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ABSTRACT

The retina can provide evidence of diseases originating in other parts of the body. Among the eye diseases that can be diagnosed
through a retinal examination, age-related macular degeneration, glaucoma, and diabetic retinopathy are the most common, and
they cause vision loss. Although these diseases can be diagnosed by examining blood vessels and the optic disk in retinal images,
assessment of blood vessels on colored fundus images is a time-consuming and subjective process. Here, we present an automated
blood vessel segmentation algorithm that facilitates the evaluation of diabetic retinopathy through assessment of blood vessel
abnormalities. The blood vessels are extracted using a random forest classification model combined with wavelet features and
local binary pattern texture information. Discriminant analysis is modified and used for feature selection to train the proposed
classification model. The boundary of the optic disk is identified using low-pass filtering, fuzzy c-means clustering, and template
matching so that it may be removed and not confound the segmentation analysis. Validation test results using three publicly
available retinal image datasets demonstrated that our proposed method achieves as good or better blood vessel segmentation
accuracy than the other supervised model approaches examined. Results show that the proposed scheme is able to segment
the blood vessels and optic disk structures accurately (Accuracy Index) in 95.80%, 95.20%, and 97.10% of the testing Digital
Retinal Images for Vessel Extraction (DRIVE), Structured Analysis of the Retina (STARE), and CHASE_DB1 image datasets
respectively. The main advantage of our proposed model is that it provides robust and computationally efficient segmentation of
blood vessels and the optic disk. The proposed model aims to provide supportive information for cases in which a diagnosis
remains unclear following a clinical examination.
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1. INTRODUCTION

Signs of numerous diseases associated with the eye, brain,
or cardiovascular system appear in the retina. The most com-
mon diseases that show signs in the retina, i.e., age-related
macular degeneration, glaucoma, and diabetic retinopathy,
cause vision loss and are a growing public health concern in
the United States.[1] Abundant evidence indicates that these
diseases can be prevented through an annual eye screening

that includes retinal imaging using a color fundus camera.
Diameter changes and altered branching angles of blood
vessels are important indicators of these eye diseases, and
treatment effectiveness depends on the accurate detection of
the structure of the blood vessels.[2] Although ocular fundus
imaging is the most common technique for monitoring the
health status of patients and for documenting the details of
the retinal structures, including the blood vessels, macula,
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and optic disk, the manual detection of blood vessels and
the optic disk in the resulting images is time consuming and
subjective.

Various approaches have been proposed for segmenting
blood vessels on fundus images. Examples of such
approaches include machine learning,[3–12] matched fil-
tering,[13, 14] vessel tracking,[15, 16] mathematical morphol-
ogy,[17] model approaches,[18, 19] and connected opera-
tors.[20, 21] Machine-learning methods assign one or more
groups to pixels in the retinal image, using multiple numeric
pixel features to group them. Among these machine-learning
methods, classification models utilizing supervised learn-
ing are increasingly of interest as they provide accurate and
computationally less expensive classification. The pixels
are classified according to learning patterns by a supervised
model that uses ground truth images of structures manually
segmented by experts. Lupascu et al.[5] proposed the feature-
based AdaBoost classifier for blood vessel segmentation.
This technique incorporates a multi-feature analysis, with
features that represent local and geometrical information of
the vessels on different scales. An approach proposed by
Lili et al.[4] combined radial projection and support vector
machine classifiers for vessel segmentation and was applied
to images in the Digital Retinal Images for Vessel Extraction
(DRIVE)[22] dataset. In their method, adaptive thresholding
is applied to normalize the background of the green channel
and to trim the optical disk edges, resulting in segmentation
of large vessels. To differentiate thin blood vessels from
other structures on the image, the thin vessels are identified
by wavelets applied at multiple scales using a support vector
machine classification approach. An extracted vessel tree is
obtained using a tracking method. Marin et al.[6] developed
another supervised model for segmenting blood vessels. A
nonlinear, multilayer feed forward neural network is used for
training and classification, and their proposed model extracts
grayscale values and moment-invariant features to represent
each pixel in the retinal images. Osareh et al.[7] proposed
a fully automated segmentation scheme to identify blood
vessels in retinal images. A feature vector for each image
pixel is developed using Gabor filters with various scales
and orientations selected. The extracted features are then
used to group the pixels through a generative Gaussian mix-
ture model and support vector machine-derived classifiers.
Staal[10] introduced a new vessel segmentation scheme using
k-nearest neighbors classifiers, with image ridges considered
a natural variable for separating vessels from other structures.
Soares[12] presented a Bayesian model that groups each pixel
according to Gabor wavelet features. Additional informa-
tion about retinal blood vessel segmentation methods can be
found in the survey by Fraz et al.[11] A combination of meth-

ods for detecting blood vessel skeletons and multidirectional
morphological bit plane slicing has been presented to extract
blood vessels.[23] However, these combination methods con-
sider only a single classifier, unlike ensemble classification
approaches, and the number of features is much larger than
the number of samples, which results in less accurate clas-
sification results. Additionally, in the segmentation process,
most of these algorithms do not include the extraction of the
optic nerve head, a region unwanted for segmenting blood
vessels.

