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Abstract 

This communication describes the process and results of a curriculum review of a first-year sequence of courses in 
statistical inference within a Master of Biostatistics program. Our primary aim was to develop an innovative course 
in statistical theory that meets the needs of a diverse student audience, the majority of whom are seeking a terminal 
master’s degree while a minority will pursue PhD training in biostatistics. The main results were (1) different course 
paths for job-bound and PhD-bound students; and (2) the development of an innovative first course in statistical 
inference, which is a computationally-aided self-discovery of a salient (albeit not comprehensive) set of key concepts 
and techniques pertaining to statistical inference. The redesign process addressed a key conceptual barrier: namely, 
the unexamined assumption that deductive proofs are a necessary condition for rigorous presentation. Consistent 
with the principles of constructivism, we navigated this barrier by redefining the task to which pedagogic rigor 
should be applied: namely, to help students to develop a sound mental map of statistical inference. We believe that 
the approach we used to accomplish this redefined task could be generalized to additional aspects of statistical 
education, among others. 
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1. Introduction 

Our context is a 2-year Master of Biostatistics (MB) program. Approximately 30% of our students proceed directly 
to doctoral work after graduation, with the remainder entering the workforce, typically at pharmaceutical companies, 
contract research organizations, or academic medical centers. In their first year all students take a theory sequence, a 
data analysis sequence, a programming sequence, and a practice of biostatistics sequence (G. P. Samsa, 2020; Troy et 
al., 2021). This communication describes the results of a curriculum review of the theory sequence, and the 
accompanying redesign and plan for evaluation.  

Our intended audience extends beyond those who develop curricula in statistical inference, and includes instructors 
in mathematics, statistics and related disciplines who are attempting to navigate the disconnect between the intuitive 
way that mathematics is performed (and conceptualized by its practitioners) and how it is explained via deductive 
proofs (Ben-Zeev & Star, 2001). Simply stated: while deductive proofs are an essential component for building the 
intellectual edifice of mathematics, they aren't necessarily an effective way to teach mathematics to others. Or, 
perhaps: in mathematics, symbol manipulation without sufficient context isn't an effective path to deep 
understanding and mastery (Wilkerson-Jerde & Wilensky, 2011). 

Here, we discuss both the content and the process around curriculum redesign in a mathematically based discipline 
such as biostatistics, including a plan for evaluation. As it turned out, a key conceptual barrier was the unexamined 
assumption that deductive proofs are a necessary condition for rigorous presentation. We navigated this barrier by 
redefining the task to which pedagogic rigor should be applied: namely, to help students to develop a sound mental 
map of statistical inference. We believe that the approach we used to accomplish this redefined task could be 
generalized to additional aspects of statistical education, among others. Indeed, it is our hope that our experience will 
be of interest to those in less mathematical disciplines, as an invitation to identify and address similar barriers to 
effective instruction within their fields of study. 
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2. Current Structure 

Our theory sequence is relatively traditional. Indeed, its structure was initially derived from programs which offer the 
same courses to all graduate students during their first year, followed by a qualifying examination, at which point 
they differentiate into masters and doctoral. In such programs the theory sequence is effectively designed with PhD 
students in mind, as these students will take additional courses in statistical inference and related topics and must 
master the prerequisite information for those courses, with the ultimate goal of completing a dissertation which, of 
course, will typically involve derivations, proofs, and the like. 

At present, the MB program does not offer separate inference courses for job-bound students (JBS) and PhD-bound 
students (PBS). One rationale is the desire not to prematurely place students on a job-bound track, as some begin 
with this expectation only to discover that doctoral training is a better match for their interests. Another rationale is 
that all students, including PBS, could benefit from a foundational review, especially if that review adopts a different 
and more general perspective than they have previously encountered. 

 
3. Philosophical Foundation 

Originally, an additional rationale for providing the same training to all first-year students was the view that "you 
can't properly apply statistical techniques unless you understand how they were derived", and thus that it was 
important that all students encounter an inferential sequence which, even though less complex than measure-theoretic 
advanced inference courses, was nevertheless rigorous and comprehensive. This view was not universally shared by 
our teaching faculty, yet was especially prevalent among our more methodologically-oriented instructors, who had a 
significant voice in the original design of the theory sequence. 

 
4. Critique 

The notion that you can't properly apply statistical techniques unless you understand how they were derived was 
sufficiently prevalent and strongly held as to perhaps constitute a meme. (Indeed, for simplicity of exposition this 
will henceforth be referred to as "the meme".) During the initial development of the theory sequence the meme was 
not critically examined. In its favor, the meme certainly seems plausible. Moreover, when presented with the choice 
of having a student understand how a particular statistical technique was derived versus not having that 
understanding, anyone would prefer the former. This is not even to mention that, as a practical matter, advocating 
that students need to know less rather than more isn't necessarily a recipe for persuasion. 

