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Abstract
Objective: To propose and demonstrate using Bland-Altman plots and Limits of Agreement based on the relative difference
(RD) in solid tumor measurements to assess agreement.
Methods: A modification to the Bland-Altman plot which involves replacing the difference plotted on the vertical axis with
the relative percent difference between two measurements of tumor burden is discussed. Quantifying tumor burden requires
summing skewed individual tumor measurements. This quantity is the same one used in assessing tumor response to therapeutic
agents and is familiar to radiologists and clinicians working with cancer patients. The distribution of the relative difference is
explored and revised equations for the limits of agreement are presented. The methods are then applied to positron emission
tomography data studying two radiotracers.
Results: The distribution of the relative difference is highly skewed and can be approximated by a negative shifted lognormal
distribution. The limits of agreement for the RD need to appropriately reflect this distribution. The standard equations for the
95% limits of agreement assume the differences are approximately normally distributed and may not be appropriate for the
relative difference.
Conclusions: The modified Bland-Altman plot is based on a clinically meaningful quantity and provides a method for handling
data with multiple lesions per patient.
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1 Introduction

Serial measurements of solid tumors are used to gauge
whether a tumor is responding to an anti-cancer therapeu-
tic agent when managing a patient’s care and testing new
treatments in clinical trials. This assessment is frequently
done based on change in tumor burden as seen on func-
tional or metabolic imaging. Under guidelines established
for response evaluation in solid tumors using functional
imaging (RECIST), the relative percent difference (RD) be-
tween tumor size measured at a baseline, pre-treatment time
and a follow-up time after treatment has commenced is

calculated.[1, 2] Other recommendations for evaluating re-
sponse in solid tumors using metabolic imaging with 2-
[18 F]Fluoro-2-deoxyglucose positron emission tomogra-
phy (FDG-PET) have suggested using the RD to quantify
tumor response.[3] Because patients with aggressive forms
of cancer may have multiple tumors, a patient-level assess-
ment of tumor burden requires evaluating a composite form
of individual tumors. The RECIST criterion, for example,
stipulates that up to five tumors be measured and the sums
of their dimensions at baseline and follow-up, respectively,
should be used in calculating RD. Because small changes in
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the RD have the potential to affect early-phase clinical trial
outcomes and patient treatment, ensuring tumor measure-
ments are reproducible is crucial.[4–6]

Bland-Altman plots and 95% limits of agreement (LoA)
are frequently used to evaluate the reproducibility of solid
tumor measurements on functional and metabolic imaging
across readers or “techniques” such as tracers, reconstruc-
tion algorithms, or machinery.[6–13] The Bland-Altman plot
is typically constructed by plotting the simple difference be-
tween two measurements, d, by the mean of the measure-
ments. The 95% LoA are constructed under the assumption
that the differences are approximately normally distributed.
They are defined as d̄ ± 1.96s, where d̄ is the average dif-
ference and s is the standard deviation of d[14, 15] and are
usually included on the Bland-Altman plot. One concludes
that the inter- or intra-observer agreement is acceptable if
the differences within the LoA are not clinically important.

Although d is the most commonly used measure of dis-
tance, across applications, including those in the radiology
literature, there is variation in how the Bland-Altman plots
and LoA are constructed in terms of how the difference is
quantified. Here we suggest basing Bland-Altman plots and
the LoA on RD when evaluating agreement between tumor
measurements. Because this quantity is regularly used to
make clinical decisions, an analysis based on RD is eas-
ily interpreted by radiologists and clinicians involved with
imaging cancer patients. The difficulty, however, lies in ap-
propriately constructing LoA when using the percent dif-
ference between sums of tumor measurements to quantify
change instead of the simple difference. The RD is a ratio
of a numerator and denominator that are correlated and are
themselves sums of correlated measurements that in practice
frequently do not have a symmetric distribution consistent
with the normal distribution. Below we discuss the method-
ology and demonstrate its application to an analysis of data
collected on prostate cancer patients imaged with positron
emission tomography (PET) using two different radiotrac-
ers.

2 Illustrative data example
Although FDG is the most widely used radiotracer for as-
sessing therapy response,[16] there are other radiotracers
available that could be used for this purpose. Fox and col-
leagues studied patients with progressive prostate cancer
who had multiple metastatic bone and soft-tissue lesions.[17]

They highlight that there is a need to standardize imag-
ing analysis of lesions to allow lesions to be appropriately
tracked. Part of this process entails looking at agreement
in measurements made using different tracers. High repro-
ducibility between radiotracers not only ensures compara-
bility across studies, but would theoretically also allow ra-
diotracers to be switched in the course of following a single
patient.

