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Abstract 
Background: Classic Hodgkin’s lymphoma (HL) is characterized by the presence of Hodgkin and Reed-Sternberg (HRS) 
cells. CD99 downregulation produces HRS-like cells and morphological changes in B lymphoma. The NF-κB pathway 
protects HRS cells from apoptosis and is in part responsible for its unique functional characteristics in Hodgkin’s 
lymphoma.    

Objective: To observe the changes in the morphological and immunophenotype characteristics of L428 cells following 
transformation with CD99 and explore the role of NF-κB in these changes.  

Methods: A mammalian expression vector driving CD99 was constructed and transfected into the L428 cell line 
(L428-MVC). L428, L428-EVC (empty vector) and L428-MVC were analyzed by immunohistochemistry (IHC), 
immunofluorescence, and Western blot analysis, and comparisons were made between the three cell lines with regards to 
the expression of CD2, CD3, CD15, CD20, CD30, CD79, CD99 and NF-κBp65. In addition, cell proliferation was 
monitored by MTT assay, while apoptosis and cell cycle status were determined by flow cytometry. 

Results: Transfection of L428 cells with CD99 altered the morphological and immunophenotypic characteristics of HRS 
cells. Expression of CD15, CD30, and NF-κBp65 disappeared, while CD2, CD3, CD20 and CD79 levels remained 
negative. In addition, the presence of CD99 led to cell cycle arrest at G2/M and a reduction in cell proliferation. More 
importantly, CD99 dramatically decreased cell viability and increased cellular apoptosis compared with naive L428 cells 
and the L428-EVC cell line. These results indicated that the upregulation of CD99 altered cell morphology and 
immunophenotype, while also decreasing viability in vitro. 

Conclusions: CD99 may play a key role in affecting cell morphology and immunophenotype characteristics via 
inactivation of NF-κBp65.  
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1 Introduction 
Hodgkin’s lymphoma (HL), the common type of malignant lymphoma in China, is a lymphoid neoplasm characterized by 
a low frequency of malignant tumor giant cells. It is distinguished from other tumors by the presence of Hodgkin and 
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Reed-Sternberg (HRS) cells [1]. The nature and origin of HRS cells are still unclear despite much investigation at the 
molecular level. In recent years several mechanisms for the development of HL have been considered, including latent 
infection with Epstein-Barr virus (EBV), nuclear NF-κB, Notch-1 signaling, resistance to death-receptor-mediated 
apoptosis, and a proliferation defect caused by abortive mitotic cycles that allows HL cells to survive and develop [2-5]. 
Interestingly, LMP1-mediated NF-κB signaling plays a major role in repressing transcription at the CD99 promoter [6]. 
Analysis of the properties of HRS cells, including the presence of genetic abnormalities, single cell analysis of gene 
rearrangements, aberrant activation of NF-κB and resistance to apoptosis, have indicated that NF-κB and CD99 have a 
close relationship with regards to the origin of HRS cells [7]. 

It is imperative to elucidate the pathogenesis of HL and, in particular, the molecular events leading to transformation into 
HRS cells. Kim et al. have shown that downregulation of CD99 leads to the production of HRS-like cells in B  
lymphoma [8]. CD99, a 32 kDa protein, can cause pronounced tyrosine phosphorylation in signal transduction pathways 
and has been linked to various tumors. Various types of cells, including monocytes, neutrophils and hematopoietic 
progenitor cells, express CD99 [9, 10], and CD99 is typically regarded as the most useful single marker in the diagnosis of 
synovial sarcoma, malignant peripheral nerve sheath tumor, and Ewing’s sarcoma [11]. One report suggested that CD99 is 
expressed in non-Hodgkin’s lymphoma [12]. Nevertheless, the changes that occur following transfection of CD99 into a HL 
cell line have not yet been elucidated. 

CD99 downregulation produced HRS-like cells and morphological changes in B lymphoma. NF-κB activation protects 
HRS cells and is responsible for their functional characteristics in Hodgkin’s lymphoma. In this study, we investigated the 
changes taking place in the HL cell line L428 following upregulation of CD99 and explored the relationship between the 
morphology and functional changes.  

