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Abstract 
Clinical practice guidelines were developed by the professional organizations to provide standards of safe, effective, 
appropriate, equitable, affordable diagnostic and therapeutic care to promote the best yield at the least cost; to the patient, 
payers, health care professionals as well as to the healthcare system. One major objective of these guidelines is to prevent 
serious and/or harmful events in the course of disease. From a process analysis standpoint, such events are considered 
“errors” and should be investigated in accordance with the guidelines and tools for accident investigation. These tools 
include Process Mapping, Root-Cause Analysis, Influence Diagrams and Predictive Modeling methodology. The 
underlying principle is that all biologic environments are complex environments, involving a multitude of individual 
processes following multiple pathways and under the influence of numerous factors at multiple levels; as opposed to a 
single-axis main process line of the Ishikawa diagram. Process mapping mandates a thorough understanding of the multi- 
linear, inter-dependent and overlapping pathways involved in the genesis and maintenance of disease. Through this 
approach, the impact of various factors on the end-result can be more adequately assessed. More robust utilization of 
registry data is essential for comprehensive and complete data collection and organization. A probability-based predictive 
model may be best suited to incorporate all relevant factors, including others recognized in the future. 
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1 Background 
Among the provisions of the Affordable Care Act of 2010 is an increased emphasis on improving the Quality of 
healthcare. This legislation provides recommendations for efforts towards improving: 

 The safety of clinical decisions, both diagnostic and interventional; by improving outcomes in terms of 
mortality and morbidity and reducing medical errors. 

 The effectiveness of the healthcare system; by reducing redundancy and waste and optimizing the allocation of 
resources. 

 The appropriateness of healthcare decisions; by improving the indications and the selection of diagnostic and 
therapeutic measures. 
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 The equitability and accessibility of healthcare delivery to different segments of the population across different 

geographic and socioeconomic strata. 

Hence, the “Health Information Technology for Economic and Clinical Health (HITECH) Act” has been introduced with 

the aim of providing support and incentives to promoting healthcare information technology solutions geared towards 

achieving the above-mentioned goals of improving the quality of healthcare. The objective is to foster the implementation 

of the bioinformatics tools and applications in improving healthcare decision-making, on the individual clinician level as 

well as on the regional or national healthcare system level. 

2 Primo non nocere (Do No Harm) 
The governing organizations for different areas of medical practice (such as Colleges, Boards and Societies) have had a 

long tradition in maintaining the professional standards that ensure the safety, effectiveness and appropriateness of clinical 

decisions through issuing Position Statements and Practice Guidelines. The ultimate objective of these regulations is to 

protect the general public from harm, which may result from inappropriate, ineffective or unnecessary diagnostic and/or 

therapeutic measures [1]. Although these guidelines are primarily designed for use by the medical professionals at different 

levels, they also have the added benefit of better informing the patients and members of the general public as well [2-4]. 

Recently, there has been a wider adoption of the concept of shared decision making; which has led to the increased focus 

on empowerment of the patients and their families, and promoting their engagement in a more active role in the clinical 

decision-making process. This is based on the fact that the patients are the critical stakeholders in the healthcare team  

and have the most vested interests in their well-being and Quality of Life. Therefore, the need to develop comprehensive, 

common-sense, practical and (most importantly) evidence-based guidelines becomes obvious. 

Ideally, such guidelines should be based on reliable, reproducible high-level, scientific evidence derived from large- 

scale prospective, randomized controlled clinical trials. However, several obstacles to conducting large-scale prospective, 

randomized controlled trials remain, including: Insufficient number of subjects, insufficient funding, impracticality of 

study design and ethical considerations. Therefore, a significant part of the current practice guidelines is still based on 

intermediate-level scientific evidence derived from small clinical trials, case reports or “expert opinion”. This is further 

complicated by the exponential growth in the volume and accessibility of scientific literature relevant to medical practice; 

driven by a robust and growing collaboration among different scientific disciplines such as genomics, proteomics, imaging 

technology, simulation and computer modeling. Unfortunately, the persistent “silo mentality” precluding effective 

communication among such traditionally separate disciplines has generated a widening gap between the scientific 

evidence and professional regulations. This disconnect has caused the guidelines to significantly lag behind the current 

scientific knowledge, to the point of being outdated or even presenting undue risk. 

Since ancient times, the dictum of “First Do No Harm” remains the guiding principle for all practice guidelines. The 

ultimate objective of such regulations is to eliminate or significantly reduce the risk of death or disability resulting from 

disease, injury or medical practice. 

