
http://jct.sciedupress.com Journal of Curriculum and Teaching Vol. 14, No. 4; 2025

Published by Sciedu Press 163 ISSN 1927-2677 E-ISSN 1927-2685

A Case Where It Is Better to have an Unstandardized measure of the
Right Construct than a Standardized Measure of a Related One:

Application to Coding Interviews Within a Course in SAS Programming

Gregory Samsa1,*, Megan Neely1, Steven Grambow1, Marissa Ashner1, Gina-Maria Pomann1, Laura Coutts1 & Jesse
Troy1

1Department of Biostatistics and Bioinformatics, Duke University School of Medicine, United States
*Correspondence: Department of Biostatistics and Bioinformatics, Duke University School of Medicine, United
States. E-mail: greg.samsa@duke.edu

Received: September 5, 2025 Accepted: October 15, 2025 Online Published: October 24, 2025
doi:10.5430/jct.v14n4p163 URL: https://doi.org/10.5430/jct.v14n4p163

Abstract
Interview-based examinations provide richer data than formats such as multiple choice and short answer, albeit at the
cost of being less standardized. This describes administering a coding interview as the final examination in a class on
SAS programming, plus primarily qualitative reflections. We conclude that when the goal is to assess facility with
programming an interview-based examination should come into especial consideration.
We argue that a coding interview measures the right thing, namely how well the student designs and writes SAS
programs – which in turn depends on factors such as general programming literacy, critical SAS-specific knowledge,
ability to design SAS programs, and the ability to engage in problem solving as part of the process of program
development -- rather than something that is merely correlated with this core construct, as would be the case for the
objective questions that are included within typical certification tests. In doing so it is not completely standardized,
but sufficiently so. This examination format more closely matches how students engage in SAS programming in
actual practice: for example, by incorporating web searching. Moreover, it has the innovative and desirable property
of embedding instruction in addition to evaluation. Coding interviews are a time-intensive form of evaluation, but
much more is learned about student performance, there is an opportunity to teach as you go, and the time is well
spent.
Keywords: coding interviews, SAS programming, student assessment

1. Introduction
In contradistinction to traditional formats such as multiple choice and short answer, interview-based examinations
have several advantages. These advantages are discussed later.
However, a potential disadvantage of interview-based examinations is that they cannot be fully standardized.
Because students are not asked identical questions an interview-based examination might be considered "not
reproducible" and thus "unfair” and “subject to challenge". Indeed, in our experience this perception prevents some
instructors from being willing to consider using interviews. While we acknowledge that this is a reasonable concern,
we argue that it need not be a decisive one.
This is a qualitative reflection on our experience, accumulated over multiple years, in administering a coding
interview as the final examination in a class on SAS programming (SAS, 2025) within a Master of Biostatistics
program (Neely et al, 2018; Samsa, 2018a; Samsa et al, 2018b; Samsa, 2020; Samsa, 2021; Troy et al, 2021; Troy et
al, 2022a; Troy et al, 2022b; Troy et al, 2022c; Troy et al, 2023; Troy et al, 2024; Troy et al, 2025) . This class has
been described elsewhere (Samsa, 2020; Troy et al, 2023). Briefly, its primary goal is to teach basic programming
concepts such as literate programming, program design, algorithms and data structures, with SAS (SAS Institute,
2011) serving as the use case. In other words, the goal is to teach students to become excellent programmers in
general and excellent SAS programmers in particular. We ultimately conclude that when the instructor’s goal is to
assess facility with programming an interview-based examination should come into especial consideration.

http://jct.sciedupress.com Journal of Curriculum and Teaching Vol. 14, No. 4; 2025

Published by Sciedu Press 164 ISSN 1927-2677 E-ISSN 1927-2685

2. Methods
2.1 Goals
The goals of the coding interview are based on our experience in performing interviews as part of the hiring process
(e.g., for software engineering and biostatistical staff positions). Indeed, they are intended to be consistent with
guidelines for using coding interviews for this purpose (Behroozi, et al, 2019). In an actual coding interview, the
interviewer attempts to assess the related constructs of (1) the interviewee's overall skill as a programmer; and (2)
their skills as a SAS programmer. Overall mastery of programming is a multi-faceted construct, and includes
computational thinking, facility with algorithms and data structures, and the use of literate and reproducible
programming practices (Knuth, 1984; Denning et al, 1989).
Our rationale for assessing overall mastery of programming in addition to SAS-specific skills is that it is not only
important for lifelong learning but key to success on the job. In other words, on the job general facility with
programming (and other traits such as curiosity, critical thinking and organization) provides the tools to rapidly learn
new skills, including those that pertain to SAS.
Our assessment is intended to be consistent with how students will use SAS on the job, where details about SAS
syntax can be discovered by web searching, generative artificial intelligence (AI), etc. -- if a student understands
enough about the structure of SAS, they truly can teach themselves. Accordingly, we focus less on the details of SAS
syntax than would a certification-based examination.
2.2 Constructs
The examination focuses on four constructs: (1) general programming literacy; (2) critical SAS-specific knowledge;
(3) ability to design SAS programs; and (4) ability to engage in effective problem solving as part of the process of
program development. The second construct measures “what students know”, whereas the other constructs measure
“how students think”. These latter constructs are consistent with a constructivist philosophy of education, in that (1)
we directly observe what students do; and (2) we attempt to extract information about the soundness of the mental
model that students have constructed around the discipline of programming (Fosnot, 1996; Phillips, 1995).
Simple examples of general programming sophistication are the ability to use "do loops" and "arrays", which are
common program structures regardless of language.
An example of critical SAS-specific knowledge includes recognizing that SAS automatically creates variables during
the "DATA step" -- for example, it creates an indicator variable tracking whether the observation is the first one in a
group defined using "BY processing".
The ability to design SAS programs is based on using programming algorithms that will perform well in SAS. For
example, one way to determine that an id variable is unique is to read the input dataset "BY id" and then check
whether the values of the automatic variables "FIRST.id" and "LAST.id" both equal 1 (i.e., the Boolean value for
"true").
In this context, effective problem solving includes techniques for testing SAS programs one step at a time (i.e., "unit
testing"), debugging programs (e.g., using the SAS log to identify errors), and using web searching to find model
code when the student has strayed beyond the limits of their current knowledge base and is thus uncertain what to do
next. Indeed, coding interviews in other contexts often include tasks of increasing difficulty with the intention of
discovering a situation where the student doesn't know what to do (Troy et al, 2023). There, what matters less is
where the limit of their knowledge base is encountered (within reason) and what matters more is what they do after
they reach that limit. This examination follows a similar philosophy: the meta-construct to assess is how well the
student can design and write a SAS program (broadly defined), problem solving is a key component of program
writing, and being able to effectively utilize external resources is a key component of problem solving.
2.3 Questions
The examination contains questions about general topics, data management topics, statistical topics, report-related
topics, and advanced topics. Appendix A contains examples of each category of question. Questions that are
code-related begin with "What does the following code do?" rather than “How would you write code to accomplish
this task?”. This is a departure from typical interview practice that not only helps the student to get off to a good start,
it also directly addresses algorithms, data structures, and basic syntax (see appendix B). In our view, this not only
represents an innovative way to perform this portion of a coding interview, but one which is directly linked with the
interview's evaluative goals.

