, outputs and 
non-controllable variables are discussed.  

Since several input variables encountered in the current study cannot be varied at the discretion of the bank 
management layer, i.e. branch size, desired serve time, wait time, and number of teams, we employ non-controllable 
(or non-discretionary) variables, which have been employed in many studies, in input-oriented DEA models (Banker 
& Morey, 1986; Cooper, Seiford, & Tone, 2007). Assume the data set consists of n DMUs, for which Y denotes the 
traditional controllable output variable matrix, and XC, XN refer to controllable and non-controllable input variable 
matrices respectively. The efficiency of DMUo (the DMU under evaluation) is expressed by the following 
envelopment form DEA model: 

,

min

. .

:
1

C C
o

N N
o

o

s t

CRS

VRS

θ
θ

θ − ≥

− =
− ≤

≥
 =

0

0

0

0

λ

x X λ
x X λ
y Yλ

λ
λ

eλ

                                  (6) 

in which the input and output vectors of DMUo are defined by (xo
C, xo

N) and yo. The last constraint is pertinent to the 
assumed Returns to Scale (RS), where λ ≥ 0 and eλ = 1 indicate Constant Returns to Scale (CRS) and Variable 
Returns to Scale (VRS) respectively. 



http://mos.sciedupress.com  Management and Organizational Studies Vol. 2, No. 1; 2015 

Published by Sciedu Press                         58                          ISSN 2330-5495  E-ISSN 2330-5509 

Adding the non-controllable inputs, the production possibility set P is defined as follows. 

{( , , ) | , , , 0}C N C C N N= ≥ ≥ ≤ ≥P x x y x X λ x X λ y Yλ λ           (7) 

It can be concluded that the combination (XCλ, XNλ, Yλ) formed by vector λ outperforms (xo
C, xo

N, yo) and thus be 
considered as efficient.  

The optimal objective function in Eq. (6) is interpreted as the proportionate reduction in all inputs simultaneously 
required to make DMUo efficient, and the value of θ is in the range of [0, 1]. sC-*, sN-* and s+* are the slack vectors in 
controllable and non-controllable inputs and outputs relative to the efficient frontier. It follows that DMUo can be 
improved to be fully efficient by reducing its input excesses and augmenting its output shortfalls using the following 
scheme: 
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The new projected DMU defined by Eq. (8) is a point on the efficient frontier and is usually considered to be a target 
to strive towards in order to achieve desirable and feasible improvements. Furthermore, this target can also be 
expressed by the positive elements of the optimal solution λ* in Eq. (6) which is conventionally defined as the 
reference set for DMUo. 

The input-oriented DEA model incorporating non-controllable input variables, as shown in Eq. (6), is the 
methodological basis for the current study. Further applications, as well as the results comparison with the bank’s 
traditional models will be introduced in the following section. 

 

4. Application to the Canadian Bank 

The collaborating bank studied is one of the “Big Five” Canadian banks, and is currently ranked in the top 100 banks 
worldwide in terms of asset size (Canadian Bankers Association, 2012). The bank offers an extensive range of 
financial products and services to customers globally, including personal, commercial and corporate banking, and 
other financial and investment services. The data used in this study was sourced from the initial pool of over 1,200 
branches of the bank. However, this data set was later reduced to 1,166 branches, after eliminating irregularities, 
missing information, commercial branches and branches without tellers. The remaining dataset includes information 
on branch characteristics, including market, geographic region, branch size, total number of employees, weekly 
average transaction and more, as listed in Table 2.  