Risk (R) is defined as the probability (p) of an adverse event (E), which can be expressed as follows: R = p(E) 

Therefore, truly effective and reliable guidelines are – in fact – optimally constructed predictive models that provide an 

accurate, reproducible and consistent estimate of the probability of adverse and/or unexpected events in the course of 

disease, injury or medical practice. Such events are usually referred to as “errors”. 
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3 Errors and processes 
Simply put, an Error is “something that should not happen” [5]. In other words, it is an event that deviates from the normal 
or expected occurrence at a specific point within the context of a specific process in a specific environment. For example, 
putting the wrong number of candy pieces in a box is an error of the assembly process – specific to the packaging 
environment. In the aviation environment, an airplane crash is an error of the process involving the balance between lift 
and thrust; while aortic dissection is an error of the structural integrity process – specific to the aortic wall environment. 

Each environment is composed of a number of different elements. The interaction of these elements with each other and 
with the environment describes a number of Processes. Each process is a sequence of events along a specific Process Line 
or Process Axis. Each process has a defined starting point, which can be termed “Baseline Definitions”. The sequence of 
Events along the process line changes these definitions towards one or more end points or Results. 

Along the process line, each Event is brought about by the effect of a Cause. The cause is usually an element of the 
environment, exerting its influence on the process line at a specific juncture or “node”, representing the specific time it 
interacts with other factors. Each cause has its own specific effect on the process line, the significance of which is termed 
its “Weight”. Depending on the number of Causes, their corresponding Weights, the direction in which the influence is 
applied relative to the process line, the balance of forces (influences) and the possible end results, the trajectory of the 
process line can remain the same or shift toward one or another end results. 

In the candy packaging process, the baseline conditions are the empty box. The process line moves toward the result of  
a full box. This is effected by three successive events: Putting candy pieces in the box, counting the number of pieces then 
closing the box. Each event occurring in the correct way at the correct time leads to a successful result: A box filled with 
the right number of candy. 

In analyzing any process, the graphical representation of its details describes a central axis intersected by the different 
vectors of the influence of all different causes. This well-established diagram [6] (The fish-bone, herring-bone or Ishikawa 
diagram) (see Figure 1) has considered one of the Seven Basic Quality Tools. Owing to its comprehensiveness and ease of 
use, it has been a standard tool in investigating accidents and errors in numerous environments, including industry, 
manufacture, management and healthcare. 

 
 
 
 
Figure 1. Candy packaging process 

The effect of each factor can change, precipitating a change in the process as a whole. If the assembly line worker does not 
correctly count the pieces at the second “node”, the result would be a half-full box, which is an Error. On the other hand, if 
he or she forgets to put the candy pieces inside the box, another Error results in an empty box (see Figure 2). By 
incorporating the trajectories of different results within the same process, this can be termed a “multi-axial Ishikawa 
diagram”. 

Another example of a process is taken from aviation: In level flight, there is a balance of the four basic forces (vectors) 
acting on the airplane. Lift opposes Weight, while aerodynamic drag is counteracted by Thrust from the engines. The net 
result is an airplane that maintains altitude because of the balance between lift and weight, while moving forward since the 
force vector for thrust is greater than that of drag. 
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Figure 2. Candy packaging 
process errors  

However, the process of commercial flight to reach Point B from Point A involves a more intricate interaction between 
these basic factors. Hence, a process line for such a journey depicts the following segments: Takeoff, climb, level flight, 
descent and landing. Each segment involves a different balance of forces: Takeoff and climb require extra thrust and lift, 
while in descent and landing these forces are decreased, allowing weight and drag to gently decrease speed and altitude.  

A fundamental concept here is that each of the basic factors (e.g., lift, thrust, etc.) represents an entirely independent 
process. For instance, lift is dependent on the wing surface area, wing cross-section, angle of attack, the surface area of 
flaps, airplane speed and the air pressure. Thrust is a function of engine RPMs, air density, compression of air intake, fuel 
ignition, speed of exhaust leaving the nozzle, nozzle geometry, etc. 

Examined from a different angle, the probability of level flight (p = 1.0 or 100%) depends on the combined probabilities of 
thrust, drag, weight and lift. According to the Bayesian Theory, the probability of each of these factors is dependent on the 
probability of multiple other factors. Thus, the probability of the End Result can be represented as the apex of a Decision 
Tree (see Figure 3). 

Figure 3. Balance of forces in level flight 

4 Data categorization and processing 
Another way of graphically depicting these relationships is as follows: A central process is dependent on a number of  
basic influencing processes. Each of these processes, in turn, is influenced by a number of factors. In addition, several of 
the outer factors may influence each other as well. The resulting diagram describes a Bayesian Network configuration (see 
Figure 4). 