http://jct.sciedupress.com Journal of Curriculum and Teaching Vol. 14, No. 4; 2025

Published by Sciedu Press 165 ISSN 1927-2677 E-ISSN 1927-2685

2.4 Reproducibility
Some elements of reproducibility can be built into a coding interview -- for example, with standardized starter
questions, selecting a minimum number of questions from each category, using a grading rubric, recording the
interview to facilitate regrading and quality improvement, etc. These elements are not intended to create identical
examinations for every student but nevertheless do serve to increase reproducibility.
2.5 Distinguishing Features
Although some coding interviews are confrontational, this examination is structured in a way that is intended to put
the student at ease (and, thus, do their best work). As noted above, instead of asking students to write code de novo,
they are provided with a place to start, asked to explain that code, and then expand upon it. This structure allows the
instructor to intervene and explain any component of the code that is misunderstood. Thus, the coding interview
potentially embeds an element of instruction in addition to evaluation.
Another distinguishing feature is that web searching is allowed. In our experience, apart from being consistent with
how students will write SAS programs in actual practice, this helps differentiate between students who have and have
not been completing the programming assignments on their own during the semester. Those who have been actively
engaged with the course material can generate a reasonable plan for their program -- for example, by describing its
algorithm in pseudocode -- but might struggle with the details of the SAS syntax for implementing that algorithm.
Such students can effectively utilize the results of their web searches to fill in the missing details. Students who
haven't been completing programming assignments on their own tend to be unable to effectively utilize search
results.
Yet another distinguishing feature is that questions can be targeted toward the individual characteristics of students.
This is discussed later.
2.6 Preparation
During the semester the instructor performs a simulated coding interview with another faculty member. After each
question is completed, both parties describe their thinking: for example, the interviewer describes what they were
looking for when they asked the question, and the interviewee describes their strategy for answering the question and
demonstrating their facility with SAS. Moreover, many of the class assignments involve describing SAS code in
plain English, making modest extensions to basic SAS code, etc. -- in other words, they provide practice in what
students are asked to do during their coding interview.
2.7 Example Examination
Appendix B illustrates the flow of typical examination, plus commentary.
2.8 Grading Rubric
Although they are conceptualized as being separate, in practice the constructs being evaluated are interrelated. For
example, consider an excellent programmer with experience in multiple programming languages including SAS. Part
of general programming literacy pertains to program design – it is performed systematically, sequentially, and uses
modularized building blocks that are tested along the way. General programming literacy includes attention to data
structures so, for example, the concept of a SAS dataset as a rectangular array of data plus separate descriptors (i.e.,
meta-documentation) is straightforward, as is the notion of designing algorithms that take advantage of how SAS is
structured (e.g., as a default, SAS datasets are created one row at a time, from top to bottom). An excellent general
programmer will have a sound plan for their code, will learn most SAS syntax quickly and will recall the basics (at
least). They will know what they don’t know and be able to effectively use external resources to augment their
knowledge.
Given the above, our grading rubric doesn’t evaluate each construct separately but instead provides a general
description such as the above and assesses how closely a student approaches this ideal. Of note: students can be
graded as “outstanding” even if they need external assistance on details of SAS syntax, so long as they can use this
assistance effectively and the assistance is with “details” rather than more fundamental concepts such as the overall
structure of SAS and the ability to design sound programming algorithms consistent with that structure.
In practice, those students who struggle do so on multiple elements of the above, and so it is satisfactory to base
grades on how closely the above ideal is achieved (e.g., very close to the ideal, relatively close to the ideal but with
modest deficiencies, far from the ideal but making progress, far from the ideal). Struggling students almost always
lack general programming literacy, which is then manifested in multiple ways as they attempt to use SAS.

http://jct.sciedupress.com Journal of Curriculum and Teaching Vol. 14, No. 4; 2025

Published by Sciedu Press 166 ISSN 1927-2677 E-ISSN 1927-2685

Feedback to students is provided in terms of how closely they approached the above ideal. For example: “You were
able to describe how the starter SAS programs worked and were able to propose how to extend them to solve more
complex problems. You struggled to find the SAS syntax to do so, didn’t use wonderful search terms as you tried to
research what to do next, but once the instructor suggested better search terms you were able to use the results to
generate the required syntax. It was encouraging to see that you printed intermediate values to diagram how your
SAS program operated and your overall approach to program development wasn’t fully systematic but nevertheless
was reasonable. My overall assessment is that your general programming skills are good but not outstanding, your
ability to use SAS is consistent with that, and what’s needed is (1) approaching program development more
systematically; and (2) more practice with SAS. My overall assessment is that you haven’t yet approached the ideal,
but also that your deficiencies are relatively modest and easily fixable.” Providing feedback in this format (which is
also framed to be as encouraging as is realistically feasible) might have served to discourage challenges about
grades.