In their study, each patient was imaged with PET/CT us-
ing two different radiotracers, FDG and 18F-16β-fluoro-
dihydrotestosterone (FDHT) within a 24-hour window in
order to study the reproducibility of the measurements be-
tween the two radiotracers. This study was approved by the
Memorial Sloan Kettering Cancer Center Institutional Re-
view Board (MSKCC IRB). Written informed consent was
obtained for all subjects. The consent procedure was ap-
proved by the MSKCC IRB. Details of the data collection,
image acquisition, co-registration of the scans from the two
tracers, and PET images showing the uptake of the two ra-
diotracers have been published previously.[17]

We will use this data to illustrate the methods described
below. We have data available on the maximal standard-
ized uptake value SUVmax measurements for FDG-PET and
FDHT-PET on 167 lesions in 42 patients. The number of le-
sions per patient ranges from one to sixteen.

3 Methods
3.1 Definition of the relative difference

In general, a patient may have multiple lesions, and we de-
note these by l with l = 1,. . . ,ni where ni is the number of
the lesions for the ith patient and N is the total number of
patients. For each lesion there are two measurements, X1
and X2, (for instance representing two radiotracers, radiol-
ogists, or other conditions being evaluated). Thus, a patient
has ni pairs, (X1il, X2il), where the pairs may be correlated
within patient. Using the same approach that is taken in clin-
ical practice and is suggested by RECIST, the relative differ-
ence in total measured tumor burden between the replicated
measurements is calculated by summing up tumor measure-
ments within patients separately for X1 and X2 and then
taking the relative difference between these summed quan-
tities. That is, we sum across the lesions within a patient
so that each patient has only a single number quantifying
(total) tumor burden for a given method. The relative dif-
ference in tumor burden for the ith patient is then defined
as:

RDi = 100×
∑ni

l=1X1l −
∑ni

l=1X2l∑ni

l=1X1l
(1)

In the case where there is only a single lesion for a patient,
this definition still holds; the sums are simply replaced by
the single tumor measurement.

3.2 Distribution of the relative difference in tumor
measurements

In order to work with the RD and produce a Bland-Altman
plot that includes LoA we need to know the distribution of
the RD. In practice, we have found that tumor measurements
tend to have a skewed distribution that is not consistent with
a normal distribution but is more characteristic of a lognor-
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mal distribution. In this case, the RD is a function of the
ratio of summands of correlated lognormal measurements
and is not normally distributed. That is, the measurements
made by the same method on the different lesions within a
patient are correlated, the measurements made by the two
different methods on the same lesion are also correlated,
and these measurements are components of sums that ap-
pear both in the numerator and the denominator of a ratio
inducing another level of correlation that needs to be taken
into account. Identifying the appropriate distribution upon
which to base the LoA poses a challenge that has not been
directly addressed in the literature previously.

Assuming tumor measurements follow a lognormal distri-
bution, calculating the RD as we described results in sums
of correlated lognormal random variables in both the nu-
merator and denominator of RD. In this case, there is no
closed form analytic expression for the distribution of the
RD. It is a well-known fact that the distribution of the sum
of lognormal random variables does not have a closed form
expression. Multiple papers have discussed this point and
proposed ways to work with this sum.[18–20] One widely
used result is that the distribution of this sum can be ap-
proximated by a lognormal random variable. The Fenton-
Wilkonson approximation, developed for the case when the
summands are independent, is frequently used to approxi-
mate the mean and variance of this distribution by matching
the first two moments of the distribution of the sum with
the first two moments of the approximating single lognor-
mal distribution.[18] This work was extended by Abu-Dayya
and Beaulieu[21] to accommodate correlated summands and
later by Ligeti[22] to show that the distribution of the ratio
of correlated sums of lognormals is well-approximated by a
lognormal distribution. Hence, in accordance with this pre-
vious work, the distribution of the RD can be approximated
by a negative shifted lognormal distribution.