The optic disk represents the beginning of the optic nerve,
and it is the brightest region where blood vessels converge
on the fundus image. It is an approximate vertical ellip-
sis, with an average horizontal dimension of 1.8 mm ±
0.2 mm and vertical height of 1.9 mm± 0.2 mm.[24] Because
blood vessels converge at the optic nerve head region, the
identification of the optic disk boundary is nontrivial, and
a number of methods have been proposed to identify this
boundary. Chrastek et al.[25] proposed a model that removes
thick blood vessels from the optic nerve head region and
then applies a Hough transform and active contour model
to find the boundary. Welfer et al.[26] presented an adaptive
morphological operation and watershed transform to find the
optic disk boundary in fundus images. The model suggested
by Lowell et al.[27] localizes the optic disk using an active
contour model to finalize the boundary identification process.
However, all these proposed techniques require intensive
computations.[28]

The aim of this work was to develop an algorithm that ad-
dresses the aforementioned limitations, and to build on a
previously developed segmentation technique for an auto-
mated extraction of blood vessels on a fundus image that we
published the preliminary results of in our earlier work.[29]

This improved automated blood vessel extraction model that
we propose in this paper evaluates the accuracy of the optic
disk detection scheme and provides accuracy comparison
using overlapping ratio (ORatio) and the mean absolute dis-
tance (MAD). In this model, the blood vessels are extracted
using a classification scheme with a random forest. After
the green channel is extracted from the original color fun-
dus image, image pre-processing is performed to eliminate
the image noise while enhancing the contrast. Wavelet- and
LBP-based features are extracted from the image after the
pre-processing step, and this is followed by a feature selec-
tion process to identify blood vessel structure using a random
forest classifier. To finalize the segmentation, the boundary
of the optic disk is identified and then removed from the
classified image to finalize the segmentation of the blood
vessels. Therefore, with this current study, we build on our
previous work with important methodological additions and
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extensive validation experiments including larger datasets
and comparative evaluation against previously presented al-
gorithms.

The proposed automated blood vessel extraction model and
the optic disk segmentation model are presented in Section 2.
The experimental results, performance evaluation, and com-
parison with other commonly used methods are presented in
Section 3.

2. METHOD
Because the identification of blood vessels and the optic disk
in a fundus image is a time consuming and subjective process,
there is a need to automatically extract the retinal structure.
However, segmenting this structure is a nontrivial task due to
the lack of image contrast, signal noise, and reflection along
the centerline of blood vessels.

Figure 1. Overview of the proposed
segmentation scheme

As shown in Figure 1, our proposed model can be di-
vided into three main phases: pre-processing, feature extrac-
tion/selection, and segmentation. A binary mask is generated
before applying the proposed model to extract the region of

interest, namely, the retinal structure. All the images come
with a binary mask that indicate the field of view (FOV)
in the DRIVE database. The binary masks have been cre-
ated for each of the images in the Structured Analysis of the
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Retina (STARE) and CHASE_DB1 databases as explained in
Ref.[12] The pre-processing phase begins with the conversion
of the original fundus image to the green channel (8 bits),
which stores pixels with intensity values between 0 and 255.
The next step in the pre-processing phase is noise reduction,
followed by contrast enhancement of the images. In the sec-
ond phase, the wavelet features and LBP texture information
are extracted from an image and used to select significant fea-
tures. In the last phase, a random forest classification model
is trained and tested, followed by the optic disk boundary
identification and removal processes. Each step in the three
main phases of our proposed model is discussed in greater
detail below.

2.1 Image pre-processing
The first step of the image pre-processing phase is to extract
the green channel from the original fundus color image, as
the green channel provides better contrast and the most use-
ful information for differentiating blood vessels from the
background.[12] The next step, image denoising, incorporates
anisotropic diffusion, which can be considered a feature-
preserving denoising algorithm. This step aims to remove
noise from the image without removing useful information,
such as edges, lines, and other details that can be used to in-
terpret the images. However, the effectiveness of anisotropic
diffusion image denoising depends on parameters that in-
clude a conductance function, an integration constant for
numerical stability, and a gradient modulus threshold. We se-
lected the conductance function as 1

1+( x
K )2 because it favors

larger regions over smaller ones.[30] To select a gradient mag-
nitude threshold, we chose a “noise estimator” that uses the
absolute value of an image gradient to estimate the threshold,
as described by Canny.[31] Then, the contrast of the denoised
image is enhanced by adaptive histogram equalization which
combines 6 × 6 pixels small regions using bell-shaped his-
togram to eliminate artificially induced boundaries, as seen
in Figure 2.

Figure 2. Image pre-processing
(a) Green channel; (b) Image enhancement after anisotropic
diffusion

2.2 Segmentation framework
2.2.1 Feature extraction
The aim of the proposed segmentation scheme is to automat-
ically find blood vessel structures on the image. The vessels
are extracted through the grouping of pixels into either blood
vessel pixels or background pixels using a supervised model.
Feature extraction is a critical step in the classification pro-
cess. In our proposed model, wavelet features and LBP
texture information differentiate the vessel pixels from the
background pixels. Texture-based feature vectors contain
a numerical metric calculated to provide information about
the spatial arrangement of pixel intensities in an image. The
feature vector in our model is f = [Fwavelet, FLBP ]. The
Haar wavelet transform is applied on reference images up
to the second level for image decomposition. To extract the
wavelet coefficient of each pixel in the image, we used a fast
wavelet transform, as this has the ability to discriminate dif-
ferent frequencies and frequent decomposition of an image
using scaling and wavelet functions. After applying the fast
wavelet transform, the feature vector Fwavelet, containing en-
ergy, entropy, variance, and standard deviation, is extracted
using wavelet coefficients.

We also adapted an LBP[32] into the classification process
because it is an efficient texture operator that identifies pat-
terns of blood vessel features to differentiate them from other
structures without contrast deformation. LBP examines the
relationship between the central pixel of a cell and its neigh-
bors. A local threshold is used to label each pixel in an image,
depending on the intensities of its neighboring pixels, result-
ing in a new binary number. The examined region is divided
into small windows, 3 × 3 pixels each. Each pixel located in
each window is compared with each of its eight neighbors.
If the central pixel’s value is greater than the neighbor pixel,
the output is assigned as 1, otherwise it is 0. This results in
an eight-digit binary number. Then, a histogram depicting
the frequency of each number is computed over the cell. The
histograms of all windows are concatenated to provide the
feature vector FLBP for each pixel located at the center of
the examined region.