Table 2. List of Data Provided by the Bank on its National Branch Network 

Categorical  Numerical  

Branch Background 
• Region 

• Market 

• Distribution footprint 

• Branch size 

Hours and Days Availability 
• Saturday open 

• Number of days open 

• Weekday protocol 

Bank’s Current Model Data Historical Data 
• Number of weekly sessions by 

branch by team 

• CSR FTE requirement by team 

Model Levers 
• Model serve time 
• Model wait time 
• Number of teams 
• Number of mapped assets 

• Average weekly number of total 
transactions 

• Average weekly number of 
business transactions  

• Average transaction time (min) 

• Paid CSR FTE by team 
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4.1 Staff Allocation Analysis 

An important step in the efficiency analysis lies in specifying the DEA model, i.e. defining the input and output 
variables to represent the complex process of allocating staff in actual branch situations. The inputs of the staff 
allocation DEA model consist of bank FTE counts by team (CSR, CSR: Expert, CT), and the outputs of this model 
consist of the average weekly number of personal client transactions calculated over the year and the average weekly 
number of business client transactions calculated over the year (two values that define the customer demand at the 
branch throughout the year). There are other variables that also affect the use of branch resources, and they are 
branch size, desired serve time, wait time, and number of teams. These variables were included in the model as 
non-controllable inputs since they have an effect on the use of resources and producing transactions, but they are not 
fully controllable by the branch. The following describes the non-controllable inputs used in the model in detail: 

• Branch Size is defined by the total number of employees at the branch. 

• Desired Serve Time ranged from 3 to 5 minutes, and is designated by corporate management. 

• Wait Time is the benchmark number of minutes within which 85% of the transactions were to be completed, and 
this varied from 5 minutes to 10 minutes.  

• Number of Teams is the number of subdivided CSR teams such as CSR, CSR: Expert and CT present in each 
branch. 

Branch size helps the DEA model group similar branches according to their similar environments. Desired serve time, 
wait time and number of teams are key model levers for the bank, and thus are designated by corporate management 
to provide suitable expectations for each branch. Such information is crucial when comparing similar branches with 
the same expectations. Table 3 summarizes the input and output variables of the DMUs. 

With the above setting of 3 normal inputs, 4 non-controllable inputs and 2 outputs, data from 1,166 branches 
(DMUs) of a Canadian bank are analyzed under CRS and VRS. The calculation results as well as the relevant 
statistics are shown in Table 4, from which no apparent difference between CRS and VRS results could be found. 
This is a strong confirmation that the retail bank branches operate on an almost true CRS basis, likely due to the 
rigidly defined rules and processes under which they must operate.  

Table 3. List of Variables for Staff Allocation 

Normal Inputs Non-Controllable Inputs  

 

Outputs 

• CSR FTE Counts 
• CSR: Expert FTE 

Counts 
• CT FTE Counts 

• Branch Size 
• Desired Serve Time (min) 
• Model Wait Time 
• Number of Teams 

• Average Weekly Personal 
Transactions  

• Average Weekly Business 
Transactions 
 

 

Table 4. CRS VS. VRS Input-Oriented DEA Model Results for All Branches 

Statistics CRS  VRS  

Number of DMUs 1166 1166 
Number of Efficient DMUs 154 174 
Average Efficiency Score 72.4% 73.4% 
Standard Deviation 20.7% 20.9% 
Maximum Efficiency Score 100% 100% 
Minimum Efficiency Score 18.2% 18.2% 

To examine the results found, first we investigate the correlation between Throughput, Client Service ratios and 
branch size to understand the models used by the bank. Throughput and Client Service ratios do not account for the 
minimum number of FTEs required to operate a branch and discriminate against smaller branches. This 
discrimination can be seen from Figures 2 and 3, which plot the Client Service and Throughput ratio values, 
respectively, against the branch size groups. There is a significant positive correlation between the branch size and 
the ratios, as the simple regression analysis indicate the medians of the two performance ratios display high 
correlation coefficients, of 0.92 and 0.77 for the Client Service and Throughput ratios respectively, with branch size. 
This correlation supports the view that there are weaknesses in using ratio analysis as efficiency measurements for 
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bank branches (Giokas, 2008). 

