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Abstract 
Most cancer-related deaths are due to the development of metastatic disease rather than the growth of primary tumors. 
Adjuvant treatment often does not translate into substantial improvements in overall survival; subclinical micro- 
metastases may be resistant to multiple therapies. Understanding microenvironment factors such as hypoxia, proliferation 
and glucose metabolism in micro-metastases is of importance for micro-metastases treatment; hypoxia, commonly 
observed in most primary solid malignancies, is associated with tumor progression, increased aggressiveness, enhanced 
metastatic potential and poor prognosis and hypoxic tumor cells are more resistant to radiotherapy and some forms of 
chemotherapy. In this article, we discussed hypoxia status of micro-metastases, and related this to cellular proliferation 
and glucose metabolism. We also proposed hypoxia as a therapeutic target for micro-metastases. 
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1 Introduction 
Most cancer-related deaths are due to the development of metastatic disease rather than the growth of primary cancer. The 
prevention of this development or the elimination of metastases before they become clinically detectable would be 
expected to result in improvements in cancer mortality rates. Adjuvant treatment in the form of systemic chemotherapy 
and/or local-regional radiotherapy is generally given after surgical removal of the primary cancer. This often does not 
translate into substantial improvements in overall survival [1]. 

Hypoxia is a common feature of primary solid malignancies and the presence of hypoxia is recognized as an important 
determinant of clinical outcome [2-6]. We have shown, in an animal model of colorectal cancer metastases in the peritoneal 
cavity, that microscopic tumors of less than 1 mm diameter were extremely hypoxic while those of greater size (1 - 4 mm 
diameter) were not significantly hypoxic [7-10]. In contrast, other group has found hypoxia presented in metastases as they 
grew larger than 2 to 3 mm in diameter; however, hypoxia status in sub-millimeter metastases has not investigated and 
reported in this study [11]. Recent review articles have discussed hypoxia status in metastases [10, 12]. Here, we extended the 
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discussion on the following aspects: Hypoxia status in micro-metastases, its relation to cellular proliferation, glucose 
metabolism, in addition, we discussed potential therapeutic strategies toward curing micro-metastases. 

2 Hypoxia in micro-metastases 
The presence of hypoxia is a common feature of primary solid malignancies [2-4, 6, 10, 13]. We have recently observed on the 
hypoxic status of microscopic tumors established intraperitoneally and intradermally using the HT29 and HCT8 colorectal 
cancer lines [7-9], NSCLC A549 and HTB177 cells [14], and breast cancer MDA-MB-231 cells (Li et al., unpublished 
observation) using pimonidazole immunohistochemical staining. In general, sub-millimeter tumor deposits of HT29 and 
HCT8 showed intense hypoxia (hypoxic fraction as high as 90%) with little or no blood perfusion. Tumors ranged 1 - 4 
mm in diameter seemed relatively well vascularized, well perfused and generally displayed little hypoxia. In tumors larger 
than 4 mm diameter, hypoxia reappeared in the characteristically perinecrotic distribution pattern seen in macroscopic 
tumors [7]. We have also observed similar patterns of tumor hypoxia in experimental lung metastases of A549 as well as in 
liver and kidney metastases of MDA-MB-231 cells (Li et al. unpublished observation). Severe hypoxia may be a general 
feature in micro-metastases. Future studies are needed to confirm whether the pattern of severe hypoxia of 
micro-metastatic diseases found in mouse models can apply to patients. 