Random forests, a widely used, powerful classification
method, are used in our proposed model. However, with
randomization of both bagging samples and feature selection,
the trees in the forest tend to select uninformative features for
node splitting.[33] The resulting algorithm shows poor accu-
racy when working with high-dimensional data. In addition,
a random forest is considered a biased algorithm in feature
selection. To overcome these problems, an additional step
is incorporated into the classification process so that useful
features are selected in learning random forests. In this new
step, uninformative or redundant features are removed using
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p-value assessment, and a subset of unbiased features is then
selected using a modified and adapted discriminant analy-
sis, which derives discriminant subspace from large-scale
training data for classification. We have G groups (G = 2
pixel groups, i.e., blood vessels and background), and each
group has n samples. The discriminant analysis is described
as follows:

Sb =
G∑

i=1
(xJ

i − xi)(xJ
i − xi)T (1)

Sv =
G∑

i=1

n∑
j=1

(xJ
i − x̄)(xJ

i − x̄)T (2)

where Sb is the between-group scatter matrix, and Sv is the
within-group scatter matrix. The term xJ

i represents the jth
sample of the ith group, xi is the mean of the ith group, and
x̄ represents the mean of the set. The eigenvalue equation of
the discriminant analysis is represented as follows:

Sbw = λSvw (3)

Let w = [w1 · · ·wN ]T and x = [x1 · · ·xN ]T represent the
eigenvectors of the covariance matrix for the discriminant
analysis and sample, respectively. The discriminant analysis
can be used for feature selection as follows:

f = xTw =
N∑

i=1
xiwi (4)

The first m largest eigenvectors are selected as E1 · · ·Em.
Then, the contribution of each eigenvector is evaluated by

tj =
m∑

i=1
|Epj | (5)

where Epj represents the jth element of vector. The final
set of significant features for training the classifier is se-
lected using gained tj by a leave-one-out cross-validation
since the relatively small dataset size. In this leave-one-out
cross-validation, the model is repeatedly refit leaving out a
single observation and then used to derive a prediction for
the left-out observation using a mean squared error that min-
imizes the mean criterion value. This process continues until
the addition of more features does not further decrease the
criterion.

2.2.2 Classification
The proposed classification model has been used to differ-
entiate pixels into a blood vessel area or the background
region. This is a two-class problem and involves two steps:
classifier construction and prediction. The structure of the
classifier is constructed using a random forest, as overfitting
is not a problem, and it is not very sensitive to outliers in
training data. A random forest is an ensemble classifier using
multiple decision tree models with additional randomness
to bagging. Different subsets of training data are selected
with replacements to train each tree, and a randomly selected
subset of features is used to split each node.[34] This strategy
provides better classification accuracy compared with others.
Another advantage of using the random forest is that there
are only two parameters that need to be defined: the number
of trees in the forest and the depth of the trees at each split.

The classifier is trained using 29 cases at random with re-
placements to build a subset of data. The subset size is
approximately half of the total dataset. Then at each node,
10 numbers of features are selected randomly from the fea-
ture set. The feature variable providing the best split is used
to conduct a binary split on that node. At the next node, addi-
tional 2 features are selected randomly from the feature set,
and the process is repeated. The value for p should be much
smaller than the total number in the feature set, as suggested
in Ref.[34] After the classifier is trained, it is run through
all of the trees, and the classification result is accepted as a
voting majority of each tree. The anticipated outcome at the
end of this process is a set of two groups of pixels that are au-
tomatically classified as blood vessels (white) or background
(black).

Our segmentation scheme evaluates each pixel independently
using a random forest classification model. Because the clas-
sification model may produce errors, a correction step is
necessary to eliminate the misclassified pixels. Therefore,
small regions surrounding the vessel structure are eliminated
using a morphological opening operator using “diamond”
structuring elements which has a radius of 2.

2.2.3 Identification of the optic disk
The optic disk represents the optic nerve head, and it is the
brightest region in the retinal fundus image where blood
vessels converge. Optic disk removal is performed before
finalizing the segmentation of the blood vessels because the
boundary of the optic nerve head is usually undesirable for
blood vessel segmentation. Detection of the optic disk is also
important to identify abnormalities in the eyes.

Given that the optic disk is clearly visible using the red chan-
nel of the fundus image — shown in Figure 3(a) — the disk
can be automatically identified using pixel intensity values.
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Low-pass filtering with a filter size of 10 × 10 is performed
first to remove blood vessels from the optic disk region,
as shown in Figure 3(b). Then, the fuzzy c-means (FCM)
algorithm is used to group image pixels into two clusters,
with every pixel in the image belonging to either optic disk
clusters or background clusters, as shown in Figure 3(d).[35]

The main advantage of FCM is that it is independent of the
training data. Features with close similarities in an image
are grouped into the same clusters. The similarity can be
defined as the distance from the feature vector to the center
of the cluster. The FCM-dependent clustering starts with
an initial guess for the cluster center. Then, assigned data
points (pixel intensity, in this case) are updated iteratively to
move the cluster center to the correct location. Iterations are
performed using an identified objective function that mini-
mizes the Euclidian distance between each data point and
each cluster center. Because the clustering may result in mis-
classified regions inside the optic nerve head structure, this
region is filled using morphological filling operation based
on 4-connected neighborhood connectivity criteria.

Figure 3. Optic disk identification
(a) Red channel of fundus image; (b) Low-pass filtering of ROI; (c)
One set of the templates used; (d) After fuzzy c-means; (e) Template
matching in the region of the optic nerve; and (f) Boundary of the
optic disk

After grouping the image pixels as either background or
optic disk, the next step is to use circular and elliptical tem-
plates to determine the optic disk boundary. The diameters
ranges from 18 mm to 19 mm in 0.2 mm increments are set

up for the circular templates while horizontal lengths from
18 mm to 19 mm in 0.2 mm increments and vertical length
— 19 mm fixed and orientations (0◦- 45◦- 90◦- and 135◦) are
setup for the elliptical templates in the matching process. An
example of the template is shown in Figure 3(c). Matching is
performed between the classified image from the red channel,
Figure 3(d), and the templates, the inside of the circles and
ellipses shown in Figure 3(c). The correlation coefficient is
considered an indicator of the match between the template
and classified images, the resulting FCM classification. The
match with the highest correlation value is selected as the
optic nerve region, as shown in Figure 3(e-f).