3.3 Bland-Altman plots and limits of agreement

A Bland-Altman plot based on the RD consists of a single
point for each patient with RDi plotted against the patient’s
average tumor burden,

Avgi = 1
2

(
ni∑
l=1

X1il +
ni∑
l=1

X2il

)
(2)

To obtain LoA, we:

(1) Define Y to be the normalizing transformation of RD.
Calculate it for each patient as:

Yi = ln
(

1− RDi

100

)
(3)

where ln is the natural logarithm.
(2) Calculate the sample mean and standard deviation of

Y ,

ȳ = 1
N

N∑
i=1

yi (4)

and

sd =

√√√√ 1
N − 1

N∑
i=1

(yi − ȳ)2 (5)

(3) The 95% LoA of RD are then:

100× (1− eȳ±1.96sd) (6)

3.4 Relationship between the relative difference
and tumor size

In some applications, the level of agreement may be a func-
tion of lesion size causing the RD to vary in a systematic
way with the average tumor burden. For instance, if small
lesions are more difficult to measure, we may see better
agreement for larger lesions. This would be noticeable on
the Bland-Altman plot by a larger spread of the RD as tu-
mor burden increased. The formula for the LoA given above
may be too wide for patients with small tumor burden and
too wide for patients with a larger tumor burden.

In this situation, we can use linear regression to obtain LoA
that vary with tumor burden. We fit the regression model:

Y = α0 + α1Avg + ε (7)

obtain estimates of the regression coefficients which we
write as α̂0 and α̂1 and an estimate of the square root of
variance of the random error, denoted as σ̂. The LoA ad-
justed for average tumor burden are then:

100× (1− eα̂0+α̂1Avg±1.96σ̂) (8)

To determine whether it is necessary to use the LoA based
on a regression model as opposed to using the constant LoA
detailed above, beyond examining the Bland-Altman plot
for a noticeable trend, we can test whether α1 is signifi-
cantly different from zero. If it is, then this would aid in sug-
gesting that the agreement between measurements depends
on the size of the measurements and the regression-based
LoA should be used.[23] We have also found, however, that
if this approach is used when agreement does not substan-
tially depend on the size of the measurements, the resulting
regression-based LoA may be a poor fit for the data.

4 Simulation study
We conducted a simulation study in order to explore how
well the approach we outline above estimates the LoA. We
generated N = 25, 50, and 100 observations or “patients”
from a multivariate lognormal distribution (X1i, X2i)T
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~MLVN ((µ1, µ2)T ,
∑
σx), where X1i and X2i were al-

lowed to be vectors of length ni = 3, 5, or 10 representing
the number of lesions measured. µ1 and µ2, the distribution
means, are vectors of the same length as the corresponding
X1i andX2i. We based the parameter distribution values on
previous studies done in patients with non-small-cell lung
cancer where the average tumor measurement was between
34 mm and 37 mm and the standard deviation of the tu-
mor measurements ranged from 16 mm to 20 mm.[11, 13] We
show results for when the component values of µ1 and σ1
are fixed at 35 and 16, respectively. We allowed the values
of µ2 to vary from between 35 to 25, and the values of σ2
to vary from between 16 to 19. We chose the covariance be-
tween X1i and X2i in order to give relatively high values of
correlation, ρ between X1i and X2i, as would be expected
in comparing two different measurements of the same tu-
mor, and show results for when ρ is 0.5 and 0.9. Shown
are results for when the correlation between X1ij and X1ik,
and similarly X2ij and X2ik, j 6= k, is equal 0.1. Results
for when this correlation is larger do not vary substantively
from what is shown.

All simulations were performed 1,000 times. Because we
needed an automated algorithm for the simulations, for each
generated dataset, a linear regression was fit. If the slope of
the fitted line was significantly different from 0, the regres-
sion approach to the LoA was used. Otherwise, the constant
LoA were used. We present the average proportion of data
that falls outside the upper and lower limits across the 1,000
simulations.

For comparison we also evaluate what happens if the log-
normal distribution of the RD is ignored and the LoA are
estimated assuming it is normally distributed (i.e. RD ±
1.96sRD) where RD is the mean relative difference and
sRD is the standard deviation of the relative differences.

Table 1 shows results for when there is a moderate amount
of agreement between the two measurements and Table 2
shows results for when there is a high amount of agreement
between the two measurements. Ideally we would expect to
see 0.025 of the data falling above the upper LoA and 0.025
of the data falling below the lower LoA. For larger sam-
ple sizes, the approximated distribution of the RD appears
to serve as a good basis for constructing LoA. For smaller
sample sizes it does not work quite as well. At least in part,
this is simply a function of the difficulty with constructing
the LoA using small samples. For instance, with N = 25
we want 95% of the data points to lie within the 95% LoA
which leaves 1 data point (25×0.05 = 1.25) to lie outside
the LoA, either above the upper limit or below the lower
limit. In comparison, the LoA naively constructed using the
normal LoA, while on average including 95% of the data
within the LoA, uniformly include too much data within the
upper limit and leave too little data out of the lower limit.
This performance is a result of the fact that the limits based
on the normal distribution are necessarily symmetric around

the average RD. For a fixed sample size, N , changing the
number of lesions that are measured on each subject does
not appear to affect the performance of the LoA.