2 Methods 

2.1 Tissue and cell 
Lymph node tissue was obtained from 15 patients with HL. The histological subtypes were distributed as follows: nodular 
lymphocyte-predominant HL (2/15), nodular sclerosis HL (6/15), and mixed cellularity HL (7/15). The HL cell line L428 
was kindly donated by professor Chan of the Nebraska Medical Center in the U.S.A. This cell line was established from 
the pleural effusion of a 37-year-old woman with HL (stage IVB, nodular sclerosis, and refractory, terminal) in 1978. 
Optical and fluorescence microscopy was performed using Olympus BX61 Motorized System and Motorized reflected 
Fluorescence System microscopes (Olympus Company; Japan). Flow cytometry was performed with a device 
manufactured by Beckman Coulter (USA). The L428 cells were grown in RPMI 1640 media supplemented with 20% 
heat-inactivated fetal calf serum (FCS). The study was approved by the Ethics Committee of Southern Hospital and all 
participants signed an informed consent form. 

2.2 RNA isolation and RT-PCR 
Total RNA was isolated from a Jurkat line (maintained by our department) using Trizol reagent (Sigma; USA). Two PCR 
products encompassing CD99 and glyceraldehyde phosphate dehydrogenase (GAPDH) and spanning 585 bp were 
amplified by forward primer 5’-ATT GGT ACC ATG GCC CGC GGG GCT GC -3’ and reverse primer 5’-ATC GGG 
CCC CTA TTT CTC TAA AAG AGT ACG -3’. With GAPDH as an internal control, the forward primer 5’-CCT TCT 
GCC GAT GCC CCC AT-3’ and reverse primer 5’-CAT TGT CAT ACC AGG AAA TG-3’. PCR was performed in a 
final volume of 25 μL containing 10 pmol of each primer, 10 mM Tris-Cl (pH 8.5), 50 mM KCl, 1.5 mM MgCl2, 200 μM 
of each dNTP, 1.5 units of Taq polymerase (Promega, USA) and 1000 ng of genomic RNA. After incubation for 5 min at 
95°C, 35 cycles of 50 s at 95°C, 40 s at 65°C, and 40 s at 72°C were performed, followed by 10 min at 72°C. The amplified 
fragments were detected by 1% agarose gel electrophoresis. 
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2.3 CD99 cloning and transfection and siRNA against CD99 
PCR products were separated on a 2% agarose gel containing 0.3 mg/mL ethidium bromide and purified using the 
QIAquick purification system (Qiagen; Germany) according to the manufacturer’s protocol. A full-length CD99 cDNA 
was inserted into the Apa I and Kpn I sites of the mammalian expression vector pcDNA3.1 (+). This plasmid, as well as an 
empty expression vector (termed L428-EVC, a negative control), was introduced into cells by electroporation. 
Establishment and subcloning of stable cell lines was accomplished by culturing primary transfectants in the presence of 
500 µg/mL G-418 (GIBCO-BRL) for 1 month. The stable cell line expressing CD99 was named L428-MVC.The CD99 
siRNA sequences were 5'-CAC CGG GAT GGT GGT TTC GAT TTA CGA ATA AAT CGA AAC CAC CAT CCG 
GAC AAG G-3' (top strand) and the 5'-AAA AGG ATG GTG GTT TCG ATT TAT TCG TAA ATC GAA ACC ACC 
ATC CC-3' (bottom strand). The siRNA for CD99 was inserted into the pGEM®-T Easy vector, which was then 
transfected into L428-MCV cells using the BLOCK-iT™ Lentiviral RNAi Expression System (Invitrogen; USA). 

2.4 DNA sequencing 
Genomic DNA was extracted from one of the L428-MVC clones, which was subjected to lysis (in 0.5-1.0 mL cell lysis 
buffer containing 100 mmol/L Tris-Cl pH8.5, 20 mmol/L EDTA, 20 mmol/L NaCl, 2.0% SDS, and 0.5-2.0 mg/mL 
proteinase K) followed by conventional phenol/chloroform extraction. DNA fragments were sequenced from the plasmid 
T7 promoter with the ABI Prism Dye Terminator Cycle Sequencing System (Perkin-Elmer; Foster City, CA). The 
sequences were aligned with the CD99 germline sequence (GenBank accession number AF191831) with use of BLAST 
online software (www.ncbi.nih.gov/blast). 