3 Hypoxia and proliferation 
Sub-millimeter metastases may have already existed in many patients when primary cancers were initially diagnosed 
although without clinical evidence of distant metastases. Human sub-millimeter metastases may be avascular and in a state 
of dormancy (i.e. non-expanding in mass) [15, 16]. Cell proliferation in dormant tumors had been observed, but results were 
mixed: Cells were either dividing very slowly or were in G0 phase [17-20], others have found proliferation in dormant 
tumors to be as high as in macroscopic vascularized tumors but that the dormant tumors did not grow beyond a threshold 
size due to a kinetic balance between proliferation and apoptosis [21, 22]. Hypoxia status had not observed in dormant 
micro-metastases. In animal model of metastases, we have noted that cellular proliferation were in the non-hypoxic rim 
but not the interior hypoxic core of sub-millimeter avascular tumors, whereas proliferating cells were found throughout 
larger tumors 1 - 4 mm in diameter which were less hypoxic [7-10]. This is in good agreement with several studies that 
cellular proliferation and hypoxia are mutually exclusive in macroscopic tumors [14, 23-25]. Future studies would confirm 
whether cancer cells in dormant metastases are proliferative, this concept is very important for systemic chemotherapy of 
metastases; chemotherapy generally kills proliferating cancer cells. 

4 Hypoxia and angiogenesis 
Hypoxia has been recognized as a primary physiological regulator of angiogenesis [26, 27]. Our results suggest the 
possibility that the existence of severe hypoxia in microscopic tumors could be common irrespective of cell line and tumor 
location and reflects the pre-angiogenic stage of tumor development. As peritoneal and intradermal tumors increased in 
size to the diameter range 1 to 4 mm, there was a drastic reduction in tumor hypoxia coupled with the appearance of 
functional tumor vascularization [7-9]. This suggests the sequence of events are that cells become hypoxic when tumors 
reach several hundred micrometers, hypoxia drives angiogenesis, previously hypoxic cells become oxygenated and the 
neovascularized tumors grow beyond the size threshold. The timing for hypoxia driving angiogenesis switch is critical 
important for anti-angiogenesis therapy. 

5 Hypoxia and glucose metabolism 
Hypoxic cells undergo a switch from aerobic to anaerobic glucose metabolism. Glycolysis may be assessed functionally 
by examining the uptake of 18F-fluorodeoxyglucose (18F-FDG). 18F-FDG is an analog of glucose, and like glucose, is 
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phosphorylated by hexokinase, but, unlike glucose, is not metabolized further. Since the phosphorylated metabolite is 
unable to leave the cell, the intracellular accumulation of 18F-FDG may be assayed. In vitro experiments show that 
incubation in hypoxic conditions induces an increase in cellular FDG uptake [28-30]. It was recently shown that the 
intratumoral distribution of 18F-FDG in R3327-AT rat prostatic carcinoma xenografts positively correlated with that of the 
hypoxic marker pimonidazole [23]. 

We have observed glucose uptake in microscopic tumors grown intraperitoneally in nude mice using 18F-FDG digital 
autoradiography and to relate this to physiological hypoxia and glucose transporter-1 (GLUT-1) expression [8]. Human 
colon cancer HT29 and HCT-8 cells were injected intraperitoneally into nude mice to generate disseminated tumors of 
varying sizes. Following overnight fasting, animals, either breathing air or carbogen (a gas mixture of 95% O2 and 5% 
CO2), were intravenously administered 18F-FDG together with the hypoxia marker pimonidazole and the cellular 
proliferation marker bromodeoxyuridine one hour before sacrifice. Hoechst 33342, a perfusion marker, was administered 
one minute before sacrifice. Following sacrifice, the intratumoral distribution of 18F-FDG was assessed by digital 
autoradiography of frozen tissue sections. This was compared with the distributions of pimonidazole, GLUT-1 expression, 
bromodeoxyuridine and Hoechst 33342 as visualized by immunofluorescent microscopy. 