Nevertheless, the meme has two problematic elements. The first is the general principle of educational pedagogy that 
goals and objectives are best stated in terms of actionable skills -- in other words, "to do" rather than only "to know" 
(Anderson et al., 2001). The second is the presence of numerous counterexamples to the meme. For example, the 
previous iteration of our theory sequence included a demonstration that the density for the standard normal 
distribution integrates to 1 (i.e., a requirement for proper distributions). This demonstration requires a page of algebra, 
including a critical juncture involving transformation to polar coordinates. Would a JBS who is using the normal 
distribution in an applied setting be harmed if this demonstration was included within the optional supplemental 
materials, or if they simply accepted the value of this integral on faith? We think not. 

As another counterexample, the previous iteration of our theory sequence had as a stated goal the ability to 
understand not just the statement of the Central Limit Theorem but its derivation, which requires distinguishing 
between various types of convergence. Would a JBS who is applying the Central Limit Theorem be harmed if, rather 
than encountering nuances around convergence, they were trained to distinguish between large-sample and 
small-sample problems, and recognize that for the Central Limit Theorem to apply the quantity in question must be 
expressible as a mean? Again, we think not, especially if the student has sufficient skills in creating simulations to 
empirically explore the implications of large-sample approximations when needed. 

If this critique of the meme is accepted, an implication is that, by delivering PhD-focused course content to JBS, we 
were imposing a gratuitous requirement. Clearly, if progress was to be made the question at hand needed reframing. 
An initial step in this reframing was to consider whether the meme, which was a core belief of some very 
knowledgeable and respected colleagues, might be true, but just not as literally stated. (Or, perhaps, that some 
elements of the meme are literally true but others would benefit from restatement.) In other words, we asked what 
underlying constructs the meme might actually represent. 
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5. Underlying Constructs 

We believe that the meme relies upon two underlying constructs. The first construct is that some of the information 
in the theory sequence is prerequisite knowledge upon which later instruction will build. For PBS this prerequisite 
knowledge includes, although it isn't limited to, techniques for accomplishing derivations and proofs, and so it can be 
argued in this case that "understanding how statistical techniques were derived" actually means "mastering 
techniques of derivations and proofs for effective application of these techniques later in the program (e.g., when 
developing proofs as part of their dissertations)". This restatement has the additional advantage of describing things 
that students are expected to do rather than simply to know. 

Restating the first construct as above also serves to illustrate that it doesn't describe a skill which is critical for JBS. 
Nevertheless, this latter group of students will take additional courses, and these courses will require an effective 
working knowledge of some of the concepts and techniques encountered in the theory sequence. As a simple 
example: they will encounter likelihood functions throughout the curriculum, and should have a basic mastery of the 
use of calculus to find parameter values which maximize those functions. Accordingly, we considered a key task to 
be identifying those concepts and techniques which will be used by both PBD and JBS later in the curriculum, those 
tasks which will be only required of PBS, and then differentiating between the two. 

The second embedded meme construct is the notion that some sort of prerequisite knowledge is required in order to 
correctly apply statistical techniques, which is a skill that all students must master. The above counterexamples 
suggest that this prerequisite knowledge doesn't pertain to derivations. Upon reflection, we argue that this 
prerequisite knowledge actually pertains to the structure of statistical inference -- that is, understanding how 
everything fits together and being able to act accordingly. In the language of constructivism: what is needed is an 
explicit and actionable mental map of how experienced practitioners understand and apply the core concepts of 
statistical inference (Biggs, 1996). Some implications of this observation are discussed later. 

 
7. An Unintended Barrier to Progress 

During discussions around the theory sequence, an additional implication of the meme emerged -- namely, that since 
"you can't properly apply statistical techniques unless you know how they were derived", and since we want our 
students to properly apply statistical techniques, then "we shouldn't reduce the amount of information about 
derivations which this sequence covers and, more generally, we shouldn't drop any content". Indeed, in the extreme 
case this suggests an unexamined assumption that any proposal to drop content reflects an insufficient commitment 
to properly applying statistical techniques. 

As with the meme itself, we argue that although the assertion that we shouldn't drop any content isn't literally true it 
embeds an important insight -- namely, that what JBS shouldn't receive is a watered-down version of a course for 
PBS. The sound educational instinct underpinning this insight is that, for example, removing some topics makes it 
more difficult for the student to discern how the remaining ones fit together, presenting results without adequate 
background makes it more difficult for the student to correctly apply them in new situations, etc. 

