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Abstract 

A model is developed to motivate financially-driven decision makers in companies that make high-risk products to 
invest in infrastructural changes to support postponement or other forms of flexibility. Data collected at the 
manufacturer of a high-risk product forms the basis of the effort. The model is used to estimate the magnitude of 
costs associated with a traditional speculative supply strategy. A customized version of the classic newsvendor 
model is developed and applied, based on non-normal demand distributions and carrying costs. It is shown that a 
speculative strategy based on capacity smoothing and production cost minimization can result in excessive overstock, 
understock, and inventory carrying costs. Specifically, a cost increase of 52% can be expected when production is 
initiated nine months prior to peak sales. The cost increase is reduced to 24% if the product is produced three months 
prior to peak sales. The model can help supply chain managers convince corporate executives of the need to redesign 
the supply chain for speed and flexibility. 
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1. Introduction 

In recent years, unprecedented changes in consumer markets have complicated the life of supply chain planners. In 
global markets, for example, language differences, cultural conventions, and government regulations create the need 
for multiple versions of a single product (The Economist, 2000). In the pharmaceutical industry, technological 
barriers, stringent regulatory requirements, customer cost containment efforts, risk of litigation, and competition 
from generic manufacturers have all contributed to the inability to forecast demand with precision (Kiely, 2004). 
These changes have increased the prevalence of products that could be classified as “high-risk” due to their shorter 
life cycles and more uncertain demand as compared to products in the past. Other examples of high-risk supply chain 
environments include fashion clothing, personal computers, gourmet candy, toys, book publishing, entertainment 
offerings, and certain cosmetics (for example, see Napoli, 2001; and Langabeer and Stoughton, 2001). In response to 
these challenges, a move from “speculative” supply chain strategies (that rely on accurate forecasts and the 
minimization of supply chain costs to achieve competitiveness) to various “postponement” supply chain strategies 
(that delay supply decisions as long as possible) have been recommended (Johnson and Anderson, 2000; Pagh and 
Cooper, 1998). Lean approaches, based on the Toyota Production System, that create pull mechanisms in place of 
push mechanisms have also been recommended (Zylstra, 2005).  

Accurate forecasting of high-risk products is difficult, such as when a new product has sales that will follow a 
seasonal sales pattern. Examples include the December holiday season, the summer vacation season, and the start of 
the school year. Demand forecasts in these markets cannot be expected to provide precise demand projections since 
little or no demand history would be available (Kurawarwala and Matsuo, 1996). In the U.S., manufacturers of 
consumer products face the additional challenge of dealing with a few large, and powerful, retailers. A common 
practice is for the retailer to order small quantities of a large number of diverse products and then, for the few 
products that sell well, follow with much larger orders. This practice would appear to make accurate long term 
forecasting of high-risk products especially problematic and prone to significant errors. Whatever the source of 
forecast errors, their effect can be considerable. Kahn (2003) quantified the financial effect of forecasting errors and 
concluded that a small percentage improvement can result in significant savings.  
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Supply chain managers who follow a traditional speculative cost minimization strategy will likely plan to produce a 
few large batches of each product (in order to minimize unit production cost) and schedule the production of these 
batches well in advance of the peak selling season (in order to smooth capacity). This operational strategy, however, 
is only successful when the product’s forecast is accurate. A manufacturer of high-risk products who wishes to 
provide good service to its customers has two choices: (a) create and carry a significant amount of finished goods 
inventory, which will result in high carrying and overstock costs; or (b) redesign the supply chain for flexibility and 
speed, which will result in higher production costs. Some authors have recommended the latter strategy, arguing that 
overall costs are minimized (Pagell et al, 2000). However, many organizations find it difficult to make major 
improvements in operational flexibility, due to physical or cultural constraints. For example, a manufacturer may be 
part of a global conglomerate where some component parts are manufacturing at one or two centralized locations. Or, 
a manufacturer whose executives are focused on cost management may find it difficult to reconcile the benefits of 
flexibility, which are hidden from direct view of the accountants, over cost minimization, which are highly visible as 
direct costs in accounting ledgers. 