3. Results
3.1 Student Evaluations
The median student evaluation of the overall course (n=10 respondents) was "very satisfied". The median responses
to "I can find and use help to learn additional SAS content", "I can design a SAS program" and "If a program design
has been prepared, I can write SAS code" was "very confident".
Less formally, after each coding interview students (n=23) were asked how closely the experience aligned with their
expectations. All reported that it was consistent with both their expectations and the simulated coding interview with
the instructor and their colleague. Students also reported that the interview was a fair assessment of their ability to
program in SAS. Multiple students provided the unprompted response that being able to perform web searching as
part of the interview was helpful.
3.2 An Alternative Type of Examination
Our coding interview can be contrasted with a typical standardized examination. An illustration of a standardized
examination for SAS programming is provided by a study guide for a SAS certification examination published by the
SAS Institute (SAS Institute, 2024). All questions are multiple choice. One type of question pertains to the details of
SAS syntax to accomplish a small task: for example, "Which response prints the date variable DATE as
'01JAN2024'?". Another type of question pertains to precisely how SAS parses a small unit of code: for example,
"The highlighted code will create a SAS dataset named TEMP1. Which answer correctly lists the contents of
TEMP1?". Yet another type of question pertains to how specific statements are used: for example, "Which response
best describes what a RETAIN statement accomplishes?".
In an actual certification examination, all students are asked the same questions. Grading is rapid and automated, and
all scores at or above a threshold are passing. In a classroom setting multiple threshold values can be used: for
example, 98-100=A+, 95-97=A, etc. This type of examination has various advantages – essentially, that students are
asked identical questions that are objective. The disadvantages follow from measuring what can be objectively
quantified, not necessarily what is most important.
3.3 Personal Experience
The limitations of traditional testing can be illustrated by the personal experience of the first author. Back in the day,
the "theory" component of the qualifying examination in my doctoral program was a 4-hour examination. The format
was closed book, although 10 pages of notes could be used, thus allowing the designers to presume that the details of
specific formulae would be common knowledge. The internet did not yet exist.
My fellow students had discovered that the examination questions weren't developed de novo but were instead
copied from illustrations from five of the main textbooks on the theory of mathematical statistics. Having weaker
mathematical training than my peers, I spent the summer before the examination hand-copying all the relevant
illustrations and thus creating 160 pages of notes. These notes were then photocopied and reduced to 10 pages in
very small font, which I brought to the examination along with a magnifying glass. The examination was completed
in approximately 15 minutes, all devoted to the mechanics of writing, and the score was 100%.
The graders wrongly assumed that I had mastered the underlying construct which the test was intended to assess –
namely, the ability to use the same techniques in a new context such as writing a dissertation. On reflection, close
exposure to the content resulted in some degree of learning. I did actively engage with the material and could

http://jct.sciedupress.com Journal of Curriculum and Teaching Vol. 14, No. 4; 2025

Published by Sciedu Press 167 ISSN 1927-2677 E-ISSN 1927-2685

reproduce many of the derivations, although only for a limited amount of time -- within a few weeks all that
remained was a general appreciation for the structure of this body of knowledge. I could barely, if at all, apply the
contents of the examination to create new knowledge, and wisely selected a dissertation topic that heavily relied on
simulation instead of mathematics.
On reflection, the pedagogic premise of this examination was similar to that of a credentialing test: namely, that
during the time that a student makes the effort to learn / memorize a large number of technical details that would be
encountered when they practice the discipline then they, inter alia, will also master the discipline -- thus, testing
recall / use of these details is equivalent to objectively testing mastery of the discipline. In fact, these two constructs
are correlated but different. Here, the technical details were temporarily memorized, but the underlying concepts
weren’t mastered to the desired level of proficiency. To which a lifetime of previous coursework can be blamed:
insufficient mathematical background is not at all trivial to remediate -- at best, this requires concerted effort over
more than a summer.

