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Abstract 
Introduction: MR-guided Focused Ultrasound (MRgFUS) has attracted the attention of researchers and clinicians as a 
potential modality for cancer treatment over the last decades. Despite recent progress, the real application of MRgFUS still 
remains a challenge due to problems with the optimization of ultrasound parameters and standardization of clinical 
protocol. In this study, we utilized an ex vivo animal model in order to elucidate the effect of focused acoustic energy on 
kidney tissue. 

Material & Methods: The explanted porcine kidney was sonicated under MR-guidance by using a clinical Focused 
Ultrasound (FUS) system (ExAblate 2000 Body system, InSightec, Haifa, Israel). The study employed MR-based 
temperature mapping (Proton Resonance Frequency method) for control of the ablation. The data of temperature 
measurement has been compared to histological analysis of treated tissues. 

Results: The temperature mapping data demonstrated a rise of temperature at the focal point up to 440C (SD±1), which 
was thought to be sufficient enough to trigger hyperthermia effects. Histopathological analysis showed tissue destruction 
as a result of massive cavitation in treated tissues. The signs of mechanical damage were more pronounced in a place that 
was treated 240 seconds compared with the first location (sonicated 120 seconds). 

Conclusions: The effect of FUS on the tissues of animal kidney was investigated. The achieved level of temperature rise 
in the focal point was high enough to induce hyperthermia suggesting possible clinical application. Histology of treated 
tissue indicated that its therapeutic effect was mediated by focused ultrasound. The correlation between duration of 
sonication and tissue damage was demonstrated. 
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1 Introduction 
The treatment of kidney cancer remains a challenge in modern urology. Although the treatment depends specifically on the 
type of the cancer, clinicians mainly rely on surgical interventions [1]. In addition to the classic open surgical approach, 
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sonication chamber was filled with degassed water and was covered by an acoustic absorber (Precision Acoustics Ltd., 
UK) for neutralization of ultrasound standing waves. The scheme of sonication set-up is shown in Figure 1. 

2.2 Selecting the target areas and treatment 
The kidney was subjected to pre-treatment planning MR imaging (Signa HDxt 1.5 Tesla, GE Healthcare, USA). The 
following MRI parameters were used: TE 80.9, TR 2300, Bandwidth 31.3 KHz. After identifying target zones, the 
sonication was conducted under MR-guidance by using a clinical Focused Ultrasound system (ExAblate 2000 Body 
system, InSightec, Haifa, Israel). The kidney was treated by FUS at two different spots within the renal medulla area. The 
applied acoustic energy was 1064 Joules and the frequency was 1 MHz in both locations. The first focal point was treated 
for 120 sec, whilst the second one was heated for 240 sec. The monitoring of temperature level at the focal points was 
conducted by using MR-based Proton Resonance Frequency (PRF) method. 

The Proton Resonance Frequency imaging is one of the most reliable methods for temperature mapping. It based on the 
dependence of temperature on the chemical field shift of water protons in the tissues. The chemical shift can be extracted 
from the phase mapping (on RF-spoiled gradient-echo images). 

The temperature difference could be derived by using the following equation [9]: 

∆ܶ = ߮(ܶ) − ߮( ଴ܶ)ܤߙߛ଴ܶܧ  

where φ (T) is the phase in the current image, 

(T0) is the phase of a reference (baseline) image at a known temperature, 

γ is the gyromagnetic ratio, α is the PRF change coefficient, 

B0 is the magnetic field strength, 

TE is the echo time. 

It must be noted that for this method the reference (baseline temperature) was pre-requisite. 

As sonication can induce cavitation effects overshadowing and mimicking temperature rise, the level of inertial cavitation 
was monitored by the hydrophone incorporated into the transducer of the FUS system. 

2.3 Histological analysis of treated tissue 
After the treatment three tissues were taken from each ablated spot using a semi-automatic biopsy system under MRI 
navigation (14 Gauge; Somatex Medical Technologies GmbH, Rostock, Germany). The samples of the intact tissue were 
taken at 5 cm distance from the ablated point. The dimensions of the analysed tissues were 10 mm (length) and 2 mm in 
diameter. 

The obtained treated and untreated kidney tissues were subjected to histological analysis. The samples were fixed in 10% 
neutral buffered formalin, paraffin-embedded, and then sectioned at 4-μm thickness. After deparaffinization and gradual 
hydration, the samples were stained using haematoxylin-eosin. The sections were examined on a Nikon Eclipse 600 
microscope (Nikon, Japan) and images were captured exploiting a Nikon DX1200 digital camera (Nikon, Japan). The 
analysis of the ablated and normal kidney tissues was conducted by specialist-pathologist who was unaware about details 
of the experiments to provide for an objective assessment. 
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membrane and cell death [15-17]. In particular, the cavitation is more pronounced on second focal location, which has all 
signs of cells disintegration and dramatic escape of hemoglobin (Figure 3). The high level of inertial cavitation could be a 
cause of similarity of maximal temperatures detected on both spots. 

We did not observe a significant temperature increase linked to augmentation of the duration of sonication. Usually such 
prolonged treatment leads to the formation of micro-bubbles inside the tissue, particularly within intercellular space. 
Accordingly to the literature, the micro-bubbles cloud does act as a shield, which causes a significant attenuation of 
acoustic propagation and consequently the reduction of the heating effect [18]. 

5 Conclusions 
The acquired data suggest the feasibility of induction of hyperthermia by using moderate acoustic energy. This approach 
might be harnessed for triggering apoptosis in tumor tissues without risk of ablating neighbor soft tissues. The data of 
histology indicate that ultrasound-elicited tissue destruction is time-dependent, where prolongation of treatment period 
seems to be more effective for cancer therapy. 

These findings demonstrated the potential of MR-guided ultrasound surgery as a modality for non-invasive treatment of 
renal cell carcinoma with minimal structural damage of the surrounding tissue. In the next step an orthotropic tumor model 
on re-perfused porcine kidneys will be established for further validation. 
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