After finding the region of optic nerve head, the boundary is
identified by removing the inside pixels in the region. The
boundary is then subtracted from the image that was found
using the random forest classifier and morphological opening
operations using “diamond” structuring elements which has
a radius of 3 to finalize the segmentation process, as shown
in Figure 4.

Figure 4. Proposed segmentation scheme using the retinal
image dataset CHASE_DB1
(a) Segmentation after random forest classification; (b) Final blood
vessel segmentation; and (c) Ground truth of the original image

3. RESULTS
3.1 Image dataset descriptions
The proposed blood vessel segmentation and optic disk iden-
tification schemes were tested using three publicly avail-
able retinal image databases, DRIVE,[22] STARE,[36] and
CHASE_DB1 (Child Heart and Health Study in England).[37]

A total of 40 color fundus images in DRIVE were obtained
from a diabetic retinopathy-screening program in the Nether-
lands. The images were captured using a Canon CRS non-
mydriatic 3-CCD camera with a 45◦ FOV and a resolu-
tion of 768 × 584 pixels. Trained researchers manually
segmented each fundus image. The STARE database con-
tains 20 fundus images captured with a TopCon TRV-50
fundus camera at a 35◦ FOV and a resolution of 605 ×
700 pixels. A total of 28 retinal images in the CHASE_DB1
database were recorded using a Nidek NM-200-D fundus
camera. The images were captured at a 30◦ FOV with a
resolution of 1,280 × 960 pixels.
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3.2 Evaluation experiments and statistical analysis

The validation of our proposed blood vessel segmentation
method was performed on a representative dataset of these 88
color fundus images. Our proposed model was built using 13
images from the DRIVE dataset, 7 images from the STARE
dataset, and 9 images from the CHASE_DB1 dataset and
tested using the rest of image dataset (27 DRIVE images, 13
STARE images, and 19 CHASE_DB1 images). The images
in the training set are manually segmented by one expert
while the images in the testing set are segmented by two
other experts. Each image in the STARE and CHASE_DB1
datasets is manually segmented by two experts. However, we
measure the performance of our model by comparing with
the binary ground truth images provided by the first experts
in each dataset.

The performance of the proposed optic disk segmentation
method was measured by quantifying the region overlap be-
tween the manual and automated segmentations using the
ORatio and the MAD. As a benchmark, we compared our
model with alternative models proposed by Zeng et al.,[38]

Boykov et al.,[39] and Salazar-Gonzales et al.[28] Unfortu-
nately, it was not possible to test our method against a larger
number of alternative methods because most of the published
methods did not use a unique benchmark to measure the
results of the optic disk segmentation, making a compari-
son of results difficult. Thus, comparisons of our proposed
model were conducted using the topology cut, graph cut,
compensation factor, and Markov random field (MRF) image
reconstruction. Since manual segmentations of optic disk are
not available on STARE and CHASE_DB1 datasets, all meth-
ods were compared on the same dataset (DRIVE) only using
27 fundus retinal images. For comparisons with the pub-
lished methods, all values were derived from the respective
manuscripts.

A good segmentation has a high ORatio and a low MAD.
According to Niemeijer,[40] an Oratio greater than 0.5000
indicates a successful segmentation. A comparison of the seg-
mentation results using the various models and the DRIVE
dataset determined that our proposed optic disk segmenta-
tion algorithm provided the second highest average ORatio
(0.7840), with an average MAD (5.12) (see Table 1).

The effectiveness of the proposed blood vessel segmenta-
tion model was also investigated using receiver operating
characteristic (ROC) curves. A ROC curve illustrates the
performance of a model by providing the true positive rate
versus the false positive rate. In the performance evaluation
process, a true positive indicates that the data are classified
as “blood vessel” by both the manual and the proposed au-
tomated method. Similarly, a true negative is the outcome

when data are classified as “background” by both the manual
and automated processes. False positives and false negatives
were also determined. In addition to ROC curves, accuracy
was measured as a performance evaluator using the ratio of
the number of correctly classified blood vessel pixels to the
number of total pixels in the image.

Table 1. Performance of optic disk segmentation model
using the drive dataset

 

 

Methodology Average ORatio Average MAD 

Proposed model 0.7840 5.12 

Topology cut [38] 0.5591 10.24 

Graph cut [39] 0.5532 9.97 

MRF image reconstruction [28] 0.8240 3.39 

Compensation factor[28] 0.7090 6.48 

 

We selected a training set to build the proposed classifier. The
training dataset was trained using 13 images in the DRIVE
dataset, 7 images in the STARE dataset, and 9 images in
the CHASE_DB1 dataset. The validation of the proposed
model was performed with an image data set of 27 DRIVE,
13 STARE, and 19 CHASE_DB1 fundus images. Ten-fold
cross-validation experiments were conducted to evaluate the
performance of the proposed model. To find the best pa-
rameters, forest size and tree depth, for the random forest
classifier, we conducted 100 runs of leave-one-out cross-
validation experiments with a grid search. The best result
was obtained with a forest size of 8 and a tree depth of 5.

Table 2 provides a comparison of the sensitivity (Sen), speci-
ficity (Spe), accuracy (Acc), and area under the ROC curve
for the proposed model with the other available supervised
blood vessel segmentation methods. Accuracy comparisons
were performed using values from the respective manuscripts.
We found that our proposed model provided better segmen-
tation results than the alternative methods using the DRIVE
dataset. The average sensitivity and specificity of the pro-
posed model were 81.38% and 97.40%, respectively. Our
proposed model showed the highest accuracy (95.80%) and
ROC curve value (97.14%) among the compared models.

The proposed model was also evaluated using the STARE
image dataset. The accuracy of our proposed model was
95.20%. Although this was the second highest value, the dif-
ferences in accuracy among all the models were small. Sensi-
tivity and specificity of the proposed model were 72.50% and
98.08% respectively, with the highest sensitivity provided by
You et al.[8] (72.60%), and the highest specificity by Marin
et al. (98.19%).