4. Discussion
4.1 Summary
We have described the use of a coding interview to evaluate student performance in a class on SAS programming. Its
structure is closer to coding interviews for software engineers and professional programmers than to the standardized
evaluations typically used in certification. Its design is ultimately derived from the desire to evaluate (1) how well
students design and “write SAS programs; and (2) core constructs that contribute to doing so (i.e., general
programming literacy, critical SAS-specific knowledge, ability to design SAS programs, ability to engage in
effective problem solving). Evaluations from both students and the instructor were encouraging.
4.2 Personalization
In an academic context where grades require justification, a coding interview must strike a balance between
personalization and consistency. Some elements of consistency include explicit statement of interview goals, a rubric
for grading, drawing from a bank of initial questions (although follow-up questions will uniquely depend on how
students respond), and evaluating the same core constructs for all students.
One element of personalization pertains to the choice of questions, especially the follow-up queries in response to
initial answers. As an example, the most recent class included students who aren't training to become statisticians,
and the statistics-related questions were modified for them. More specifically, questions focused on creating
straightforward data summaries (e.g., frequency distributions) and capturing them for further analysis, a skill that is
relevant to non-statistical investigators. Follow-up questions focused on graphical summaries used by non-statistical
investigators but not on the details of coding complex statistical analyses.
We argue that, when used properly, the ability to ask students different questions is more a positive feature than a
source of inconsistency. For example, only advanced students need be asked the advanced questions -- for other
students, what they do when faced with a problem outside the limits of their knowledge will already have been
discovered. In practice, beginning with general questions also serves to screen students about how they conceptualize
programming -- for example, as software engineers, as users, etc. The choice and phrasing of subsequent questions
can be consistent with that conceptualization.
Here, the general pedagogic principle is that while the same things should be evaluated for all students using the
same criteria for mastery they need not be evaluated identically. Indeed, personalizing the evaluation allows students
to utilize their unique strengths. The same principle applies to students who require special types of accommodation.
Another element of personalization pertains to allowing students to use web searching when the limits of their
knowledge base are exceeded. Search topics will differ from student to student, depending on where they reach the
limit of their knowledge. Effective use of web searching is part of problem solving, which is one of the components
of effective programming that the coding interview evaluates.
Another element of personalization is the ability for both students and the instructor to ask clarifying questions.
Traditional standardized testing risks miscommunication in both directions -- the student might not fully understand
the question, and the instructor might not fully understand the answer. A traditional test doesn't provide the
opportunity to either discover or fix this.
4.3 Role of Interview as a Teaching Tool
A coding interview offers the opportunity for the instructor to ask struggling students follow-up questions in the hope

http://jct.sciedupress.com Journal of Curriculum and Teaching Vol. 14, No. 4; 2025

Published by Sciedu Press 168 ISSN 1927-2677 E-ISSN 1927-2685

of discovering the precise nature of their deficiencies. Ideally, the source of these deficiencies can be addressed
during the interview.
A noteworthy element of a coding interview is the ability to use the examination not just to evaluate but also to teach.
Instruction can occur at multiple points during the interview: for example, (1) when the student explains the model
code provided at the start of a problem; (2) as the student designs an algorithm to extend the model code; and (3) as
the student attempts to interpret the results of their web search and apply that information to the task at hand.
4.4 Cheating
Yet another noteworthy element is that this type of examination can be defeated by neither memorization nor
cheating, providing students with a strong incentive to learn the material. Which is fortunate: memorizing a list of
facts doesn't transform students into effective programmers. We know of no way to cheat on an interview exam,
which saves the time and effort on the part of the instructor that would otherwise be devoted to dealing with this
unpleasant topic. For example, rather than engaging in the Sisyphean task of trying to keep track of how students are
currently using generative AI, we simply allow its use, directly observe the results, and assess the degree to which
the student can apply them to the task at hand. Indeed, this suggests an additional type of question, quite relevant to
eventual success on the job: namely, “This SAS program, written by generative AI, was intended to accomplish task X
– explain what is wrong and how to fix it”.
4.5 Student Response
Although this form of evaluation was generally unfamiliar to students, 100% reported that the interview was
essentially as they expected and that it adequately assessed their facility with SAS programming. Over the years,
although a few students have requested clarification about the grading rubric (which is described in advance of the
examination) no student has ever challenged their grade, which we believe helps address potential concerns about
fairness. We posit that this is because their level of mastery (or lack thereof) became clear to them during the
interview.
4.6 Comparison with Credential-Based Examinations
We do not suggest that standardized tests are a uniformly poor approach as they are an excellent tool for a large class
of evaluations. In the present context, there is a small core of SAS syntax that (1) must be applied when writing a
typical SAS program; and (2) will have been encountered sufficiently often as to be naturally committed to memory.
Utilizing a standardized evaluation of this information not only serves as a check on basic knowledge but also
verifies that students have been actively engaged with the coding assignments that contribute to the course grade. In
other words, this small core of critical SAS syntax is both crucial to evaluate and well-measured using a standardized
test such as a credentialing examination.
On the other hand, we argue that how well students can design and write a SAS program is a construct that is too
broad to be effectively covered by a standardized evaluation. For this purpose, recall of facts correlates with the
overall construct, but insufficiently well to serve as the sole basis for evaluation.
This coding interview is based on a different premise than a typical standardized (e.g., credential-based) test -- a
premise that is consistent with that of coding interviews provided to software engineers -- namely, that the interview
should focus on program development and problem solving, including problem solving beyond the limits of the
student's knowledge base. In other words, a coding interview attempts to accomplish a fundamentally different and
"bigger-picture" goal -- namely, discovering how well a student will design and write SAS programs. Facility with
technical details is part of excellent SAS programming, and is assessed during the coding interview, but is not the
most important part, if for no other reason than that technical details are easily discoverable through web searching,
generative AI and similar resources. The coding interview assesses how well students write SAS programs by
directly observing how they do so.
4.7 Limitations of Interview-Based Examinations
Despite their positive characteristics, two limitations are embedded within essentially all interview-based
examinations: (1) standardization; and (2) instructor time / effort. Standardization has been previously discussed. An
issue with instructor time is scalability: for example, if it takes X hours to create a thoughtful standardized
examination for 10 students then amount of time per student is X/10. To give the same test to 100 students the
preparation time per student drops to X/100. This figure doesn’t account for the additional follow-up related to grade
challenges, dealing with cheating, etc., but is in the correct order of magnitude. Moreover, examination questions can
be reused (although this is often discovered by students, thus reducing their effectiveness). On the other hand, if it

http://jct.sciedupress.com Journal of Curriculum and Teaching Vol. 14, No. 4; 2025