5 Illustrative data example results
Using the illustrative PET data example, Figures 1a and 1b
show plots of the SUVmax measurements made on the in-
dividual lesions by FDG-PET and FDHT-PET. They both
depict measurements that are skewed to the right. In con-
trast in Figure 1c, when the measurements are aggregated
and RD is calculated at the patient-level, the distribution is
skewed to left and clearly does not follow a normal distri-
bution. In Figure 1d, the transformed variable, Y , is plotted
and depicts a distribution that more closely follows a normal
distribution.

Figure 1: FDG-PET and FDHT-PET measurements
Histograms showing the distribution of the lesion: (a) SUVmax

measurements for FDG-PET, (b) SUVmax measurements for
FDHT-PET and the patient-level, (c) relative difference (%), and
(d) normalized relative difference, Y , between the two tracers.

Figure 2 contains a Bland-Altman plot of this data which
includes the 95% LoA. The mean RD, -52.8%, is shown by
the thick, solid, black line. The 95% LoA calculated us-
ing the formula above, (-382.1%, 68.7%), are shown by the
thick, dashed, black lines. They suggest that the relative
difference in patient tumor burden between most pairs of
FDG-PET and FDHT-PET SUVmax measurements taken at
essentially the same time will fall within this range.

Although there are no standard thresholds defining response
categories for metabolic imaging in the same way that RE-
CIST defines response thresholds for functional imaging, it
has been suggested that a decrease of 30% in serial SUV
measurements from FDG-PET indicates that a patient is
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having a partial response to treatment.[3, 9] Figure 2 demon-
strates a clear lack of agreement between FDG-PET and
FDHT-PET. It shows, for instance, that a patient with no
real change in their tumor burden had a seemingly substan-

tial decrease in metabolic activity with an SUVmax decreas-
ing by over 380% due to changing the radiotracer from FDG
to FDHT.

Table 1: Limits of agreement for moderate correlation between measurements
 

 