The table also compares the performance of our proposed
model for automated segmentation of blood vessels with that
suggested by Fraz et al.[3] using the CHASE_DB1 dataset.
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The average accuracy of our proposed model was 97.10%,
which was more accurate, and the sensitivity and specificity
of the proposed model were also slightly higher than those
for the model published by Fraz et al.

Table 2. Performance of blood vessel segmentation models
using different image datasets

 

 

Methodology Dataset Sen Spe Acc ROC 

Proposed 
model 

DRIVE 0.8138 0.9740 0.9580 0.9714 

STARE 0.7250 0.9808 0.9520 0.9620 

CHASE_DB1 0.7516 0.9748 0.9710 0.9814 

Onal (2015) 

DRIVE 0.7980 0.9850 0.9484 0.9674 

STARE 0.7190 0.9760 0.9519 0.9590 

CHASE_DB1 - - - - 

Staal et al. [10] 

DRIVE - - 0.9442 0.9520 

STARE - - 0.9516 0.9614 

CHASE_DB1 - - - - 

Soares et  
al. [12] 

DRIVE - - 0.9466 0.9614 

STARE - - 0.9480 0.9671 

CHASE_DB1 - - - - 

Lili et al. [4] 

DRIVE 0.7760 - 0.9328 - 

STARE - - - - 

CHASE_DB1 - - - - 

You et al. [8] 

DRIVE 0.7410 0.9751 0.9434  - 

STARE 0.7260 0.9756 0.9497 - 

CHASE_DB1 - - - - 

Marin et al. [6] 

DRIVE 0.7067 0.9801 0.9452 0.9588 

STARE 0.6944 0.9819 0.9526 0.9769 

CHASE_DB1     

Niemeijer et 
al. [22] 

DRIVE 0.7145 - 0.9416 0.9294 

STARE - - - - 

CHASE_DB1 - - - - 

Fraz et al. [3] 

DRIVE - - - - 

STARE - - - - 

CHASE_DB1 0.7224 0.9711 0.9469 0.9712 

Salazar et  
al. [36] 

DRIVE - - 0.9412 - 

STARE - - 0.9441 - 

CHASE_DB1 - - - - 

 

The sensitivity of our proposed model with various settings
was also analyzed, and the results are shown in Table 3. Clas-
sification accuracy was improved after the morphological
operations and the optic disk removal process. Each method
was tested against a manually segmented region identified
by experts. The random forest classification method without
the morphological operations and the optic disk removal was
faster than our proposed method. However, the segmentation
accuracies of this classification method using images from
all three databases were lower than those for our proposed
method. As shown in Table 3, incorporating the optic disk
removal step increased the accuracy of the blood vessel seg-

mentation process by approximately 1.5% in all three image
datasets.

Table 3. Accuracy of our proposed model with various
settings

 

 

Methodology Database Sen Spe Acc ROC 

V1: Random 
forest 
classification 

DRIVE 0.7418 0.9114 0.8952 0.9234 

STARE 0.6784 0.9228 0.8719 0.9348 

CHASE_DB1 0.6986 0.9216 0.9004 0.9288 

V2: Version 1 and 
morphological 
operations 

DRIVE 0.7622 0.9392 0.9408 0.9566 

STARE 0.7042 0.9368 0.9402 0.9444 

CHASE_DB1 0.7246 0.9468 0.9524 0.9516 

V3: Version 2 and 
optic disk removal 

DRIVE 0.8138 0.9740 0.9580 0.9714 

STARE 0.7250 0.9808 0.9520 0.9620 

CHASE_DB1 0.7516 0.9748 0.9710 0.9814 

 

A statistical significant test using DeLong’s test[41] has also
been conducted to assess the significance of adding each
component. The result of pairwise comparison of all ROC
curves is presented in Table 4: the difference between the
areas, the standard error, the 95% confidence interval for the
difference and p-value. If p is less than the conventional 5%
(p < .05), the conclusion is that the each two compared areas
are significantly different.

4. DISCUSSION

In this study, we presented a new blood vessel and optic
disk segmentation approach that integrates wavelet- and
LBP-based texture information to extract blood vessels from
a colored fundus image using a random forest supervised
learning model. The main contribution of this model is that
it integrates an ensemble classification approach with dis-
criminant analysis using feature selection. An optic disk
removal process is also incorporated into the segmentation
process to increase the accuracy of the proposed segmenta-
tion scheme. The blood vessel structure is identified using
wavelet features and LBP local information, which exam-
ines the relationship between the central pixel of a cell and
its neighbors. Discriminant analysis is modified and used
for significant features selection to train the classification
model. The optic disk removal process is performed before
finalizing the blood vessel segmentation, as the edges of
the optic disk are undesirable during blood vessel segmen-
tation. Previously presented optic disk removal scheme has
been improved in this study by adding a template matching
algorithm to increase the accuracy of the blood vessel seg-
mentation. Compared with other segmentation approaches,
our proposed method achieves as good or higher blood vessel
segmentation accuracy. Optic disk removal process improves
the segmentation performance by approximately 1.5% in all
three image datasets.
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Table 4. Pairwise comparison of ROC curves
 

 

DRIVE 

V3~V2  V3~V1  V2~V1  

Difference between areas 0.0158 Difference between areas 0.0480 Difference between areas 0.0322 

Standard error 0.0482 Standard error 0.0363 Standard error 0.0500 

95% confidence interval 
0.165 to 
0.369 

95% confidence interval 
0.012 to 
0.225 

95% confidence interval 
-0.011 to 
0.062 

Significance level p = .038 Significance level p = .002 Significance level p = .460 

STARE 

V3~V2  V3~V1  V2~V1  

Difference between areas 0.0176 Difference between areas 0.0272 Difference between areas 0.0096 

Standard error 0.0250 Standard error 0.0381 Standard error 0.0780 

95% confidence interval 
0.008 to 
0.425 

95% confidence interval 
0.010 to 
0.436 

95% confidence interval 
-0.005 to 
0.012 

Significance level p = .033 Significance level p = .008 Significance level p = .700 

CHASE_DB1 

V3~V2  V3~V1  V2~V1  

Difference between areas 0.0298 Difference between areas 0.0526 Difference between areas 0.0228 

Standard error 0.0351 Standard error 0.0450 Standard error 0.0681 

95% confidence interval 
0.010 to 
0.925 

95% confidence interval 
0.043 to 
0.198 

95% confidence interval 
-0.013 to 
0.098 

Significance level p = .024 Significance level p = .001 Significance level p = .540 

 

For the optic disk segmentation, Table 1 indicates the results
of the performance of our proposed model using the DRIVE
image dataset compared with those of the other supervised
models. Our proposed model using low-pass filtering, FCM
clustering, and template matching provided the best perfor-
mance.