Published by Sciedu Press 169 ISSN 1927-2677 E-ISSN 1927-2685

takes Y hours per student to perform an interview the amount of time per student will be Y, regardless. If the class is
sufficiently large performing the interviews – which typically lasted for 30-45 minutes in this case -- might not be
feasible. Also, it is helpful to develop a reasonably large number of questions within each category from which to
select, as this helps the instructor remain engaged and thus ensures that the last few interviews receive the same level
of attention as the first.
The additional (and ongoing) effort required to perform interviews begs the question of when, in general, this effort
is sufficiently worthwhile. We argue that a necessary condition is that the goal is to assess how a student thinks about
the content rather than the specific facts that they can recall. For coding, a precedent has already been set by job
interviews that resemble the coding interview described here. Their rationale is (1) this measures adaptive thinking,
which is a crucial job skill; and (2) command of specific facts can be assessed using standardized credentialing tests.
Here, an additional benefit is that students receive practice in the sort of interviews that they are likely to encounter
during their job searches. Moreover, our program places a heavy emphasis on communication skills, and the
interview provides an opportunity to demonstrate those skills.
An additional necessary condition is that the instructor has adequate time to perform the interviews, which in turn
depends on class size and interview length. In our experience, it is preferable to perform relatively few interviews per
day and stretch out the number of days. If an incentive can be offered for some of the students to sign up early, so
much the better.
4.8 Additional Limitations
A limitation of this version of a coding interview is the lack of the validation process that is typical of teaching
methods that are more fully developed. For example, some elements of that process could include more formal
specifications for how the interview is performed, additional development of the grading rubric, agreement studies
where interviews are recorded and then graded by multiple raters, how well interview results correlate with other
measures of programming performance (e.g., in class work, eventually: on the job), etc. This current report isn’t
intended as a description of a fully validated instrument but, instead, as proof of concept describing a type of
evaluation that is promising but uncommon.

5. Conclusion
In conclusion, we argue that a coding interview measures the right thing -- namely how well the student designs and
writes SAS programs (broadly conceptualized) -- rather than something that is quantified, somewhat correlated with
the right thing, but different. In doing so it is not completely standardized, but sufficiently so. This examination
format allows more closely matches how students perform SAS programming in actual practice: for example, by
incorporating web searching and generative AI. Moreover, it has the innovative and desirable property of embedding
instruction in addition to evaluation.
Nowadays students realize that an answer (although not necessarily a fully correct one) to most questions can be
found online. They risk becoming adept at discovering answers that others (whether human or AI) provide rather
than learning how to critically think about their discipline and, thus, be able to provide their own answers to new
questions. The ability to uncritically search for answers provided by others isn’t a skill that is strongly valued by
employers, although students don’t necessarily realize this until they enter the workforce. Take-home examinations
decreasingly represent students’ own work. Standardized examinations require increasingly heavy proctoring to
prevent electronically enhanced cheating and, for statistical programming, don’t assess what is most important.
Ideally, an examination format measures what is most important, is impervious to cheating, and requires students to
think for themselves. Interviews meet all these criteria.

References

Behroozi, M., Parnin, C., & Barik, T. (2019). Hiring is Broken: What Do Developers Say about Technical Interviews?
Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC, 2019-October,
15-23. https://doi.org/10.1109/VLHCC.2019.8818836.

Denning, P. J., Comer, D. E., Gries, D., Mulder, M. C., Tucker, A., Turner, A. J., & Young, P. R. (1989). Computing
as a discipline. Computer, 22(2), 63-70. https://doi.org/10.1109/2.19833

Fosnot, C. T. (1996). Constructivism: Theory, Perspectives, and Practice. New York, New York: Teachers College
Press.

http://jct.sciedupress.com Journal of Curriculum and Teaching Vol. 14, No. 4; 2025

Published by Sciedu Press 170 ISSN 1927-2677 E-ISSN 1927-2685

Knuth, D. E. (1984). Literate programming. Computer Journal, 27(2). https://doi.org/10.1093/comjnl/27.2.97
Neely, M. L., Troy, J. D., Gschwind, G., Pomann, G.-M., Grambow, S. C., & Samsa, G. P. (2022). Preorientation

Curriculum: An Approach for Preparing Students with Heterogenous Backgrounds for Training in a Master of
Biostatistics Program. Journal of Curriculum and Teaching, 11(4), 120-138.
https://doi.org/10.5430/jct.v11n4p120

Phillips, D. C. (1995). The good, the bad, and the ugly: The many faces of constructivism. Educational Researcher,
24(7), 5-12. https://doi.org/10.3102/0013189X024007005

Samsa, G. (2021). Evolution of a Qualifying Examination from a Timed Closed-Book Format to an Open-Book
Collaborative Take-Home Format: A Case Study and Commentary. Journal of Curriculum and Teaching, 10(1),
47-55. https://doi.org/10.5430/jct.v10n1p47

Samsa, G. P. (2018a). A Day in the Professional Life of a Collaborative Biostatistician Deconstructed: Implications
for Curriculum Design. Journal of Curriculum and Teaching, 7(1), 20-31 https://doi.org/10.5430/jct.v7n1p20

Samsa, G. P. (2020). Using Coding Interviews as an Organizational and Evaluative Framework for a Graduate
Course in Programming. Journal of Curriculum and Teaching, 9(3), 107-140.

Samsa, G. P., LeBlanc, T. W., Locke, S. C., Troy, J. D., & Pomann, G.-M. (2018b). A Model of Cross-Disciplinary
Communication for Collaborative Statisticians: Implications for Curriculum Design. Journal of Curriculum and
Teaching, 7(2), 1-11. https://doi.org/10.5430/jct.v7n2p1

SAS Institute Inc. (2011). SAS Certification Prep Guide: Base Programming for SAS9 (3rd ed.). Cary, NC: SAS
Institute Inc.