We found that small tumors (< 1 mm diameter) had high 18F-FDG accumulation and were severely hypoxic with high 
GLUT-1 expression and low proliferation. Hypoxia results in up-regulation of glucose transporters and hexokinase 
proteins [31-35], key facilitators of glucose uptake and metabolism. In addition, anaerobic glycolysis is an inefficient 
biochemical pathway of energy generation, requiring significantly more glucose molecules than oxidative 
phosphorylation to produce similar amounts of ATP. These factors may be related to the higher uptake of 18F-FDG in 
hypoxic cells. Larger tumors (1-4 mm diameter) generally had low 18F-FDG accumulation and were not significantly 
hypoxic with low GLUT1 expression but high proliferation. Interestingly, carbogen breathing significantly decreased 
18F-FDG accumulation and tumor hypoxia in microscopic tumors but had little effect on the level of GLUT-1 expression. 
We concluded that micro-metastases have high 18F-FDG uptake, therefore, high glucose demand, which is spatially 
associated with physiological hypoxia and high GLUT-1 expression. This enhanced uptake was abrogated by carbogen 
breathing, indicating that in the absence of physiological hypoxia, high GLUT-1 expression, by itself, was insufficient to 
ensure high 18F-FDG (glucose) uptake [8]. 

Aerobic glycolysis, the so-called “Warburg effect” [36] thought to be a fundamental feature of cancer [37]. In operational 
terms the existence of aerobic glycolysis would confer a general increase in 18F-FDG uptake throughout tumors, spatially 
unrelated to the micro-distribution of hypoxia. It would thus result in a relatively high 18F-FDG “background”. However, it 
should also be noted that 18F-FDG uptake in non-hypoxic regions of cancer or metastases was significantly lower than that 
in hypoxic cancers [8, 14, 23] and is not statistically different from stromal or necrotic regions (Li et al. unpublished data). 
Apparently, glucose demand measured by 18F-FDG is heterogeneous in cancer cells of tumors, and largely depends on 
hypoxia status; this is hard to fully explain by “Warburg effect”. 

6 Novel therapeutic strategies for micro-metastases 
Micro-metastases are severe hypoxic, the efficacy of adjuvant/neoadjuvant treatments in the form of chemotherapy and/or 
radiotherapy may be compromised by hypoxic resistance [7, 10]. If this is true, then new strategies will be required to meet 
the challenge, possibly with the aim of converting hypoxia into a target for systemic therapies. The high demand for 
glucose displayed by hypoxic micro-tumors [8] suggests that glucose metabolism may be a suitable target for developing 
novel therapies for micro-metastatic disease. Several therapeutic strategies are under investigation to exploit or interrupt 
tumor glycolytic metabolism [38, 39]. Future studies to test the therapeutic efficacy of targeting glucose metabolism in 
micro-metastases. 
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There are a variety of proposed methods for targeting the different manifestations of the hypoxia phenotype that may be 
relevant in this context [40, 41]. Preliminary studies with the hypoxia-selective cytotoxin tirapazamine were  
encouraging [42-44], however the experience in large-scale clinical studies has been disappointing to date [45]. Alternative 
hypoxic cytotoxins that may represent improvements on tirapazamine are in earlier stages of investigation [46-48]. These 
types of drug rely on the hypoxia-induced bio-reduction of a pro-drug to an active form. Other groups are investigating the 
potential of recombinant anaerobic bacteria [49, 50] that become active only in regions of very low PO2 and may be directly 
oncolytic or vectors for the delivery of therapeutic genes. Another possibility is to target the HIF-1 signal transduction 
pathway and a variety of approaches aimed at either inhibition of HIF-1 activation or HIF-1 target genes are under 
investigation [41]. To this list, one could speculatively add the possibility of a therapeutic variant of a hypoxia imaging 
tracer. For example, a hypoxia-selective molecule labeled with an alpha-particle emitting radionuclide with a relatively 
short half-life may be attractive since the cytotoxic effect of alpha-particles is not modified by the absence of oxygen [51]. 
Of course the utility of such an agent would depend on its bio-distribution and comparative dosimetry. This suggests there 
could be particular applicability to disseminated disease in confined body regions, such as the peritoneal cavity, where 
there would be restricted transfer to the systemic circulation. 

7 Conclusions 
Sub-millimeter metastases are intense hypoxia and have high glucose demand. Future studies should examine the hypoxic 
status of microscopic tumors for a range of cancer cell lines of different origins in a range of anatomical sites and, 
wherever feasible, in patient derived material. Hypoxia may be a potential therapeutic target of micro-metastases. 
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