 
Figure 2. Distribution of Client Service Ratio by Branch Size Group 

 

 
Figure 3. Distribution of Throughput Ratio by Branch Size Group 

Second, the correlation analysis between CRS DEA efficiency scores (the VRS scores were not examined since there 
were no apparent difference between CRS and VRS) and the Client Service and Throughput ratios are examined as 
shown in Figures 4 and 5, respectively. As expected, the CRS DEA efficiency scores did not show significant 
correlation to the ratios, since no single ratio can appropriately represent the complex resources used in a branch. 
Ideally, if both results are mapped to the same scale (0, 1), such comparisons should result in a 45 degree line 
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originating from (0, 0), demonstrating the agreement between the two measurement tools. However, while DEA 
attempts to incorporate different levels of operations in the model at the same time, the ratios used by the bank are 
one-dimensional and evaluate only one aspect of the branch operation at a time. Each aspect is an important indicator 
of a branch’s operation; however, it typically does not translate directly into the branch’s overall efficiency in staff 
allocation. The difference in the DEA results and the two performance ratios is a useful indicator for management, 
and they should consider the use of DEA to identify inefficient and efficient branches to clarify the shortcomings of 
their current performance measurement ratios.  

 
Figure 4. Comparison of CRS DEA Efficiency Score vs. Client Service Ratio 

 

 
Figure 5. Comparison of CRS DEA Efficiency score vs. Throughput Ratio 
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4.2 Customer Satisfaction Benchmark 

As explained in Section 3.1.2, the bank has a benchmark measure of performing 85% of all transactions in under 
either 5 or 10 minutes to reflect Customer Satisfaction by promoting prompt services, and reducing wait times while 
increasing face time between the customer service representatives and customers. In this section, we provide a DEA 
approach to evaluate the staff allocation efficiency of the bank under study, in terms of meeting customer satisfaction 
benchmarks. 

We received a month of detailed transactional data for 20 branches, covering either January, 2011 or May, 2011. 
Since the transaction volume over the year for a bank branch does not change significantly throughout the year, the 
two different months' data were used together. The branch data was further broken down to an hourly average of 
transaction data for each branch, increasing the sample size of DMUs to 185.   

The normal inputs of the DEA model consisted of management recommended FTE levels and the number of 
transactions over 5 or 10 minutes (according to the corresponding benchmark) over a one-month period, and the only 
non-controllable input was desired serve time. The single output variable of the model was defined as the number of 
transactions under 5 or 10 minutes for the same period. Table 5 displays the input and output variables of the DEA 
model. At a given total volume of transactions, the main objective of this model is to reduce the number of resources 
required, as well as the number of transactions exceeding the desired transaction times, while maximizing the 
number of transactions under the desired transaction time.   

Table 5. List of Variables for Customer Satisfaction 

Normal Inputs Non-Controllable Inputs 

 

Output Variables 

• Bank recommended FTE  
• Number of average 

transactions over 5/10 min 
for that hour 

• Desired serve time 
• Number of average 

transactions under 5/10 
min for that hour 

 
For the first run, each branch was used as a single DMU. A CRS input oriented DEA model incorporating 
non-controllable inputs was used, and 7 units were found to be CRS efficient. The average CRS efficiency score was 
0.78 with a standard deviation of 0.21, as summarized in Table 6. A high percentage of efficient branches are 
observed due to the small sample size, exacerbated by the CRS nature of retail banking. This demonstrates one of 
DEA’s major limitations when handling small sample sizes. Therefore the next analysis was conducted with each 
hour of each branch considered as a DMU, increasing the sample size to 185. Comparison of these two sets of results 
are given in Table 6. 