Troy, J. D., Granek, J., Samsa, G. P., Pomann, G.-M., Updike, S., Grambow, S. C., & Neely, M. L. (2022a). A Course
in Biology and Communication Skills for Master of Biostatistics Students. Journal of Curriculum and Teaching,
11(4), 120-138. https://doi.org/10.5430/jct.v11n4p120.

Troy, J. D., Neely, M. L., Grambow, S. C., Pomann, G. M., & Samsa, G. P. (2024). A curriculum review of
programming courses in a Master of Biostatistics Program. Journal of Curriculum and Teaching, 13(1),
405-420. https://doi.org/10.5430/jct.v13n1p405

Troy, J. D., Neely, M. L., Pomann, G. M., Grambow, S. C., & Samsa, G. P. (2022c). Administrative Considerations
Pertaining to the Use of Creative Methods of Student Assessment: A Theoretically Grounded Reflection from a
Master of Biostatistics Program. Journal of Curriculum and Teaching, 11(5), 105-113.
https://doi.org/10.5430/JCT.V11N5P105

Troy, J., Grambow, S. C., Neely, M. L., Pomann, G. M., Davenport, C., Ashner, M., & Samsa, G. (2025).
Rationalizing the Mathematics Requirements for a Master of Biostatistics Program: A Case Study and
Commentary. Advances in Social Sciences Research Journal, 12(9), 215-222.
https://doi.org/10.14738/assrj.1209.19397.

Troy, J. D., Pomann, G. M., Neely, M. L., Grambow, S. C., & Samsa, G. P. (2023). Are simulated coding interviews a
fair and practical examination format for non-professional programmers enrolled in a master's degree program
in biostatistics? Journal of Curriculum and Teaching, 12(6), 253-264. https://doi.org/10.5430/jct.v12n6p253

Troy., J. D., McCormack, K. D., Grambow, S. C., Pomann, G. M., & Samsa, G. P. (2022b). Redesign of a first-year
theory course sequence in biostatistics. Journal of Curriculum and Teaching, 11(8), 1-12.
https://doi.org/10.5430/jct.v11n8p1

Troy., J. D., Neely, M. L., Grambow., S. C., & Samsa., G. P. (2021). The Biomedical Research Pyramid: A model for
the practice of biostatistics. Journal of Curriculum and Teaching, 10(1), 10-17.
https://doi.org/10.5430/jct.v10n1p10

Appendix A
Example questions
Two general questions are:

Describe some of the characteristics of SAS. If you like, you can compare SAS to R, Python, or some other
programming language.

http://jct.sciedupress.com Journal of Curriculum and Teaching Vol. 14, No. 4; 2025

Published by Sciedu Press 171 ISSN 1927-2677 E-ISSN 1927-2685

Describe some excellent programming practices, and how you implement them in SAS.
The general questions are intended to assess big-picture understanding of programming in general and of SAS in
particular. Many students choose to compare SAS to R, which is the topic of a programming course offered during
the previous semester. All students are asked the same set of general questions.
A data management question is:

The program fragment below illustrates how to horizontally merge (join) two datasets. How does it operate?
How would you modify the code to filter in records from both input files?
data both;
 merge one
 two;
 by id;

run;

proc print data=both;
 title 'merged datasets';
run;

A statistical question is:

The program fragment below illustrates the basic algorithm for creating pseudorandom variables, and thus
is the backbone of any simulation. Describe what each of its statements accomplishes. What would go
wrong if the "output" statement is omitted? Is this a syntax error or a logical error? Modify the program to
create a randomization list for 30 patients, where approximately 70% of the patients are randomized to
group A and the remainder are randomized to group B.

data rand1;

 call streaminit(1233);

 num_recs=10;

 do id=1 to num_recs;
 random_unif=rand("uniform",0,1);
 output;
 end;

 keep id random_unif;
run;

A report-related question is:
Describe how the Output Delivery System (ODS) works. Illustrate how you could capture a printout of the
above randomization list as a Word document (which could then be forwarded to an investigator).

An example of an advanced question is:

http://jct.sciedupress.com Journal of Curriculum and Teaching Vol. 14, No. 4; 2025

Published by Sciedu Press 172 ISSN 1927-2677 E-ISSN 1927-2685

Consider a character variable of length 10, possibly containing embedded blanks. Create a variable
denoting whether this character variable contains any version of "DUKE". It can contain either upper- or
lower-case values, and also embedded blanks. For example, ' D uK E999' is acceptable. Make your code as
efficient as possible. Even if you are unfamiliar with the details, you may assume that SAS has a reasonably
comprehensive set of character functions.

There are numerous ways to solve this problem -- what makes it advanced is that the student must consider questions
of efficiency. One efficient solution, described in pseudocode, is: (1) use a character function to translate all the
lower-case symbols into upper-case; (2) use a character function to remove the blank spaces; and (3) use a character
function to search for 'DUKE'.

Appendix B
A typical examination with commentary (copied from Troy et al, 2023)
Question: What are some similarities and differences between SAS and R?
Answer: R is an object-oriented functional language organized around lists whereas SAS is a procedurally-based
language organized around data frames. R is open-source whereas SAS isn't, an implication of which is that it
requires downloading packages that might or might not work as desired. R is more flexible than SAS. Work sessions
are different: R code is immediately executed whereas for SAS you write a block of code, mark it, and then execute
it. Either language can be used to perform typical data management and statistical analysis tasks.
Comment: Apart from its information value, this question also serves to differentiate between the perspectives of
statistical users (e.g., "the two languages can perform similar functions such as data management and analysis") and
those with formal computer science training (e.g., "R is an object-oriented functional language whereas SAS is a
procedurally-based language").
Question: What are some techniques for performing literate and reproducible programming in SAS?
Answer: Modularize the code, include human-friendly practices such as comments, white space and indentation,
write code to be generalizable rather than task-specific, have a development and testing plan, use version control,
when performing simulations set a seed for the pseudorandom number generator.
Comment: This question addresses general programming knowledge, and is absolutely critical to an actual coding
interview. As a rule, we only hire applicants who can describe literate and reproducible programming practices.
Question: What are some techniques for testing a SAS program?
Answer: Perform unit testing by checking components of the program one at a time, trace the logic by printing
intermediate files and by using PUT statements to print intermediate results of iterative calculations.
Comment: This question also addresses an important element of general programming knowledge, that being the use
of an explicit strategy for program development.