 
8. The Impasse 

We were seemingly at an impasse. Our curriculum was imposing gratuitous mathematical and statistical 
requirements for JBS, but we worried that removing those requirements might make matters worse. Moreover, our 
instructors had consistently provided feedback that students (including PBS) appeared to struggle in applying the 
principles of inference later in the curriculum, and that at times preoccupation with symbol manipulation seemed to 
have replaced deep understanding. This feedback suggested to us that not only should we consider doing things 
differently for JBS, but also for PBS. 

Indeed, this insight ultimately provided a way to break the impasse. We recognized that the task for JBS was not to 
do less of the same thing, but instead to do something different and more effectively. Ideally, whatever changes were 
made would also enrich the experience for PBS, and satisfy our instructors that all our students were gaining the 
ability to better apply the theory sequence's content. 

 
9. Curriculum Changes 

Different programs would likely make different changes in response to the above considerations. The structural 
changes that we chose to make replaced a two-course sequence offered to all students that tried to serve both JBS and 
PBS with the following: 
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 For all students, the first course covers general concepts of statistical inference 
 For PBS, the second course is an enhanced version of the previous second-semester inference course 

 For JBS, the second course covers general concepts in causal inference 

This approach allows core concepts of inference that serve both JBS and PBS to be taught to all first-year students. 
Subsequently, because it is only serving the PBS audience, the second-semester inference course moves at a quicker 
pace, is a comprehensive treatment, and can pay greater attention to regularity conditions, derivations, and other 
mathematical niceties. It only required modest changes, as the previous version was generally acknowledged to be 
excellent. 

The course in causal inference was previously a second-year elective. It covers concepts such as difference in 
strength of inference between randomized trials and observational studies, confounding, interaction, the use of 
directed acyclic graphs (Hernan & Robins, 2020) to represent conceptual models of the underlying science, all of 
which are of direct utility to the practice of biostatistics within a job setting. 

The class schedule is arranged so that JBS can "sit in on" (i.e., essentially, informally audit) the second-semester 
inference course and the PBS can sit in on the causal inference course, if desired. PBS can take (or sit in on) the 
causal inference course as an elective, if desired. The first-semester course on general concepts of statistical 
inference is new, we believe to be innovative, and is described next. 

 
10. First-semester Theory Course 

10.1 Organization 

The first-semester theory course is intended to be a computationally-aided self-discovery of a salient (albeit not 
comprehensive) set of key concepts and techniques pertaining to statistical inference. The classroom is flipped, and 
significant time is devoted to working through detailed exercises and communicating the results. Although each 
module has a theme (e.g., joint and conditional probability distributions), ideas are interleaved throughout the course 
rather than being presented entirely in isolation. The primary textbook is In All Likelihood (Pawitan, 2013), and 
more traditional texts are used as supplemental resources. 

In contrast to axiomatic approaches, our approach is "illustrate first, then loosely define" rather than "precisely define, 
then illustrate". As an illustration of the choice of topics, we concluded that both JBS and PBS would benefit from 
exposure to a standard set of statistical distributions (one of these being the binomial). For these distributions, the 
content which was modified pertained to calculating moments (especially for continuous distributions), whether 
directly or via moment-generating functions, and, algebra-intensive exercises such as working with conditional 
distributions of continuous variables. The content which was added pertained to describing how the distributions in 
question arise in actual practice, for example, how a set of independent Bernoulli trials can be identified. Also added 
because of their practical relevance were limiting distributions, for example, the Poisson distribution as the limit of 
many Bernoulli trials each with a small probability of success. However, students are not required to master the 
relevant algebraic manipulations (e.g., they aren't required to master the various ways which "e" arises as a limiting 
case). Simulation exercises illustrate, for example, the implications of replacing N Bernoulli trials, all with the same 
probability of success θ with N Bernoulli trials whose average probability of success is θ, but with different values of 
θ from trial to trial. Finally, while some traditional content was modified, like manipulation of moment generating 
functions, the course still retains coverage of these topics, e.g., what moments are and how they arise in practice, 
while the more traditional mathematical presentation is provided as supplementary material for PBS. 

10.2 Example Module on Joint and Conditional Probabilities 

As an example, Appendix 1 presents the module on joint and conditional probabilities. It uses the simplest possible 
case: namely, a 2x2 table describing the operating characteristics of a diagnostic test. The context is intended to be 
relevant to statistical practice for both JBS and PBS and, indeed, other first-semester courses use this example as 
well. 