This article was created as a result of a comprehensive project with a consumer product manufacturer that is 
increasingly selling high-risk products. An analysis was conducted to determine the nature of the uncertainty in 
demand forecasts, including: (1) the relationship between forecast accuracy and the length of time between the 
forecast creation and the peak sales season, and (2) the statistical distribution of the demand uncertainty. The 
preliminary hypotheses, which were confirmed by the analysis, were that the accuracy of the forecast would become 
improved when made closer to the peak selling season, and that the statistical distribution would follow a 
right-skewed pattern, since anecdotally it appeared the a few “winners” but many “losers” existed among the 
products offered for sale. A model was then developed and used to explore financial considerations associated with 
speculative versus postponement strategies for supply chain planning of high-risk products. While many supply 
chain managers will find the results of the model expected, the model is useful due to its ability to: (1) accurately 
estimate the magnitude of costs associated with a speculative strategy, and (2) motivate financially-driven executives 
to invest in infrastructural changes to support postponement or other forms of flexibility. 

2. Forecast Accuracy Analysis 

At the company analysed in this study, the tendency in recent years has been towards products with a very short 
lifespan, combined with an increased focus on products that would be classified as high-risk. The products are 
bought for the most part as gifts and sold in greatest quantity during the December holiday season. The analysis 
described below is based on a sample of 122 products that were sold in a recent year. The first official forecast was 
made about 12 months prior to the beginning of the peak selling season. This forecast was made so that a long term 
capacity plan could be developed and so that some production could be initiated due to a desire to smooth capacity. 
In order to evaluate forecast accuracy across a range of products, the data had to be standardized to provide an 
apples-to-apples comparison. So, for each product, the actual sales as a percentage of the sales forecast was 
calculated. For example, the value 150% would be used in the case where a product with an annual forecast of 
28,000 units had actual sales of 42,000 units. And the value 80% would be used in the case where a product with an 
annual forecast of 50,000 units had actual sales of 40,000 units. 

Figure 1 is a histogram of actual sales as a percentage of forecasted sales for the 122 products based on the “first” 
forecast. The distribution is skewed right and the data show a very high level of uncertainty. In mathematical terms, 
the coefficient of variation (COV) which measures the standard deviation as a percentage of the mean was 134%. 
The appearance of a right-skewed distribution was not surprising to forecasters at this company. That is, planners 
noticed that typically a few products would have sales many times higher than the forecasted sales. The right-skewed 
pattern indicates that for most products, the actual sales will be below forecasted amount. In this case, 57% of the 
products had values less than 100%, meaning that the sales were less than the forecasted amount. Most surprising, 
however, were the relative magnitudes of the differences between actual sales and forecasted sales. In these data, 
12% of the products had actual sales of at least twice the forecasted sales, and 7% had actual sales over four times 
the forecasted sales. On the other hand, 28% of the products had actual sales less than 50% forecasted sales and 7% 
had actual sales less than 25% of forecasted sales. 
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Figure 1. Sales variation for “first” forecast 

Other error analyses were based on new forecasts made during subsequent three month increments. The revised 
forecasts made use of early sales activity up until the date of the forecast. Historically, consumer preferences for 
birthday gifts will correlate with consumer preference for holiday gifts. Figure 2 is a histogram of actual sales as a 
percentage of forecasted sales for the 122 products based on a “second” forecast made about 9 months prior to the 
peak selling season. The distribution is again right-skewed and the COV is 46%. Figure 3 shows corresponding 
results where a “third” forecast was made about 6 months prior to the peak selling season. The distribution is 
right-skewed and the COV is 56%. Figure 4 is a similar display based on a “fourth” forecast made about 3 months 
prior to the peak selling season. A right-skewed distribution is again evident and the COV is 30%. In each case of 
Figures 2-4, the about 60% of products had actual sales less than forecasted sales. 
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Figure 2. Sales variation for “second” forecast 
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Figure 3. Sales variation for “third” forecast 
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Figure 4. Sales variation for “fourth” forecast 

Management and forecasters at this company were in agreement that the initial forecast will always be highly 
inaccurate. Therefore, a decision was made to attempt to identify lower-risk products and initiate production of large 
quantities early in the year, and wait for early sales data before committing to significant production quantities of 
higher-risk items. The commitment to flexibility in the supply chain, however, remained an open issue. Interestingly, 
the analysis of forecast error distribution detailed above shows a significant improvement in ability to forecast sales 
after only 3 months of early sales data, decreasing from a COV of 134% to 46%. This result is consistent with work 
reported by Harvard researchers showing a significant reduction of forecast error for fashion clothing after 20% of 
sales were realized (Fisher and Raman, 1996). If the manufacturer can wait to commit production capacity until a 
few months prior to the peak selling season, another significant improvement can be expected, down to a COV of 
30%. Hence, the focus of this article will be on the comparison of expected costs under three alternative conditions: 
(1) production capacity is committed 9 months prior to the peak selling season, (2) production capacity is committed 
3 months prior to the peak selling season, and (3) production capacity is committed just before the peak selling 
season. The latter case may be infeasible but is used for illustrative purposes. 