N 
Number 
of lesions 

µ1 σ1 
Average 
RD 

Proportion of data outside 95% LoA 
Lognormal Normal 

Lower Upper  Lower Upper 

25 3 

35 18.7  -5.3 0.021 0.022 0.044 0.003 

34 18.7  -2.3 0.020 0.021 0.042 0.003 

34 16.6  -2.7 0.021 0.022 0.043 0.002 

25 16.6 25.6 0.021 0.022 0.043 0.002 

25 5 

35 18.7  -3.8 0.020 0.020 0.039 0.005 

34 18.7  -0.4 0.021 0.021 0.040 0.004 

34 16.6  -1.2 0.022 0.022 0.040 0.005 

25 16.6 26.5 0.022 0.021 0.043 0.003 

25 10 

35 18.7  -2.5 0.020 0.022 0.036 0.007 

34 18.7   0.6 0.021 0.022 0.038 0.007 

34 16.6   0.5 0.020 0.021 0.036 0.007 

25 16.6 27.3 0.020 0.022 0.039 0.005 

50 3 

35 18.7  -5.3 0.023 0.022 0.044 0.002 

34 18.7  -2.1 0.023 0.023 0.044 0.002 

34 16.6  -2.6 0.022 0.023 0.042 0.002 

25 16.6 25.8 0.023 0.023 0.045 0.001 

50 5 

35 18.7  -3.7 0.023 0.023 0.041 0.004 

34 18.7  -0.7 0.023 0.023 0.043 0.004 

34 16.6  -1.0 0.023 0.023 0.040 0.005 

25 16.6 26.6 0.023 0.024 0.043 0.003 

50 10 

35 18.7  -2.5 0.024 0.022 0.040 0.007 

34 18.7   0.4 0.023 0.024 0.038 0.006 

34 16.6   0.2 0.023 0.023 0.039 0.007 

25 16.6 27.3 0.023 0.024 0.041 0.004 

100 3 

35 18.7  -5.4 0.024 0.025 0.043 0.002 

34 18.7  -1.9 0.024 0.024 0.045 0.002 

34 16.6  -2.6 0.024 0.023 0.042 0.002 

25 16.6 25.9 0.023 0.025 0.045 0.001 

100 5 

35 18.7  -3.6 0.024 0.024 0.041 0.004 

34 18.7  -0.7 0.024 0.024 0.043 0.004 

34 16.6  -0.8 0.024 0.024 0.041 0.004 

25 16.6 26.6 0.023 0.025 0.043 0.002 

100 10 

35 18.7  -2.5 0.024 0.024 0.039 0.007 

34 18.7   0.5 0.024 0.024 0.040 0.006 

34 16.6   0.3 0.024 0.024 0.038 0.007 

25 16.6 27.3 0.024 0.025 0.041 0.004 

Note. The average proportion of data outside of the 95% LoA across 1,000 simulations is shown for measurements generated from several different 
lognormal distributions all with ρ = cor(Y1i, Y2i) = 0.5, μଵ்  = 35T and σ1 = 18.7. The lognormal LoA are calculated assuming individual tumor 
measurements follow a lognormal distribution and approximate the distribution of RD with a lognormal distribution. The normal LoA are calculated 
assuming RD follows a normal distribution. 
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For comparison, the grey, solid lines demonstrate what
would happen to the estimates of the LoA had we used the
original normal-based equations for the LoA. The resulting
interval, (-251.0%, 145.4%), is markedly different particu-
larly at the upper bound of the interval which overestimates
the increase we would expect to see even if there were no

difference in the lesions. This reflects the results from the
simulation study; a symmetric interval is not appropriate for
data with a skewed distribution.

In this application, the level of agreement does not vary sys-
tematically with tumor burden. The regression-based LoA
shown in Figure 2 appear too wide for the data.

Table 2: Limits of agreement for high correlation between measurements
 

 

N 
Number 
of lesions 

µ1 σ1 
Average 
RD 

Proportion of data outside 95% LoA 
Lognormal Normal 

Lower Upper  Lower Upper 

25 3 

35 18.7  -1.5 0.022 0.022 0.036 0.008 

34 18.7   1.7 0.021 0.021 0.033 0.009 

34 16.6   0.6 0.023 0.021 0.035 0.008 

25 16.6 28.8 0.022 0.021 0.036 0.007 

25 5 

35 18.7  -1.5 0.021 0.022 0.035 0.010 

34 18.7   1.6 0.021 0.021 0.033 0.009 

34 16.6   1.0 0.020 0.021 0.033 0.010 

25 16.6 28.5 0.022 0.021 0.038 0.007 

25 10 

35 18.7  -1.4 0.020 0.021 0.034 0.010 

34 18.7   1.5 0.021 0.020 0.033 0.009 

34 16.6   1.3 0.022 0.021 0.035 0.009 

25 16.6 28.1 0.022 0.022 0.036 0.008 

50 3 

35 18.7  -1.7 0.024 0.024 0.037 0.009 

34 18.7   1.4 0.023 0.023 0.036 0.009 

34 16.6   0.6 0.024 0.023 0.037 0.010 

25 16.6 28.8 0.023 0.024 0.039 0.007 

50 5 

35 18.7  -1.6 0.023 0.023 0.035 0.010 

34 18.7   1.6 0.023 0.023 0.036 0.010 

34 16.6   1.0 0.024 0.023 0.036 0.010 

25 16.6 28.6 0.023 0.024 0.038 0.007 

50 10 

35 18.7  -1.3 0.023 0.022 0.035 0.010 

34 18.7   1.8 0.024 0.023 0.036 0.009 

34 16.6   1.5 0.023 0.024 0.036 0.010 

25 16.6 28.2 0.022 0.024 0.037 0.008 

100 3 

35 18.7  -1.6 0.024 0.023 0.037 0.009 

34 18.7   1.5 0.024 0.024 0.037 0.010 

34 16.6   0.7 0.025 0.024 0.038 0.010 

25 16.6 28.8 0.023 0.025 0.039 0.006 

100 5 

35 18.7  -1.4 0.024 0.024 0.037 0.011 

34 18.7   1.6 0.024 0.024 0.037 0.010 

34 16.6   1.0 0.024 0.024 0.036 0.010 

25 16.6 28.5 0.024 0.024 0.039 0.007 

100 10 

35 18.7  -1.4 0.024 0.024 0.036 0.011 

34 18.7   1.7 0.024 0.024 0.036 0.010 

34 16.6   1.4 0.024 0.024 0.036 0.010 

25 16.6 28.3 0.023 0.025 0.037 0.008 

Note. The average proportion of data outside of the 95% LoA across 1,000 simulations is shown for measurements generated from several different  

lognormal distributions all with ρ = cor(Y1i, Y2i) = 0.9, μଵ்  = 35T and σ1 = 18.7. The lognormal LoA are calculated assuming individual tumor 
measurements follow a lognormal distribution and approximate the distribution of RD with a lognormal distribution. The normal LoA are calculated 
assuming RD follows a normal distribution. 