2.5 Immunohistochemical and morphological examination of cell lines  
Immunohistochemical stainings were performed on L428, L428-EVC, and L428-MVC cells. Rabbit anti-p65 
-immunoglobulin G (IgG) and fluorescein isothiocyanate (FITC)-labeled mouse anti-rabbit IgG (Invitrogen, CA; USA) 
were stained according to the manufacturer’s instructions. The L428 and L428-MVC cells were combined with 
anti-CD20, anti-CD30, anti-CD15, anti-CD2, anti-CD3, anti-CD79, anti-NF-κBp65 and anti-CD99 antibodies 
(Invitrogen, CA; USA), followed by standard ABC staining and development with diaminobenzidine tetrahydrochloride 
(DAB) substrate. NF-κB activation was blocked with bortezomib (Velcade, Millennium Pharmaceuticals; USA). The 
morphology of the L428, L428-EVC, and L428-MVC cells was assessed with a fluorescence microscope (Olympus BX61 
Motorized Microscope, Japan) and by flow cytometric analysis. 

2.6 Western blotting 
Samples were electrophoresed on sodium dodecyl sulfate (SDS) polyacrylamide gels and transferred to a polyvinylidene 
difluoride (PVDF) membrane. The membranes were blocked for 1 h in Tris-buffered saline at pH 7.2 with 0.1% Tween 
(TBST) containing 3% BSA. Primary antibodies were added to the blocking buffer and the membranes were incubated 
overnight at 4°C. The membranes were incubated with horseradish peroxidase-conjugated secondary antibodies in TBST 
with 5% nonfat dry milk for 1 h at room temperature. The proteins were visualized by chemiluminescence on Kodak 
BioMax MR Films. 

2.7 Flow cytometric analysis 
For staining, 106 cells were first incubated with the relevant monoclonal antibodies (1 µg/100 µL) in phosphate-buffered 
saline (PBS) containing 1% bovine serum albumin (BSA) and 0.1% sodium azide for 30 min at 4°C. The cells were 
stained with fluorescein isothiocyanate (FITC)-conjugated goat anti-mouse IgG antibodies and analyzed on a FACScan 
flow cytometer (Becton Dickinson; San Jose, CA). The cells were stained with propidium iodide as described by the 
manufacturer’s instructions (BD PharMingen; San Diego, CA) to detect apoptosis. The following reagents were also 
employed during flow cytometry analysis: IgG1-FITC/IgG1-PE (Immunotech; Marseille, France), CD30-FITC, 
CD15-FITC and CD20-FITC (BD Biosciences; San Jose, CA USA). 
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4 Discussion 
HL is different from other tumors due to its special pathological feature: the malignant HRS cells. These generally account 
for only a very small part of the tumor tissue, in which the predominant cells are a large number of lymphocytes in the 
background. We determined the immunophenotype of the L428 cells employed in the experiment to explore the growth 
characteristics of HRS cells. Our results lay the foundation for addressing whether cells of different morphology can 
mutually convert and whether this is related to NF-κB activation. 

In this study, we elucidated a critical function of CD99 in L428 cell lines. This is the first study demonstrating changes in 
the morphology and functional characteristics of the HL cell line L428 following upregulation of CD99. 
Immunohistochemical examination of sections from the lymph nodes sections of patients with different HL subtypes 
revealed that CD99 was undetectable in patients with HL on RS cells and L428 cell lines, while patients with HL are 
positive for NF-κB; this is in agreement with a previous report [8]. Moreover, L428 cells were negative for CD99. These 
findings support the hypothesis that CD99 was not silenced but absent. Meanwhile, the results also indicated that 
inhibition of CD99 produced HRS cells in B lymphoma [8]. This raises the question of what role CD99 plays in HL cells 
lines. The approach of upregulating or silencing CD99 may help us to understand the molecular mechanisms of this 
protein in HL cells lines. 