3. Statistical Analysis of Forecast Accuracy 

The results above were considered to be representative of future results. So, a decision was made to develop a 
mathematical model that would quantify financial considerations under the assumption that the supply planners 
would create optimal plans given the information available. To create the model, a statistical distribution must be 
assumed. Traditionally, inventory models employ the normal (bell shaped) pattern. But the model for high-risk 
products must make use of a right skewed pattern similar to the histograms provided in Figures 1-4. The statistical 
distribution that most closely resembles the patterns shown on the histograms is called the three-parameter Gamma 
distribution. The gamma distribution is typically right skewed and includes two parameters: a shape parameter () 
and a scale parameter (). A third parameter may be added, called the threshold parameter (). In the current context, 
the threshold parameter would represent the smallest potential sales quantity. For example, a mutually agreed upon 
initial shipment from manufacturer to retailer could control the value of . Mathematical details are provided in 
Appendix A. 

To illustrate the use of the three-parameter gamma distribution, sample sales variation curves were developed 
assuming a forecast of 1000 units. Figure 5 is based on forecasts made 9 months prior to the peak selling season and 
Figure 6 is based on forecasts made 3 months prior to the peak selling season. The parameters for the gamma 
distributions were estimated directly from the data shown as histograms in the corresponding Figures 2 and 3. In 
Appendix B, a method for estimating the three parameters of the Gamma distribution is suggested. 
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Figure 5. Gamma distribution representing sales assuming “second” forecast of 1000 units (=2.36, =284, =317) 
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Figure 6. Gamma distribution representing sales assuming “fourth” forecast of 1000 units (=2.27, =156, =650) 

4. Classical Newsvendor Model 

A model often employed to deal with short lifespan products is the classical single-period “newsvendor” model 
(Khuja 1999). With this model, a single planning period is assumed and inventory is created to cover an uncertain 
sales forecast. Costs are incurred when the quantity produced is lower than sales (an understock cost) or when the 
quantity produced is higher than sales (an overstock cost). The total expected cost is shown as Equation 1, where CU 
and CO are the per units costs of an understock and an overstock, respectively, and where X is the random variable 
representing demand, with f(x) providing the probability density function for demand. 





QU

Q

0O dx)x(f)Qx(Cdx)x(f)xQ(C)Cost(E                     (1) 

The order quantity expression that minimizes the expected cost, Q*, is shown as Equation 2, where F(x) is the 
cumulative distribution function for the random variable, X: 
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In words, the optimal order quantity (Q*) is the value of Q such that the probability of demand being less than Q is 

UO

U

CC

C


. Traditionally, the demand distribution is assumed to be normal. When this is the case, a standard normal 

table is typically employed to obtain Q*. This classical newsvendor model does not apply to high-risk products, but 
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has been modified by others to account for unusual conditions, and will be modified below to account for high-risk 

scenarios. 
Other authors that have made modifications to the newsvendor model have accounted for alternative operational 
environments. When the demand distribution is right-skewed, a common approach is to transform the random 
variable so that it approximates a bell shape. For example, a Box-Cox transformation may be helpful (Hinkley and 
Runger, 1984). Some authors have reported on the formulation of the newsvendor model with other than normal 
demand. For example, Li, Lau, and Lau (1991) created a newsvendor model in the case of exponentially distributed 
demand. Godfrey and Powell (2001) presented a newsvendor model in the case of an unknown (and not necessarily 
bell shaped) demand distribution. Their model, however, does not generate optimal solutions as accurately as a 
corresponding parametric model. Scarf (1958, Chapter 12) developed a minimax, distribution-free newsvendor 
model which assumes that the mean and variance of demand are known and that the demand distribution is the worst 
possible given the known parameters. Finally, Kurawarwala and Matsuo (1996) considered an integrated forecasting 
and inventory management approach for short life cycle products. Their work requires no previous sales history and 
is tested using data at a personal computer manufacturer. 