To begin, joint and conditional probabilities are illustrated and defined by example. Marginal probabilities are 
defined intuitively by first defining a subset of the original population as a new sample space, and then illustrating 
that the same results can be obtained using the original sample space and the law of total probability, which is 
introduced by example rather than definition. Conditional probabilities are treated similarly. Probabilities and sample 
spaces aren't described axiomatically, although many students (especially PBS) will have encountered the relevant 
axioms in an undergraduate course, and an axiomatic treatment is available in the supplemental materials. 
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The above probabilities are then used to produce Bayes theorem, and students are asked to produce Venn diagrams as 
an active learning exercise to solidify their understanding. 

Each module includes a section on "how this is used in statistics". One of the goals of this section is to help students 
develop a mental map around inference. Sometimes "how this is used" is quite specific. For example, in the module 
on joint and conditional probability distributions this section includes a practical application of Bayes theorem to 
calculate the positive predictive value of a diagnostic test, including asking the student to generate a plain English 
explanation of their results. 

The "how this is used in statistics" section also illustrates how ideas are interleaved rather than being treated in 
isolation. For example, the idea that some probability calculations can be simplified by applying the notion of 
conditional independence is first illustrated by standard card problems, and then extended to illustrate why sampling 
without replacement can be similar to sampling with replacement, but only for when the sampling fraction is small. 
This isn't quite a "derivation" in the traditional sense of the term, but is intended to illustrate a core concept that 
students can apply in their future work. 

The "how this is used in statistics" section includes other similar content, such as active learning exercises which 
combine calculation and explanation. 

10.3 Example Module on Introduction to Likelihood Functions 

As another example, Appendix 2 presents the module on introduction to likelihood functions, using the binomial 
distribution as a running example. It builds upon, among others, a module on Bernoulli trials which also serves to 
illustrate the definition and straightforward calculation of its mean and the variance. (Indeed, we "derive" these 
moments of the binomial distribution not from its probability mass function directly, nor by a moment generating 
function, but by simply noting that a binomial distribution is the result of summing independent Bernoulli random 
variables, thus eliminating unnecessary algebra. The standard algebraic derivation is included in the supplemental 
materials.) Its content is subsequently used in multiple modules -- for example, hypothesis testing is illustrated 
within the context of a likelihood ratio test. 

This exercise begins by making the distinction between a probability distribution (mass) function and a likelihood 
function, and involves students calculating the values of functions and then graphing the results. In part, a reason for 
emphasizing this point is feedback from instructors that students weren't universally clear about the nature of 
functions. Programming in R is used to ensure that students work through each step in the argument and thus solidify 
their understanding. 

In this module, because likelihoods are so ubiquitous in statistics, the "how this is used in statistics" section is mostly 
just a segue into the next module. In that spirit, it introduces a geometric interpretation of the likelihood function, and 
links this to concepts such as signal versus noise, Fisher information, and the interpretation of hypothesis tests and 
confidence intervals. In passing, we note that even though subsequent modules simplify the maximization problem in 
the usual way by dropping constants and working with the log of the likelihood, for this introductory module it is 
pedagogically more straightforward to use the actual likelihood function, thus keeping intact the exact linkage 
between the probability distribution function and the likelihood function. 

10.4 Evaluation Plan 

Our evaluation of the revised curriculum will be discussed in a separate communication, once sufficient experience is 
accumulated. Briefly, evaluation will be performed at multiple levels, ranging from a micro-level to a macro-level. 
For example, a micro-level assessment would compare two different approaches to teaching how to integrate a 
probability density function to find the cumulative distribution function within a single course module using a 
randomized design. A macro-level assessment asks how well students can apply fundamental concepts of statistical 
inference within the context of significant and integrative work products such as the Masters Qualifying Examination 
(a 1-week take-home examination) (G. Samsa, 2021), internships and the master’s thesis. The macro-level 
assessment is the more challenging of the two, both because of the broader nature of the skills to be assessed, and 
because of the time required to asses (e.g., students complete their thesis 3 semesters after taking the theory course). 
In addition, the macro level assessment is not amenable to randomized experiments for several practical reasons, 
chiefly: 1) the unit of intervention is large, i.e., a semester-long course, and there are practical and financial 
constraints on conducting a concurrent randomized comparison; and 2) the manifestation of the construct we are 
attempting to address is most likely to appear later in the curriculum, such as during performance on the qualifying 
exam or thesis project (in the language of clinical trialists, the outcomes we want to measure are distal rather than 
proximal). Thus, for the macro level assessment will rely primarily on comparing qualifying exam performance pre- 
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and post-implementation of our new curriculum. We believe these plans are consistent with contemporary guidance 
for evaluation of education programs (What Works Clearninghouse, n.d.). 