6 ISSN 1925-4008 E-ISSN 1925-4016



www.sciedu.ca/jbgc Journal of Biomedical Graphics and Computing 2015, Vol. 5, No. 2

Figure 2: Bland-Altman plot for patient tumor burden with
PET data
A Bland-Altman plot evaluating the agreement between SUVmax

measurements from FDG- PET and FDHT-PET for total patient
tumor burden. The solid, thick line shows the mean RD of -52.8%
between the two measurements. The thick, dashed lines show the
constant lognormal 95% LoA, (-382.1%, 68.7%). The thin, solid
line reflects the regression-based LoA based on the fitted
regression line Y =.04 + 0.006Avg. The grey dashed-dotted lines
demonstrate the estimated 95% LoA incorrectly calculated
assuming RD is normally distributed.

6 Discussion
A critical point when interpreting Bland-Altman plots and
the LoA is gauging how far apart measurements can be be-
fore it is decided that there is not sufficient agreement be-
tween the measurements. Statisticians can easily produce
Bland-Altman plots of absolute change and simple differ-
ences, but may have difficulty providing guidance on what
constitutes acceptable agreement to their radiology collabo-
rators particularly when talking about differences in tumor
measurements on the absolute scale. As Bland and Alt-
man point out, this is not a statistical question but a clini-
cal one.[23] A key feature of our approach is the use of a
relative difference metric that has long become standard of
clinical care. Using a Bland-Altman plot and LoA based
on the RD to evaluate agreement between solid tumor mea-
surements allows inter- and intra-observer variability to be
assessed with a clinically meaningful quantity and may fa-
cilitate interpretation. Furthermore, it provides a method for
handling multiple lesions measurements per patient and an-
alyzing data on a patient-level basis. It has not previously
been clear how to use this metric for evaluating agreement
in solid tumor measurements.

Using the RD for evaluating reproducibility and reliability
is not an entirely novel suggestion. Others have published
papers looking at the agreement in tumor measurements by

plotting the RD in place of the simple difference in Bland-
Altman plots.[8, 11, 13, 24] This approach, however, is far from
consistently used and computation of the LoA has not re-
flected the skewed distribution of the RD.

To our knowledge, there is no literature discussing the dis-
tribution of the RD in tumor burden, and certainly no prior
work describing how to construct appropriate LoA for it.
This is true both for the case when all patients contribute
a single lesion to the analysis and when patients may con-
tribute multiple lesions, however the latter is of more clin-
ical interest and presents a bigger methodological chal-
lenge. Instead of keeping the multiple within-patient mea-
surements separate as has been done previously in the sta-
tistical literature,[23] the RD collapses the data into one mea-
surement per patient posing a methodological challenge that
has not previously been addressed.

It is important to note that this metric has some undesirable
properties, such as lack of symmetry with respect to X1 and
X2. While in some cases there may be a particular reason
to chose one method of measurement as X1 and another as
X2, in other cases there are not, and the values of the RD
and the LoA may differ based on how X1 and X2 are as-
signed. For instance, in the PET data we described we have
a specific reason for choosing FDG-PET to be X1. FDG,
while not truly a “reference standard” in the sense that its
use with PET is not considered a definitive test, is what is
commonly used in practice and is the standard tracer used
with PET. FDHT is newer and not commonly used. Hence,
interest lies in evaluating tumor measurements made with
the new tracer relative to the existing one. In contrast, if we
were evaluating inter-reader agreement between two radiol-
ogists, there may be no particular reason why one radiolo-
gist should be chosen over the other to be assigned as X1.
This could potentially give rise to situations where there is
a substantive difference depending on how X1 is assigned.
We recommend examining the RD and the LoA when one
measurement method is assigned to beX1 and a second time
when the second measurement method is assigned to be X1
to check for marked differences.

We noticed in our applications that level of agreement is
sometimes a function of lesion size. This is sensible from
a clinical standpoint; it has always been difficult to accu-
rately image and evaluate small lesions. We incorporated
regression methods to adjust our analysis of agreement for
size. Despite the fact that such regression adjustments have
long been a part of statistical literature, it appears that they
have not been embraced by the radiology community since
we have not seen them in our review of clinical publications
reporting on agreement.
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