Probabilistic inventory models have previously been used to quantify the benefits of flexible supply chain 
management systems. Moon and Choi (1996) used a distributional free model (where only the mean and standard 
deviation of demand are known) to compare a make-to-order approach to make-to-stock. Gurnani and Tang (1999) 
presented a newsvendor model where a retailer may order a seasonal product twice during a selling season. In their 
formulation, normality is assumed and the unit cost for the second order is uncertain. Lee and Tang (1997) used a 
stochastic model to explore delayed product differentiation where demand is normally distributed. Their analysis 
considers various forms of differentiation, including modular design. Stochastic dynamic programming was used by 
Eppen and Iyer (1997) to determine optimal policies for retailer-manufacturer agreements that allow for the delay of 
partial shipments pending the analysis of early sales data. Kouvelis and Gutierrez (1997) created a centralized global 
newsvendor formulation and use the formulation to show that a decentralized approach is suboptimal. Eynan and 
Rosenblatt (1995) used a stochastic two-echelon inventory model to compare make-to-order with make-to-stock 
policies, explicitly accounting for more favorable manufacturing costs in the make-to-stock environment. Their 
models allow for an assumption that potentially sales decrease in the make-to-order environment since products are 
not readily available.  

5. Customized Newsvendor Model 

In creating an alternative model that would apply to this manufacturer, the following decision scenario is assumed. 
Some months prior to the realization of customer demand, a decision is made to produce a product and the optimal 
order quantity is to be determined. A carrying cost is incurred since production is initiated prior to the realization of 
sales. The carrying cost increases in direct proportion to the length of time between production and sales. If the order 
quantity exceeds sales, then an overstock cost is incurred. Alternatively, if sales exceed the order quantity, then 
understock cost is incurred. Demand is assumed to follow a three-parameter gamma distribution. Demand forecasts 
made closer to the realization of demand will have a smaller level of forecast uncertainty compared with production 
decisions made earlier. 

To accommodate the scenario described above, two modifications to the traditional newsvendor model are made. 
First, carrying costs are included. These carrying costs would not include allowances for anticipated overstock or 
understock costs, which are accounted for explicitly in the model. The choice of an optimal production quantity and 
resulting minimum cost is based on Equation 3, which provides the expected cost based on Q, the quantity produced. 
CO, CU, and CH and the per unit costs of overstocks, understocks, and carrying, respectively. 

QCdx)x(f)Qx(Cdx)x(f)xQ(C)Cost(E HQU

Q

0O  


                 (3) 

The order quantity expression that minimizes the expected cost is Q* as shown as Equation 4. 

 
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The second change to the traditional newsvendor application is that the demand distribution is assumed to be 

three-parameter gamma. The Excel function =GAMMAINV(p,,)+ may be used to determine the optimal order 
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quantity, where 
UO

HU
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CC
p




 , and where , ,  are the shape, scale, and threshold parameters of the demand 

distribution. 
6. Analysis 

The revised newsvendor model was used to quantify costs incurred by the manufacturer during a typical year. The 
model was first exercised using conditions agreed upon by management for a production decision made nine months 
prior to the peak selling season. Expected costs for overstocks, understocks, and carrying were calculated based on 
the optimal order quantity using Equations 3 and 4. The integrations required to perform the expected cost 
calculation were done numerically in Excel. Then, the optimal order quantity and expected cost were determined 
using conditions assumed to be in place for a production decision made three months prior to the peak selling season. 
The resulting cost expectations can, in turn, be compared to the ideal just-in-time scenario where production would 
be made to an actual order, and none of the costs accounting for in the model would be incurred. The results are 
presented in Table 1 and discussed below. 

Table 1. Flexibility analysis using revised newsvendor model 

 Production Initiated (Months Prior to Peak Sales Season) 
 9 3 0 
Forecast Error COV 50% 30% 0% 
Exp. Understock Cost 17.9% 7.9% 0% 
Exp. Overstock Cost 11.3% 8.7% 0% 
Exp. Carrying Cost 22.9% 7.5% 0% 
Exp. Total Cost 52.1% 24.1% 0% 

Consider the case where a production decision is made nine months prior to the peak selling season. A forecast made 
this early in the year can be expected to have a COV of about 50%. In this analysis, to enhance the generalization of 
results, all costs are based on a unit product cost of $10.00. Costs for understock (CU) and overstock (CO) are 
assumed to be $17 and $3, respectively. These cost assumptions would generate results for any case where the 
selling price is 270% higher than the cost of manufacture. The results are also generalized to the case where items 
remaining on the shelf at the end of the product’s lifespan are liquidated at 70% of the cost of manufacture. The 
carrying cost rate is assumed to be 24% per year. Hence, given the nine month duration between production and sales, 
CH=$1.80, which is generalized to 18% of the items manufacturing cost. Using Equation 4, the value of F(Q*) is 
calculated to be 0.76, meaning that the probability of sales exceeding the optimal order quantity is 0.76. 