 
11. Discussion 

This communication describes the process and results of a curriculum review of a first-year sequence of courses in 
statistical inference within a 2-year masters' program in biostatistics. One major change is that JBS and PBS now 
take a different sequence of courses: identical during the first semester but different in the second. Another major 
change is that the initial course has been redesigned to be primarily conceptual -- a more detailed rendering being "a 
computationally-aided self-discovery of a salient (albeit not comprehensive) set of key concepts and techniques 
pertaining to statistical inference". A distinguishing feature of our approach, consistent with principles of 
constructivism, is attention to explicitly describing the intellectual edifice (i.e., mental map) of statistical inference: 
in essence, we describe and then practice "how to properly think about statistical inference". 

These efforts are consistent with Bloom's Taxonomy of learning objectives (i.e., in ascending order: remember, 
understand, apply, analyze, evaluate, create) (Anderson et al., 2001). At a minimum, both JBS and PBS need to reach 
"apply" and, indeed, part of the impetus for the redesign was feedback from instructors that they were having 
difficulty in consistently doing so. The new first-semester course is calibrated to this level of the taxonomy. For JBS, 
the second-semester course is also calibrated to "apply", whereas for PBS the second course is calibrated to "create". 

The previous iteration of the theory sequence implicitly recognized that JBS need not create derivations and proofs, 
which received relatively less emphasis on examinations, but the problem that the content was in effect organized 
with PBS in mind remained. In essence, by trying to simultaneously serve two audiences we were slowing down the 
PBS while still imposing gratuitous requirements on JBS. One might reasonably ask whether we were simply 
exchanging one set of problems with its opposite. We believe not. Although technically adept, our PBS were not 
universally clear about how thinking about inference is actually structured, hadn't yet fully mastered "apply", and so 
a course at an application level with a conceptual focus actually provides new information to them. We also utilize an 
extensive archive of more traditional instructional materials as supplementals and so, for example, a PBS who wishes 
to encounter a more axiomatic treatment of these topics (e.g., as preparation for their next theory course) can do so. 

Implementing this approach requires close coordination with other courses in the curriculum. For example, students 
are assumed to be relatively facile with R on day 1, with R Markdown being ideal, as many of the exercises combine 
coding, results and explanation. Our programming sequence is designed with this in mind and, indeed, students are 
exposed to the basics of R in a "preorientation curriculum" taken before beginning the first semester (Neely et al., 
2022; G. P. Samsa, 2020). In the other direction, for example, the data analysis course benefits from distributions 
being introduced in a specific order. Evaluation is ongoing. 

 
12. Comment 

Although our intention is not to overly focus on the sociology of academia, we believe that a short commentary 
about our deliberations around curriculum redesign might be helpful to others. Like many other programs, we began 
with a theory sequence which was implicitly designed with PBS in mind. This sequence was quite similar to what 
our instructors, all of whom have doctorates, had experienced as PhD students, and which served them well. As one 
of the most difficult challenges in teaching is to put oneself in the place of a new learner, and perhaps a new learner 
with different educational goals and background than you, it isn't necessarily intuitive for an instructor to recognize 
that a course which worked well for them might not be appropriate for JBS. Central to this argument is the seldom 
discussed disconnect between the typical axiomatic approach to teaching statistics and the way that it is practiced.  

We are unaware of a literature which discusses the disconnect between pedagogy and practice in statistics, and so 
will cite the literature in the related discipline of mathematics. Mathematics is described as an axiomatic system 
(Snapper, 1979) but expert practitioners don't learn new information by following proofs step-by-step. Instead, 
practitioners focus on examples, constructions and prototypes, essentially by applying what we’ve called a mental 
map (Wilkerson-Jerde & Wilensky, 2011; Wilkerson, 2008). Thus, our approach is consistent with the 
recommendation of the National Council of Teachers of Mathematics to "build procedural fluency from conceptual 
understanding" and which states that "effective teaching of mathematics builds fluency with procedures on a 
foundation of conceptual understanding so that students, over time, become skillful in using procedures flexibly as 
they solve contextual and mathematical problems" (Leinwand et al., 2014). Therefore, we feel that our approach is 
consistent with modern contemporary approaches to pedagogy in mathematics and related fields. 
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Theoretical arguments aside, other more pragmatic aspects of academia also tend to support a pedagogical status quo. 
Namely, in many academic departments the masters' program funds the PhD program, with the latter being of greater 
interest to faculty members because PhD students can assist them with their research whereas masters' students often 
cannot. The risk is that the masters' program will be treated mostly as a funding source, with insufficient attention to 
quality of instruction. We believe differently: since in our field of biostatistics there is very high demand from 
employers, which enables our students to have prosperous careers without pursuing a PhD, it is our responsibility to 
send our graduates into the workforce with the skills they need to be successful in their careers. Therefore, it is 
critical that we determine when JBS should receive different instruction than PBS, so that the learning experience for 
both groups of students is as effective as possible. In the present context, an additional benefit of determining that 
JBS should receive different instruction than PBS is in eliminating gratuitous mathematical pre-requisites. In our 
experience, some faculty members wrongly conflate doing so with reducing the level of programmatic rigor. In this 
case, it can be helpful to recall that such gratuitous requirements often disproportionately impact underrepresented 
minorities (Freedle, 2003), and thus their elimination also serves to increase the level of equity within the program. 