Sensitivity, specificity, accuracy, and ROC curves were used
to evaluate the effectiveness of our proposed model. As
shown in Table 2, the proposed model provided better sensi-
tivity, specificity, accuracy, and ROC curve values on images
from the DRIVE dataset. It was the second most accurate,
sensitive, and specific model on images from the STARE
dataset and showed the highest accuracy on images from the
CHASE_DB1 dataset. Thus, overall, our proposed model
provided as good or better accuracy than the other supervised
models tested on these datasets. A strong advantage of our
proposed model is that it offers a robust and computationally
efficient segmentation scheme for blood vessel extraction
using multiple datasets without retraining. Other advantages
of the model are that overfitting is not a problem, and it is
not overly sensitive to outliers in the training data during

the classification of the pixels because of the use of random
forest classification.

Although the proposed model achieves high accuracy on
blood vessel segmentation, there are a few limitations to the
model. One drawback is that performance depends on the
training datasets; therefore, the model would require a new
training dataset before it could be used on new datasets. An-
other limitation of our segmentation model is that although it
has been evaluated using publicly available DRIVE, STARE,
and CHASE_DB1 databases, the image resolution in these
datasets is limited; thus, better resolution would be required
to identify thinner vessels. In addition, these image datasets
are small, containing a total of only 88 images. To address
both of these limitations, we plan to acquire 200 color fun-
dus images using a better camera with higher resolution.
Currently the proposed model can be used as a supportive,
objective, and quantitative decision tool for assessment of
only those eye diseases involving blood vessels or the optic
disk. However, we plan to modify the model to include other
significant eye diseases that can be identified and diagnosed
using images of the retina.

Published by Sciedu Press 31



www.sciedupress.com/jbgc Journal of Biomedical Graphics and Computing 2016, Vol. 6, No. 1

REFERENCES
[1] Abràmoff M, Garvin M, Sonka M. Retinal imaging and image anal-

ysis. IEEE Reviews in Biomedical Engineering. 2010; 3: 169-208.
http://dx.doi.org/10.1109/RBME.2010.2084567

[2] Gelman R, Martinez-Perez ME, Vanderveen DK, et al. Diagnosis
of Plus Disease in Retinopathy of Prematurity Using Retinal Image
Multiscale Analysis. Investigative Ophthalmology & Visual Science.
2005; 46: 4734-4738. PMid: 16303973. http://dx.doi.org/10.
1167/iovs.05-0646

[3] Fraz MM, Remagnino P, Hoppe A, et al. An Ensemble Classification-
Based Approach Applied to Retinal Blood Vessel Segmentation.
IEEE Transactions on Biomedical Engineering. 2012; 59: 2538-2548.
PMid: 22736688. http://dx.doi.org/10.1109/TBME.2012.2
205687

[4] Lili X, Shuqian L. A novel method for blood vessel detection from
retinal images. Biomed Engineering Online. 2010.

[5] Lupascu CA, Tegolo D, Trucco E. Retinal Vessel Segmentation
using AdaBoost. IEEE Transactions on Information Technology
in Biomedicine. 2010; 14: 1267-1274. PMid: 20529750. http:
//dx.doi.org/10.1109/TITB.2010.2052282

[6] Marin D, Aquino A, Gegundez-Arias ME, et al. A New Supervised
Method for Blood Vessel Segmentation in Retinal Images by Using
Gray-Level and Moment Invariants-Based Features. IEEE Transac-
tions on Medical Imaging. 2011; 30: 146-158. PMid: 20699207.
http://dx.doi.org/10.1109/TMI.2010.2064333

[7] Osareh A, Shadgar B. Automatic Segmentation of Blood Vessels
in Colour Retinal Images using Spatial Gabor Filter and Multiscale
Analysis. 13th International Conference on Biomedical Engineering;
2008; 274-276p. Singapore.

[8] You X, Peng Q, Yuan Y, et al. Segmentation of retinal blood vessels
using the radial projection and semi-supervised approach. Pattern
Recognition. 2011; 44: 2314-2324. http://dx.doi.org/10.10
16/j.patcog.2011.01.007

[9] Ng J, Clay ST, Barman SA, et al. Maximum likelihood estima-
tion of vessel parameters from scale space analysis, Image and Vi-
sion Computing. Image and Vision Computing. 2010; 28: 55-63.
http://dx.doi.org/10.1016/j.imavis.2009.04.019

[10] Staal J, Abramoff MD, Niemeijer M, et al. Ridge-based vessel
segmentation in color images of the retina. IEEE Transactions on
Medical Imaging. 2004; 23: 501-509. PMid: 15084075. http:
//dx.doi.org/10.1109/TMI.2004.825627

[11] Fraz M, Remagnino P, Hoppe A, et al. Blood vessel segmentation
methodologies in retinal images – A survey. Computer Methods and
Programs in Biomedicine. 2012; 108: 407-433. PMid: 22525589.
http://dx.doi.org/10.1016/j.cmpb.2012.03.009