The three-parameter gamma distribution assumed in this case would have a threshold located 1.5 standard deviation 
units less than the mean, and a shape parameter of 2.25 (derived using Equation B-2). Assuming that sales are 
forecast to be 1,000 units, the scale parameter would be 333 (derived using Equation B-1). The following Excel 
function provides the optimal order quantity of 1270 units: =GAMMAINV(0.76,2.25,333)+250. Solving for Equation 
3, the expected cost would be $5.21 per unit. The expected cost results are easily generalized. Specifically, under the 
best conditions, a product incurs a 52% higher cost due to the decision to produce the item 9 months prior to the 
selling season. Interestingly, a study by Schweitzer and Cachon (2000) concluded that supply managers tend to make 
decisions that differ significantly from the mathematically optimal. Specifically, mangers tend to generate too much 
inventory of low product margin items and too little inventory of high profit margin items. Hence, many managers 
are likely to incur even higher costs using this production strategy. 

As a comparison, consider the case where the production decision is made three months prior to the peak selling 
season. In this case, the forecast error COV would be about 30%. Based on a forecast is for 1000 units, the gamma 
distribution would have a threshold parameter of 550, a shape parameter of 2.25, and a scale parameter of 200. Again, 
the product incurs a unit cost of $10, and the costs for understock and overstock are $17 and $3, respectively. The 
carrying cost rate remains 24% per year. Here, the optimal order quantity is 1244 and the resulting expected cost is 
$2.41 per unit. 

These results show that even a modest improvement in sales forecast, combined with a delay in production, reduces 
the expected costs of carrying, overstock, and understock by over half, from 52% of the item’s cost to 24% of the 
item’s cost. It also shows the value of a highly flexible manufacturing system that could, in the best of conditions, 
produce to order and thus remove all costs assumed in the revised newsvendor model. In reality, these cost 
improvements must be compared with the cost of the flexibility itself (excess capacity, overtime, small batches, 
outsourcing, etc.). For example, flexibility that adds 10-20% to the cost of manufacturing would appear to be 
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justified if a considerable reduction in lead time could be achieved. At the company analyzed, these results showed 
that under current conditions, it is likely that the excess costs exceed the company’s expected profit margin in many 
cases. The results convinced management of the need to seriously consider the reduction of lead time within their 
supply chain. 

7. Conclusion 

In this article, the newsvendor model was revised for conditions in place at a manufacturer of high-risk products with 
a short lifespan, highly uncertain demand, and where the manufacturer faces pressure from retailers to provide rapid 
replenishment. The analysis shows that a significant cost increase results from the practice of producing large 
inventories well in advance of anticipated sales. The cost impact can be mitigated using two strategies: (a) the 
strategic use of capacity rather than inventory to buffer against sales uncertainty, and (b) the strategic choice of 
products to produce early in the year based on lower projected forecast errors. 

The limitations in this work are twofold and suggest future research directions. First, the model as presented would 
need to be applied to specific organizations based on their own product forecasting abilities, cost structures, and 
supply chain design options. Perhaps future research could approach the challenge of developing more conceptual 
guidelines that would be generally applicable. Second, in today’s global supply chains that are geographically 
dispersed and culturally diverse, lead times are themselves subject to a great deal of uncertainty. Extending the 
assumptions of the model to encompass the types and magnitudes of lead time uncertainty would help decision 
makers make informed risk mitigation decisions. 
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Appendix A 

The three-parameter gamma density function is shown as Equation A-1, while its mean and variance provided as 
Equations A-2 and A-3, respectively. 
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Appendix B 

It is not easy to independently set location, dispersion, and threshold parameters for the gamma distribution as is the 
case with the normal distribution in setting values for  and . However, at other companies, it has been reported that 
groups of similar products will have demand that will varies according to similar patterns. For example, Koschat et al 
(2003) write that when a similar product is sold in different locations, products having the same mean demand will 
have the same level of demand dispersion. For the products analyzed, it was observed that the threshold parameter 
tended to consistently fall about k=1.5 standard deviation units less than the mean value. Assuming a specific value 
of k, the shape and scale parameters can then be estimated based on the forecast () and the standard deviation of the 
forecast error (), according to Equations B-1 and B-2. 

k


                                            (B-1) 

2k                                           (B-2) 

For example, if the forecast were for 1,000 units and the COV was estimated to be 40%, then the threshold parameter 
would be set at 400, the scale parameter would be set at 267, and the shape parameter would be set at 2.25. 