Question: What does the following code do? Your answer should mention three of the four common ways to create a
SAS dataset.

data set1;
 input id rec_no y;
datalines;
1 1 5
1 2 6
1 3 4
1 4 8
2 1 0

http://jct.sciedupress.com Journal of Curriculum and Teaching Vol. 14, No. 4; 2025

Published by Sciedu Press 173 ISSN 1927-2677 E-ISSN 1927-2685

2 2 2
2 3 5
2 4 6
;
run;

proc print data=set1;
run;

data set2;
 set set1;
 if (y>5) then ind=1;
 else ind=0;
run;

proc means noprint nway data=set2;
 class id;
 var ind;
 output out=out1
 mean=new_var;
run;

proc print data=out1;
run;

Answer: The first DATA statement creates the SAS dataset called SET1 using raw data as input (i.e., method 1). The
INPUT statement provides the input directions. The DATALINES statement tells SAS that the raw data follows. The
RUN statement defines the end of this logical entity. SET1 should have 8 observations and 3 variables.
The second DATA statement creates the SAS dataset called SET2 (the child) from the SAS dataset SET1 (the parent).
It illustrates creating one or more child SAS datasets from one or parent SAS datasets (i.e., method 2). The IF /
THEN statements create a new "indicator" variable denoting whether or not Y>5. SET2 should have 8 observations
and 4 variables.
The MEANS statement creates a new SAS dataset called OUT1 as the output from a SAS procedure (i.e., method 3).
In this case, we define subgroup means, with the ID variable defining the subgroups. The calculations are applied to
the variable IND, and the subgroup means are saved to the new dataset in a variable named NEW_VAR. The PRINT
statements print the contents of the various SAS datasets. Although I'm not completely certain about this, OUT1
should have one row per subgroup and include variables containing the subgroup name and the subgroup mean.
Comment: This assesses the general programming construct of indicator variables. These are, among others, an
essential part of various counting algorithms. It also assesses familiarity with SAS, as inexperienced users are
unlikely to have encountered creating SAS datasets as output from a SAS procedure.
Question: How would you apply the same logic to creating a new SAS dataset containing the predicted values from a
linear regression model? You should have encountered this in a first-year data analysis course. An algorithm is
sufficient.
Answer: Use the REG procedure to perform the regression. As part of that procedure, use the MODEL statement to
define the predictor and outcome variables. This procedure ought to have an OUTPUT statement like that for PROC

http://jct.sciedupress.com Journal of Curriculum and Teaching Vol. 14, No. 4; 2025

Published by Sciedu Press 174 ISSN 1927-2677 E-ISSN 1927-2685

MEANS. Within that OUTPUT statement, there should be similar syntax that changes "MEAN = new variable
name" into "PREDICTED VALUES = new variable name". The output dataset should have one row per observation
in the original dataset and the variables listed here (among others).
Comment: This can be followed by a web search to find the details about the relevant SAS syntax.
Question: The following code illustrates the core logic of performing a patient-level simulation. What does it do?

data test1;

 call streaminit(1);

 do i=1 to 10;
 rand_unif=rand("uniform",0,1);
 output;
 end;

run;

proc print data=test1;
run;

Answer: The DATA statement creates a SAS dataset called TEST1. The CALL statement sets the seed for the
pseudorandom number generator, thus ensuring that the results will be reproducible. The DO loop creates 10 records.
The RAND function creates uniform random variables on the interval from 0 to 1. The OUTPUT statement explicitly
writes the record. TEST1 will have 10 observations and 2 variables. The PRINT statement prints TEST1.
Comment: The data structure is a 10x2 array. The algorithm uses a DO loop to create simulated patients, and the call
to the pseudorandom number generator produces the simulated data according to the desired specifications.
Indentation is a literate programming practice. Because this is part of an examination, the literate programming
practices of commenting program code and titling output are not illustrated. Setting a seed for the pseudorandom
number supports reproducibility.
Question: What happens if the OUTPUT statement is dropped?
Answer: The DO loop will still be executed 10 times, but only the final record will be printed.
Comment: This question evaluates general programming knowledge about how DO/FOR loops operate. If a student
is stumped, they are encouraged to run the code without the OUTPUT statement and explain the results. A follow-up
task could be to report intermediate results using a PUT statement, which would verify that the DO loop is operating
as desired but not writing the result.
Question: How would I simulate a standard normal random variable instead of a uniform random variable?
Answer: Even though I haven't done so before, the answer ought to be to change "uniform" to "normal" in the RAND
function -- the precise syntax might not be precisely as assumed.
Comment: This question evaluates understanding of the basic algorithm that underpins simulations. A correct answer
requires understanding that the pseudorandom number is generated by the RAND function, and that the RAND
function has options which can be used to specify the desired distribution.
Question: Suppose that you wanted to prepare a randomization list for a randomized trial, with 40 patients, where
patients are randomized to either Intervention or Control with a 1:1 ratio. For any particular list, you won't
necessarily have exactly 20 patients in each group. How would you modify the basic simulation code?
Answer: Change the index on the DO loop from 10 to 40. Use IF / THEN / ELSE logic to assign random numbers
which fall between 0 and 0.50 to I and the rest to C. In other words, change the code to this:

http://jct.sciedupress.com Journal of Curriculum and Teaching Vol. 14, No. 4; 2025