Table 6. DEA Results of Customer Satisfaction for All Branches 

Statistics Branch as DMU Hour as DMU 

Number of DMUs 20 185 
Number of efficient DMUs  7 7 

Average Efficiency Score 0.78 0.65 

Standard Deviation 0.21 0.20 

Maximum Score 1.00 1.00 
Minimum Score 0.38 0.31 

Figure 6 plots the CRS DEA efficiency score against the bank’s Staff Allocation benchmark. When linear regression 
was performed, the correlation coefficient (r) was 0.70, indicating a significantly high positive correlation between 
the DEA efficiency score and the bank’s internal metric. This indicates that the proposed DEA model and its results 
are, in fact, a suitable tool to evaluate the bank’s staff allocation model with respect to its desired benchmark for 
customer satisfaction. Often, even when a new technique is demonstrated to be better that an accepted one in an 
organization, it is rejected because a plausible relationship cannot be demonstrated between them. This is addressed 
here because the two methods generally agree, even though on an individual basis, better results may be achieved by 
the DEA model. The correlation indicates a positive relationship between the CRS DEA efficiency score of the 
proposed model and the bank’s benchmark ratio, the portion of bank transactions completed within the benchmark. 
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Strong correlation can be seen in the branch level data as the correlation coefficient value is close to 1, and thus the 
proposed DEA model may be preferable for measuring the branches’ efficiency according to the bank’s desired 
benchmark. 

 
Figure 6. DEA Efficiency Score vs. Bank’s Customer Satisfaction Benchmark 

From Figure 6, we can also observe that a number of branches deemed efficient by DEA are not efficient by the 
bank’s benchmark. This reflects that DEA is a more tolerant evaluation method for branches which are not leaders in 
general service quality, but may cost less in manpower usage, may have shorter waiting time, or may have more 
transactions in a unit of time. DEA perceives such branches as efficient because DEA is sensitive to extreme values, 
meaning a DMU with either a very low input or a very high output is more likely to be considered efficient. From the 
management viewpoint, this property of DEA relaxes the requirements for branches to perform perfectly in all ways, 
which in turn may apply pressure on employees that may result in a decrease in service levels. In this sense, DEA can 
give a more practical evaluation result that considers the rational inefficiency in separate inputs and outputs 
(Bogetoft & Hougaard, 2003). 

 

5. Conclusions 

Based on the related literature survey in evaluating bank and bank branch efficiency, this research mainly focuses on 
constructing DEA models for operational efficiency of staff allocation for a major Canadian bank’s branch network. 
A numerical application utilized by the bank for this purpose and the corresponding customer satisfaction 
benchmarks are also investigated. The comparison between results of the DEA approach and the bank’s internal 
metrics showed that DEA offers a significant potential for evaluating bank branches’ staffing efficiency efforts. 

The two significant contributions of the current study are, on the one hand, the evaluation of the bank's analysis of 
Client Service and Throughput Ratios and its appropriateness. By using a DEA based approach, we show that the 
bank’s ratio methods in efficiency evaluation can be improved. We propose a DEA approach in Section 3.2 which 
incorporates multiple variables, including both controllable and non-controllable measures. Analysis results for 
various branch sizes and regions from the DEA model were also shown in Table 4. On the other hand, the results for 
customer satisfaction from the DEA model were highly correlated to the bank’s current internal metrics, which lends 
credibility to the effort of using DEA to evaluate branch efficiency.  

Moreover, the factors affecting branch performance may be found by analyzing the differences between efficient and 
inefficient branches. In-depth observations of the efficient branches that appear frequently and significantly in peer 
groups for the inefficient branches can provide insights into how to improve inefficient operations. In addition, other 
environmental factors such as geographic regions, branch size and other model levers used in the bank’s models have 
been shown to indicate characteristic advantages between groups of branches that could be used to calibrate the staff 
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allocation model to be a better fit. Overall, the DEA results and analysis can be used to estimate the potential savings 
that could be achieved from the improved performance. This research shows that the bank branches examined have a 
potential for improvement, which could be achieved by detailed analysis combined with field study.  

Further examination and statistical analysis of the DEA results provided in this research could potentially reveal 
patterns for more effective branch operations, such as the best staff mix between part time and full time staff, best 
team mix (number of CSR teams) and much more. Also, the limited sample size when evaluating customer 
satisfaction could be eliminated by obtaining more branch transactional data to produce results reflecting the national 
branch network, as well as hourly staff allocation efficiency. The proposed models should be extended in the future 
not only to evaluate the high-level staff allocation models, but also the branch manager level staff scheduling model 
to closely evaluate the branches’ efficiencies and identify more potential savings and improvements. 
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