In reflecting upon our experience, a key step toward progress was recognizing an unexamined assumption / 
conceptual barrier which had unnecessarily constrained our curriculum design. It is our hope that this will be of 
interest to those in less mathematical disciplines, serving as an invitation to identify and address similar barriers to 
effective instruction within their fields of study. 
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Appendix 

1. Joint and Conditional Probability, Discrete Case 

Consider the following table, which cross-classifies 300 patients according to the results of a diagnostic test (X) and 
the presence of a disease (Y). The observed data are highlighted in italic text, other quantities are derived by 
summation. 

 Y=0: disease absent Y=1: disease present Marginal distribution of test results

X=0: test is negative 90 40 130 
X=1: test is positive 10 160 170 
Marginal distribution of 
disease 

100 200 Total=300 

 
For example, if a patient is randomly selected from this population the probability that the disease is present is 
200/300 = 0.67. 

 
"Joint" events consider both X and Y, whereas "marginal" events consider one but not the other.  

The probabilities for the 4 joint events are: 

Pr{X=0 & Y=0} = 90/300. 

Pr{X=0 & Y=1} = 40/300. 

Pr{X=1 & Y=0} = 10/300. 

Pr{X=1 & Y=1} = 160/300. 

These 4 joint events are mutually exclusive and exhaustive, and thus constitute a sample space (i.e., the set of all 
possible outcomes). 

 
The probabilities for the 4 marginal events are: 

Pr{X=0} = 130/300. 

Pr{X=1} = 170/300. 

Pr{Y=0} = 100/300. 

Pr{Y=1} = 200/300. 

 
The probabilities for the marginal events are most simply obtained by using the information in the margins of the 
table (i.e., the numbers without highlighting). However, they can also be constructed using the joint probabilities. For 
example: 

 
Pr{X=1} = Pr{X=1 & Y=0} + Pr{X=1 and Y=1} = 10/300 + 160/300 = 170/300, as before. 

 
This illustrates the law of total probability, which holds when the events Y=0 and Y=1 are disjoint. 

Conditional probabilities such as Pr{Y=1|X=1} can be calculated in two ways. One approach is to treat those 
individuals with X=1 as a new population of 170 individuals and notice that 160 of them have Y=1, implying that the 
desired probability is 160/170. Another approach uses the joint probabilities and the formula Pr{Y=1|X=1} = 
Pr{X=1 and Y=1} / Pr{X=1}, which in turn equals 160/300 / 170/300, which is identical to 160/170 after 
cancellation. The second approach illustrates the law of conditional probability. 
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We could apply the law of total probability to the denominator and obtain: 

Pr{Y=1|X=1} = Pr{X=1 & Y=1} / Pr{X=1} = Pr{X=1 & Y=1} / (Pr{Y=0 & X=1} + Pr{Y=1 & X=1}),  

which equals 160/300 / (10/300 + 160/300), with the same answer as before. 

 
Finally, we can rearrange Pr{Y=1|X=1} = Pr{X=1 & Y=1}/Pr{X=1}, and plug this into the formula: 

 
Pr{X=1|Y=1} = Pr{Y=1}*Pr{X=1|Y=1} / (Pr{Y=0}*Pr{X=1|Y=0} + Pr{Y=1}*Pr{X=1|Y=1}, which equals 

200/300*160/200 / (100/300 *10/100 + 200/300*160/200), which comes out to the same thing after cancellation. 
This final version of the formula is termed Bayes theorem. 

 
Exercise: Create a Venn diagram or other graphic illustrating the law of total probability. Do the same for the law of 
conditional probability. Do the same for Bayes theorem. 

 
How this is used in statistics 

Having multiple versions of the same formula might seem to be more trouble than its worth, but the advantage is that 
you might have one set of probabilities but want the other. For example, a patient has a positive test and wants to 
know the probability that they have the disease. The information we actually have pertains to the disease's prevalence 
(i.e., Pr{Y=1}) and the operating characteristics of the test: namely, Pr{X=1|Y=1} and Pr{X=1|Y=0}. These 
operating characteristics might have been derived from a separate experiment whereby, for example, a sample of 
patient with the disease are given the test and a sample of patients without the disease are given the test. 