Published by Sciedu Press 175 ISSN 1927-2677 E-ISSN 1927-2685

data test1;

 call streaminit(1);

 do i=1 to 10;
 rand_unif=rand("uniform",0,1);
 if (0 le rand_unif le 0.50) then group='I';
 else group='C';
 output;
 end;

run;

proc print data=test1;
run;

Comment: This illustrates a generalizable programming technique, which is essentially independent of language. In
algorithmic form: simulate a uniform random variable and then use IF-THEN logic to assign patients to study group
based on the value of that uniform random variable. A more efficient solution, specific to this problem, is:

data test1;

 call streaminit(1);

 do i=1 to 10;
 group=rand("bernoulli",0.50);
 output;
 end;

run;

proc print data=test1;
run;

Question: An investigator is planning a trial comparing a new smoking cessation intervention with usual care. There
will be 40 patients per group. The quit rate in the intervention group is 20% whereas the quit rate in the usual care
group will be 10%. What is the estimated statistical power, based on 1,000 simulated replications of the study?
Answer: From one of the assignments, I know that the general algorithm for using simulation to perform a power
calculation is (1) form an outer DO loop covering the 1,000 replications of the study; (2) within an inner DO loop,
simulate the data according to the specifications provided by the investigator (here, the result should be a dataset
with 80,000 rows (i.e., 1000 iterations time 80 rows per iteration); (3) for each replication, perform a statistical test
and output the p-value to a new dataset; (4) map that p-value to a new variable denoting the presence or absence of
statistical significance; and (5) the estimated power is the proportion of replications with a statistically significant
result. The important specifications are the 20% and 10% quit rates. I'll implement this be cutting and pasting the

http://jct.sciedupress.com Journal of Curriculum and Teaching Vol. 14, No. 4; 2025

Published by Sciedu Press 176 ISSN 1927-2677 E-ISSN 1927-2685

general DO loop into one DO loop per study group. The statistical test is a chi-square test, which should be
performed by iteration. I need to use some form of OUTPUT statement to write p-values to a new SAS dataset.
Instead of looking up the syntax, I just cut and pasted from one of the assignments -- it uses the Mantel-Haentzel
version of the chi-square test, which I assume is OK to do here. The resulting code turns out to be:

data test1;

 call streaminit(1);

 do iteration=1 to 1000;

 do i=1 to 40;
 group='I';
 quit=rand("bernoulli",0.20);
 output;
 end;

 do i=1 to 40;
 group='C';
 quit=rand("bernoulli",0.10);
 output;
 end;

 end;

run;

proc freq noprint data=test1;
 by iteration;
 tables group*quit / chisq;
 output out=chisq mhchi;
run;

data chisq2;
 set chisq;
 if (p_mhchi<.05) then sig='yes';
 else sig='no ';
run;

http://jct.sciedupress.com Journal of Curriculum and Teaching Vol. 14, No. 4; 2025

Published by Sciedu Press 177 ISSN 1927-2677 E-ISSN 1927-2685

proc freq data=chisq2;
 tables sig;
 title 'task 2';
 title2 'estimated power';
run;
Comment: This question requires understanding a general simulation algorithm, which is essentially independent of
programming language, then translating it into a data structure that works well in SAS, and then discovering the
SAS-specific syntax (e.g., how to OUTPUT p-values from the FREQ procedure). Describing the algorithm
demonstrates basic programming skills. If the student is unfamiliar with specific elements of syntax, they are asked
to perform a web search and then demonstrate that they can effectively utilize its results.
Question: How could you make the DO statement more generalizable?
Answer: Replace the hard-coded value of 40 with a variable such as GROUP_SIZE.
Comment: This illustrates a general programming technique that contributes to literate programming, regardless of
language. It also provides a hint for the next question.
Question: With 40 per group the statistical power is unacceptably low. Suppose that the investigator asks you a
slightly different question: namely, how many patients would be needed to achieve 80% power? How would you
modify the previous code? An algorithm is sufficient.
Answer: Replace 40 with GROUP_SIZE, add an outer loop that changes the value of GROUP_SIZE (e.g., DO
GROUP_SIZE=40 to 200 by 10;), stop when the desired power is achieved. Indeed, a DO WHILE structure would
be more efficient than a standard DO loop.
Comment: This also translates general statistical knowledge into an algorithm, appropriate for SAS.

Acknowledgments
Not applicable.
Authors contributions
GS was responsible for drafting the manuscript. JT performed literature review. MN was the previous instructor of
the course described here, and GS utilized various of her teaching materials. As members of a writing group
dedicated to research in educational pedagogy, all authors provided critical review and proposed edits. All authors
read and approved the final manuscript.
Funding
No external funding was utilized.
Competing interests
The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
Informed consent
Obtained.
Ethics approval
The Publication Ethics Committee of the Sciedu Press.
The journal’s policies adhere to the Core Practices established by the Committee on Publication Ethics (COPE).
Provenance and peer review
Not commissioned; externally double-blind peer reviewed.
Data availability statement
The data that support the findings of this study are available on request from the corresponding author. The data are
not publicly available due to privacy or ethical restrictions.

http://jct.sciedupress.com Journal of Curriculum and Teaching Vol. 14, No. 4; 2025

Published by Sciedu Press 178 ISSN 1927-2677 E-ISSN 1927-2685

Data sharing statement
No additional data are available.
Open access
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution
license (http://creativecommons.org/licenses/by/4.0/).
Copyrights
Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