[12] Soares JV, Leandro JJ, Cesar Júnior RM, et al. Retinal vessel seg-
mentation using the 2-D Gabor wavelet and supervised classification.
IEEE Transactions on Medical Imaging. 2006; 25: 1214-22. PMid:
16967806. http://dx.doi.org/10.1109/TMI.2006.879967

[13] Zhang B, Zhang L, Karray F. Retinal vessel extraction by matched
filter with first-order derivative of Gaussian. Computers in Biol-
ogy and Medicine. 2010; 40: 438-445. PMid: 20202631. http:
//dx.doi.org/10.1016/j.compbiomed.2010.02.008

[14] Cinsdikici MG, Aydin D. Detection of blood vessels in ophthalmo-
scope images using MF/ant (matched filter/antcolony) algorithm.
Computer Methods and Programs in Biomedicine. 2009; 96: 85-95.
PMid: 19419790. http://dx.doi.org/10.1016/j.cmpb.2009
.04.005

[15] Kelvin P, Ghassan H, Rafeef A. Live-vessel: extending livewire for
simultaneous extraction of optimal medial and boundary paths in
vascular images. 10th International Conference on Medical Image
Computing and Computer-Assisted Intervention; 2007; Australia.

[16] Delibasis KK, Kechriniotis A, Tsonos C, et al. Automatic model-
based tracing algorithm for vessel segmentation and diameter estima-
tion. Computer Methods and Programs in Biomedicine. 2010; 100:
108-122. PMid: 20363522. http://dx.doi.org/10.1016/j.c
mpb.2010.03.004

[17] Sun K, Chen Z, Jiang S, et al. Morphological multiscale enhance-
ment, fuzzy filter and watershed for vascular tree extraction in an-
giogram. Medical Systems. 2010; 35: 811-824. PMid: 20703728.
http://dx.doi.org/10.1007/s10916-010-9466-3

[18] Al-Diri B, Hunter A, Steel D. An active contour model for segment-
ing and measuring retinal vessels. IEEE Transactions on Medical
Imaging. 2009; 28: 1488-1497. PMid: 19336294. http://dx.doi
.org/10.1109/TMI.2009.2017941

[19] Sum KW, Cheung PYS. Vessel extraction under non-uniform il-
lumination: a level set approach. IEEE Transactions on Biomed-
ical Engineering. 2008; 55: 358-360. PMid: 18232383. http:
//dx.doi.org/10.1109/TBME.2007.896587

[20] Xu Y, Geraud T, Najman L. Connected Filtering on Tree-Based
Shape-Spaces. IEEE Transactions on Pattern Analysis and Machine
Intelligence. 2015; 1-99. http://dx.doi.org/10.1109/tpami
.2015.2441070

[21] Perret B, Cousty J, Tankyevych O, et al. Directed Connected Opera-
tors: Asymmetric Hierarchies for Image Filtering and Segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence.
2015; 37: 1162-1176. PMid: 26357340. http://dx.doi.org/10.
1109/TPAMI.2014.2366145

[22] Niemeijer M, Staal JJ, Ginneken BV, et al. DRIVE: digital reti-
nal images for vessel extraction. 2004, Nov 15. Available from:
http://www.isi.uu.nl/Research/Databases/DRIVE

[23] Fraz MM, Basit A, Barman SA. Application of Morphological Bit
Planes in Retinal Blood Vessel Extraction. Digital Imaging. 2013;
26: 274-286. PMid: 22832895. http://dx.doi.org/10.1007/s
10278-012-9513-3

[24] Sinthanayothin C, Boyce JF, Cook HL, et al. Automated localisation
of the optic disk, fovea, and retinal blood vessels from digital colour
fundus images. British Journal of Ophthalmology. 1999; 83: 902-910.
PMid: 10413690. http://dx.doi.org/10.1136/bjo.83.8.90
2

[25] Chrástek R, Wolf M, Donath K, et al. Automated segmentation of the
optic nerve head for diagnosis of glaucoma. Medical Image Analysis.
2005; 9: 297-314. PMid: 15950894. http://dx.doi.org/10.10
16/j.media.2004.12.004

[26] Welfer D, Scharcanski J, Kitamura C, et al. Segmentation of the optic
disk in color eye fundus images using an adaptive morphological
approach. Computers in Biology and Medicine. 2010; 40: 124-137.
PMid: 20045104. http://dx.doi.org/10.1016/j.compbiome
d.2009.11.009

[27] Lowell J, Hunter A, Steel D, et al. Optic nerve head segmentation.
IEEE Transactions on Medical Imaging. 2004; 23: 256-264. PMid:
14964569. http://dx.doi.org/10.1109/TMI.2003.823261

[28] Salazar-Gonzalez A, Kaba D, Yongmin L, et al. Segmentation of
the Blood Vessels and Optic Disk in Retinal Images. IEEE Jour-
nal of Biomedical and Health Informatics. 2014; 18: 1874-1886.
PMid: 25265617. http://dx.doi.org/10.1109/JBHI.2014.2
302749

[29] Onal S, Adeshina A, Dabil-Karacal H. A machine Learning Ap-
proach to Improve the Diagnosis of Diabetic Retinopathy Using Fun-
dus Image. 2015 IIE- Industrial and Systems Engineering Research
Conference; 2015; Nashville, TN.