In this study, we uncovered a critical function of CD99 in L428 cells. We found that CD99 played a key role, altering the 
morphological and functional characteristics of HL cells. The expression of CD30 and CD15 are currently used as 
immunophenotypic criteria for the diagnosis of HL [13, 14] while CD20 is used as a surface marker of B cell lymphoma. 
Transfection of CD99 into L428 cells caused the disappearance of most of the features of HRS cells, including the 
expression of CD30 and CD15, and cell size became smaller as well. L428-MVC cells did not transform to B-cell 
lymphoma because expression of CD20 and CD79 was negative.  

Interestingly, we also transfected L428 cells with an empty vector construct as a negative control, as well as with siRNA 
against CD99, and found that neither the morphology nor the functional characteristics changed. Thus, it appears that the 
presence of CD99 accounted for the changes in L428 cell morphology. The role of CD99 in the generation of HRS-like 
cells has been reported previously [8]. This is of particular interest, as CD99 has been suggested to be a key factor to be 
involved in the pathogenesis of Hodgkin lymphoma and EBV-associated lymphomatosis disease. The results presented 
here confirmed the role of CD99 in L428 cells in a reverse manner (by forced CD99 upregulation rather than 
downregulation) and are important in further characterizing the role of CD99 in HL. 

To evaluate the proliferation of the L428, L428-EVC, and L428-MVC cell lines, we investigated their growth 
characteristics. L428-MVC cells showed markedly decreased proliferation rates as compared to the L428 and L428-EVC 
cell lines. Moreover, L428-MVC cells had higher percentage of G2/M phase cells as compared to the L428 and L428-EVC 
cell lines according to flow cytometric analysis. These results are in agreement with a previous report that the majority of 
HRS cells appear to be in the G2/M phase of the cell cycle [6]. We conclude that CD99 increases the number of cells in 
G2/M phase and also has an apoptotic effect, which result in mildly attenuated rates of cell growth. This may occur via the 
NF-κB signal transduction pathways. 

Some recent studies provide support for the proposal that CD99 may be crucial for cancer development and also plays a 
pivotal role in the reversion of malignant phenotypes [15], although this hypothesis requires further study. A number of 
studies have demonstrated that CD99 and CD3 co-stimulation leads to a concomitant enhancement of NF-κB signaling 
activity [16, 17], but our results indicate that NF-κB was not expressed in L428-MVC. Furthermore, we found no expression 
of NF-κB when CD99 was transfected into the L428 cell line. NF-κB activation can maintain tumor cell viability, and an 
inhibition of NF-κB activity alone can be sufficient to induce cell death [18]. Recent evidence also suggests that activated 
NF-κB protects HL cells, allowing them to evade apoptosis [19]. 
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We found that the NF-κB signaling pathway was activated in L428 cells. A previous report showed that CD30 mediates 
NF-κB activation in HL [20]. It was therefore speculated that the NF-κB signaling pathway may participate in the 
development of HL. In our study, there was obvious NF-κB expression when CD99 was silenced. However, no NF-κB and 
no CD99 expression were noted when activation of NF-κBp65 was inhibited with bortezomib. These results suggest that 
the effects of CD99 on the morphology and functional characteristics of L428 cells occur through downregulation of the 
NF-κB signaling pathway. Activation of NF-κBp65 may be a viable target for the treatment of Hodgkin’s lymphoma. In 
fact, the siRNA and in vivo studies indicate that CD30 and CD15 downregulation is mediated by forced CD99 expression, 
and this downregulation may in turn inactivate NF-κB signaling. 

The Blood series studies already suggested that the downregulation of CD99 was closely related to the activation of 
NF-κB, although the EBV protein LMP-1 is another key component in this relationship [19, 20]. Because L428 is an EBV(-) 
cell line, our study investigates the role of CD99 associated with NF-κB in an EBV(-) HL model, and CD99 seems to 
interrupt the activation of NF-κB is an independent event from LMP-1, as EBV is one of the most important causes of HL 
development. 

Our results suggest that CD99 may play a major role in inducing the morphological and functional changes seen in L428 
cells through the downregulation of the NF-κBp65 signaling pathway. 
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