 
Bayes' theorem allows us to derive what we want from what we have, and we could tell the patient with a positive 
test that their chance of having disease is 160/170. Indeed, one way of quantifying the impact of a positive test is that 
it changed the physician's estimate of the probability of disease from the baseline value of 200/300 = 0.67 to 160/170 
= 0.94. Similarly, a negative test would change the estimate of probability of disease from 0.67 to 40/130 = 0.31. 

 
Bayes theorem also allows to make the same calculation for a hypothetical population with a different prevalence of 
disease, in similar fashion. 

 
Exercise: assume that Pr{X=1|Y=0} and Pr{X=1|Y=1} are as before, but that the disease prevalence is changed to 
5%. Calculate Pr{X=1|Y=1} and Pr{X=1|Y=0}. You should find that Pr{X=1|Y=1} is smaller than before. In plain 
English, explain why. 

 
When calculating probabilities, it can be useful to structure the calculation as a chain of conditional events, each of 
them independent. For example, to draw 5 diamonds in a row from a deck of 52 cards, the first card must be a 
diamond, with probability 13/52 (i.e., 13 diamonds / 52 cards), then the second card must be a diamond, with 
probability 12/51 (i.e., the deck now contains 51 cards, 12 of which are diamonds, the particular diamond which was 
initially selected doesn't matter), then the third card must be a diamond, with probability 11/50, then the fourth card 
must be a diamond, with probability 10/49, and then the fifth card must be a diamond, with probability 10/48. These 
events are conditionally independent, the probabilities multiply, and so the answer is 
(13/52)*(12/51)*(11/50)*(10/49)*(9/48). This approach is much simpler than enumerating all the possible hands and 
then counting the number of hands with 5 diamonds. 

Exercise: In the above example, we sampled without replacement -- in other words, once a card was selected it 
wasn't returned back to the deck. What would be the probability of selecting 5 consecutive diamonds if you sampled 
with replacement instead? Which probability is larger -- sampling with or without replacement? 

 
Now suppose that you are sampling without replacement from a large deck of 52,000 cards, 13,000 of which are 
diamonds. What is the probability of selecting 5 consecutive diamonds? You should find that it is very similar to the 
probability you obtained using sampling with replacement. Sampling with replacement leads to the binomial 
distribution, sampling without replacement leads to the hypergeometric distribution, and as the size of the population 
increases the hypergeometric distribution approaches the binomial distribution. Results such as this are the 
mathematical justification for ignoring sampling with replacement, which simplifies matters, and should also serve 
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as a warning of the dangers of making this simplification when the sample sizes are sufficiently small. 

 
So far, we've illustrated joint and conditional probabilities -- that is, probabilities associated with conditional events. 
This information will be used in, among others, the causal inference course. 

 
In the module on the Bernoulli distribution, we will discover that when the possible values of a random variable X 
are 0 and 1, then Pr{X=1} = E(X) and so (1) in this special case, the above probabilities can be replaced with 
expected values; and (2) the resulting formulae hold for expected values in general. For continuous random variables, 
summation will be replaced by integration. JBS should be familiar with the underlying logic, and able to apply the 
resulting formulae in straightforward cases. (Note: we currently require mastery -- exposure is sufficient.) 

 
The idea of conditioning occurs throughout statistics. 

 
One application of this idea is stratification -- for example, in a randomized trial we might want to analyze the data 
separately for males and females, which is rather like the above. 

 
Another application involves using conditioning to create random variables with a particular distribution. For 
example, if you have a Poisson process and observe 1 event between time 0 and time T, the waiting time until the 
event is exponential. These examples are covered elsewhere. 

 
As an illustration of the basic idea, suppose that you toss a fair coin 4 times, and obtain exactly 1 head. Label the 
results of the tosses X1-X4 (all having values of 0 or 1), and label their sum X. 

What are the 4 possible ways (i.e., joint events) to obtain X=1? (Hint: one way is {X1=0 & X2=1 & X3=0 & X4=0}? 

What probabilities are associated with the 4 joint events? 

Conditional on X=1, what is the probability that X1=1? What distribution does this represent? 

Conditional on X=1, what is the probability that X2=1? What distribution does this represent? 

Suppose that the probability of a head is 0.80. Does Pr{X1=1 | X=1} change? 

What general principle about conditional distributions does this example illustrate? 

 
2. Likelihood Functions, an Introduction 

Consider 7 independent Bernoulli trials, each with success probability θ=0.6.  