[30] Perona P, Malik J. Scale-space and edge detection using anisotropic
diffusion. IEEE Trans. Pattern Anal. Machine Intell. 1990; 12: 629-
639. http://dx.doi.org/10.1109/34.56205

32 ISSN 1925-4008 E-ISSN 1925-4016

http://dx.doi.org/10.1109/RBME.2010.2084567
http://dx.doi.org/10.1167/iovs.05-0646
http://dx.doi.org/10.1167/iovs.05-0646
http://dx.doi.org/10.1109/TBME.2012.2205687
http://dx.doi.org/10.1109/TBME.2012.2205687
http://dx.doi.org/10.1109/TITB.2010.2052282
http://dx.doi.org/10.1109/TITB.2010.2052282
http://dx.doi.org/10.1109/TMI.2010.2064333
http://dx.doi.org/10.1016/j.patcog.2011.01.007
http://dx.doi.org/10.1016/j.patcog.2011.01.007
http://dx.doi.org/10.1016/j.imavis.2009.04.019
http://dx.doi.org/10.1109/TMI.2004.825627
http://dx.doi.org/10.1109/TMI.2004.825627
http://dx.doi.org/10.1016/j.cmpb.2012.03.009
http://dx.doi.org/10.1109/TMI.2006.879967
http://dx.doi.org/10.1016/j.compbiomed.2010.02.008
http://dx.doi.org/10.1016/j.compbiomed.2010.02.008
http://dx.doi.org/10.1016/j.cmpb.2009.04.005
http://dx.doi.org/10.1016/j.cmpb.2009.04.005
http://dx.doi.org/10.1016/j.cmpb.2010.03.004
http://dx.doi.org/10.1016/j.cmpb.2010.03.004
http://dx.doi.org/10.1007/s10916-010-9466-3
http://dx.doi.org/10.1109/TMI.2009.2017941
http://dx.doi.org/10.1109/TMI.2009.2017941
http://dx.doi.org/10.1109/TBME.2007.896587
http://dx.doi.org/10.1109/TBME.2007.896587
http://dx.doi.org/10.1109/tpami.2015.2441070
http://dx.doi.org/10.1109/tpami.2015.2441070
http://dx.doi.org/10.1109/TPAMI.2014.2366145
http://dx.doi.org/10.1109/TPAMI.2014.2366145
http://www.isi.uu.nl/Research/Databases/DRIVE
http://dx.doi.org/10.1007/s10278-012-9513-3
http://dx.doi.org/10.1007/s10278-012-9513-3
http://dx.doi.org/10.1136/bjo.83.8.902
http://dx.doi.org/10.1136/bjo.83.8.902
http://dx.doi.org/10.1016/j.media.2004.12.004
http://dx.doi.org/10.1016/j.media.2004.12.004
http://dx.doi.org/10.1016/j.compbiomed.2009.11.009
http://dx.doi.org/10.1016/j.compbiomed.2009.11.009
http://dx.doi.org/10.1109/TMI.2003.823261
http://dx.doi.org/10.1109/JBHI.2014.2302749
http://dx.doi.org/10.1109/JBHI.2014.2302749
http://dx.doi.org/10.1109/34.56205


www.sciedupress.com/jbgc Journal of Biomedical Graphics and Computing 2016, Vol. 6, No. 1

[31] Canny J. Computational Approach To Edge Detection. IEEE Transac-
tion on Pattern Analysis and Machine Intelligence. 1986; 8: 679-698.
http://dx.doi.org/10.1109/TPAMI.1986.4767851

[32] He DC, Wang L. Texture Unit, Texture Spectrum, And Texture Analy-
sis. IEEE Transactions on Geoscience and Remote Sensing. 1990; 28:
509-512. http://dx.doi.org/10.1109/TGRS.1990.572934

[33] Nguyen TT, Huang JZ, Nguyen TT. Unbiased feature selection in
learning random forests for high-dimensional data. ScientificWorld-
Journal. 2015; 2015: 471371. PMid: 25879059. http://dx.doi.o
rg/10.1155/2015/471371

[34] Breiman L. Random Forest. Machine Learning. 2001; 45: 5-32.
http://dx.doi.org/10.1023/A:1010933404324

[35] Bezdek JC. Pattern recognition with fuzzy objective function algo-
rithms. Kluwer Academic Publishers; 1981. http://dx.doi.org
/10.1007/978-1-4757-0450-1

[36] Hoover AD, Kouznetsova V, Goldbaum M. Locating blood vessels
in retinal images by piecewise threshold probing of a matched filter
response. IEEE Transactions on Medical Imaging. 2000; 19: 203-210.
PMid: 10875704. http://dx.doi.org/10.1109/42.845178

[37] Retinal Image Database. 2011, May 1. Available from: http:
//blogs.kingston.ac.uk/retinal/chasedb1/

[38] Zeng Y, Samaras D, Chen W, et al. Topology cuts: A novel min-
cut/max-flow algorithm for topology preserving segmentation in N-D
images. Computer Vision and Image Understanding. 2008; 112: 81-
90. http://dx.doi.org/10.1016/j.cviu.2008.07.008

[39] Boykov Y, Funka-Lea G. Graph Cuts and Efficient N-D Image Seg-
mentation. International Journal of Computer Vision. 2006; 70: 109-
131. http://dx.doi.org/10.1007/s11263-006-7934-5

[40] Niemeijer M, Abr‘amoff MD, Ginneken BV. Segmentation of the op-
tic disk, macula and vascular arch in fundus photographs. IEEE Trans-
actions on Medical Imaging. 2007; 26: 116-127. PMid: 17243590.
http://dx.doi.org/10.1109/TMI.2006.885336

[41] DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas
under two or more correlated receiver operating characteristic curves:
a nonparametric approach. Biometrics. 1988; 44: 837-845. PMid:
3203132. http://dx.doi.org/10.2307/2531595

Published by Sciedu Press 33

http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1109/TGRS.1990.572934
http://dx.doi.org/10.1155/2015/471371
http://dx.doi.org/10.1155/2015/471371
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/978-1-4757-0450-1
http://dx.doi.org/10.1007/978-1-4757-0450-1
http://dx.doi.org/10.1109/42.845178
http://blogs.kingston.ac.uk/retinal/chasedb1/
http://blogs.kingston.ac.uk/retinal/chasedb1/
http://dx.doi.org/10.1016/j.cviu.2008.07.008
http://dx.doi.org/10.1007/s11263-006-7934-5
http://dx.doi.org/10.1109/TMI.2006.885336
http://dx.doi.org/10.2307/2531595

	Introduction
	Method
	Image pre-processing
	Segmentation framework
	Feature extraction
	Classification
	Identification of the optic disk


	Results
	Image dataset descriptions
	Evaluation experiments and statistical analysis

	Discussion