Exercise: use R to generate the pdf of X. In other words, fill in the table below. For example, the entry for X=0 
should be 0.47 

You should find the following: 

X Pr{X=x|θ=0.6}} 

0 .00164 
1 .01720 
2 .07741 
3 .19354 
4 .29030 
5 .26127 
6 .13064 
7 .02799 

 
Notice that the experiment has not yet been performed, and so we do not know the value of X which will actually be 
observed. X is random, θ is fixed, as illustrated by the following notation: 

 
Pr{X|θ)} = nCx θX (1-θ) (n-x) 

 
Now suppose that we observe X=4, and ask whether the data are consistent with the value θ=0.6. The value of X=4 
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will be observed almost 30% of the time, which provides informal support to the notion that θ might in fact be 0.6. 

 
Exercise: use R to fill in the above table with θ=0.5. You should find Pr{X=4|θ=0.5} = .27344. The value of X=4 will 
be observed almost 30% of the time, which provides information support to the notion that θ might be 0.5, although 
there is marginally less support for θ=0.5 in comparison with θ=0.6. 

 
Now, let's consider the same information from a different perspective -- in particular, we will treat X as fixed and 
vary the value of θ. 

 
Exercise: use R to fill in the above table with Pr{X=4|θ}, for values of θ from 0 to 1 by 0.01. X=4 is impossible for 
θ=0 and also for θ=1 -- in plain English, explain why. 

 
θ Pr{X=4|θ} 

0  
.01  
.02  
…  
.99  
1  
 
You should find that the maximum probability occurs where θ=0.57. We are using the same formula as before, but 
with 2 differences. First, the value of X is now fixed to be what was observed in the data. Second, the formula is 
interpreted to be a function of θ, and describes how Pr{X=4} varies as a function of θ. 

 
Exercise: plot the above function (with θ on the x-axis and Pr{X=4|θ} on the y-axis). 

 
The function that you have just created and plotted can be used to make inferences about the true (but unknown) 
value of θ. Indeed, we've already done so informally: the data seem consistent with θ=0.60, the data seem consistent 
with θ=.50, albeit slightly less so, and the value of θ which is the most consistent with the data is 0.57. "Most 
consistent with the data" can also be rendered as "the most likely value of θ given the data", and so the function in 
question is termed the "likelihood function". We denote it by L(θ|X} to emphasis that this is a function of θ, 
conditional on a fixed value of X. In our example, we might even use the notation L(θ|X=4}. 

 
The value of θ that maximizes the likelihood function is called the maximum likelihood estimator (MLE) of θ, 
denoted by θ̂. 

 
Exercise: plot the likelihood function L(θ|X) for 3 different scenarios: 4 successes out of 7 Bernoulli trials, 40 
successes out of 70 Bernoulli trials, and 400 successes out of 700 Bernoulli trials. The value of the MLE should be 
identical. 

How this is used in statistics 

Much of statistical inference is based on the notion of generating parameter estimates using maximum likelihood. 
What follows is not intended to be a comprehensive treatment, but instead as an introduction to the topic to help you 
get your bearings. 

 
Consider the likelihood function associated with 400 successes out of 700 Bernoulli trials. The slope of the function 
at the value of the MLE is 0 (this follows from a basic principle of calculus, covered in the next module). This 
function has a much steeper peak than, for example, the likelihood function for 4 successes out of 7 Bernoulli trials. 

Exercise: Fill in the following table. 

N X L(X|θ=0.57)  L(X|θ=.50) 

7 4   
70 40   
700 400   
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The third column is the value of the likelihood function at the MLE. The fourth column is the value of the likelihood 
function at another value of θ. We ask how much less likely θ=0.50 is than θ=0.57. To put the comparisons on the 
same scale, we divide L(X|θ=0.50) by L(X|θ=0.57). Consistent with the plots of the various functions, you should 
notice that within the range of θ=(0.50-0.57) the likelihood function for X=4 (n=7) is relatively flat, whereas the 
likelihood function for X=400 (n=700) is relatively steep. As an implication, verify that the ratio of these two 
likelihoods is near 1 for n=7 and far from 1 when n=700. 

 
The next module will (among others) demonstrate the following: 

 The "signal" (i.e., the most plausible value of θ) is the MLE. 

 The "noise" in the estimate of θ (i.e., the imprecision in the signal) is related to the curvature of the likelihood 
function at the MLE. 

 The "noise" depends on the inverse of the likelihood function's second derivative. 

 The larger the absolute value of the second derivative, the steeper the likelihood function, and the more 
"information" we have about the actual value of θ. 

 One way to quantify how much more likely the MLE of θ=0.57 is than θ=0.50 is to take the ratio of the two 
likelihoods. This idea underpins both hypothesis tests and confidence intervals. 

 A confidence interval can be defined using the rule "take all values of θ for which the value of the likelihood 
function is close to the value of the likelihood function for the MLE". 

 A confidence interval can also be created from the MLE plus or minus a multiple of the magnitude of noise. 
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