In this expanded influence diagram, the Central Process (commercial flight) has the following possible End Results: 
On-time arrival, Delay, Crash, Cancellation. It is directly influenced by a number of other processes (Determinants). Each 
Determinant process is, in turn, influenced by the Modifier set of variables. These factors can influence the Central Process 
and/or the Determinants. For example, the absence of a wing in the aircraft directly influences the lift, but it also directly 
affects the basic definition of the aircraft, thereby precluding the flight in the first place. Other factors with recognized  
but unclearly defined influence are called the Associated factors. In this example they may include low-pressure areas, 
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turbulence, torrential rain, etc. According to the NASA’s Threat and Error model of accidents [7], Modifiers and Associated 
factors are “threats” that cause small but significant alterations in the course of process line by creating an “Unintended 
State” where the influence patterns of the variables are arranged differently from the optimal or intended design, ultimately 
resulting in a significant shift toward a deviation from the expected; i.e., an Error. 

 

Figure 4. A Bayesian network model for flight 

Similarly, most biologic environments involve a balance of forces acting on the same environment, organ or structure. For 
example, the Central Process of delivery of a baby has a trajectory with the following possible End Results: Successful 
Delivery, Stillbirth and Post-maturity (failure of delivery of a live fetus). This process is dependent on the following 
Determinants: Presence of a Pregnancy, Length of Pregnancy, Hormonal support of pregnancy, Uterine contractile 
function, and Anatomy of the birth canal. Modifiers for this process include: Female gender, ovulatory function, ovarian 
hormones, pituitary hormones, sexual activity, reproductive tract anatomy, cervical mucus, sperm number and function, 
etc. In this example, the absence or disturbance of female gender (as in some genetic disorders) can directly affect the 
central process, while simultaneously affecting other Modifiers such as ovulation and ovarian hormones. Associated 
factors may include alcohol intake, physical exercise, herbal and prescription medications, etc. This is the reason why – in 
developing meaningful, reliable and practical practice guidelines – all data relevant to a specific condition or disease 
should be collected in comprehensive detail as possible. By incorporating extensive representative data for all influencing 
factors, the predictive properties of the model are enhanced, increasing its ability to capture rare or atypical situations. 

Establishing the highest possible order of certainty is an essential property of any decision-making algorithm or tool. 
Under ideal circumstances, the variable A always has a certain value B. In other words, the probability of A = B is 1.0 or 
100%. This assumption offers a solid foundation for rule-based decision-making, which is well-established in computer 
programming. Simply put, rule-based decision-making assigns a specific action [X] based on the fulfillment of a specific 
assumption (i.e., rule): IF [A] THEN [X] 

Most of the current clinical guidelines for diagnostic, therapeutic or even resource allocation and payment are based on the 
identification of one or more combined rules. Surgery is recommended for aortic valve area < 0.6 cm2; transcatheter aortic 
valve replacement is recommended for Society of Thoracic Surgeons Risk Score > 14; A repeat echocardiography within 
30 days of the previous study may not be reimbursed; punitive financial measures are instituted against a hospital if there 
is a certain number of cases of ventilator-associated pneumonia, and many such “rules” are currently in force. 

Rule-based decision making, however, has the following limitations: 

 It assumes direct causative association;  
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 It requires and assumes a high degree of certainty;  

 It assumes a singular causative relationship;  

 It works best with variables of a discrete value;  

 It is based on a Gaussian distribution;  

 It cannot adequately account for confounding factors, continuous variables or borderline values; 

 It assumes uniformity of substrate and uniformity of behavioral patterns in the environment. 

By contrast, virtually all environments and processes in the healthcare field are highly complex, with numerous factors 

exerting their influences in a highly intricate pattern (which remains unknown or only partially understood in the majority 

of cases) with a high degree or inter-dependence and high level of uncertainty in both the value of variables (continuous  

or discrete) as well as the number and impact of possible End Results. In addition, such environments and processes are 

almost universally high-risk: to the patient, healthcare team or system. 

Current guidelines were developed using evidence derived from standard statistical analytical methodologies. Such 

methods have significant limitations [8] of their predictive properties. These limitations include: 

 Measurement errors, when there is inconsistency in measurements or assigning values to variables, particularly 

predictor values;  

 Overfitting, or including too many variables in one predictive model; Omitted variable bias, which fails to 

adequately describe the association between variables rather that causative relationship;  

 Multicollinearity, when two or more variables are highly correlated with one another. This is because standard 

statistical methods assume independent influence directions and does not adequately account for multiple 

interdependent patterns among variables;  

 Reverse causation, which assumes a predetermined (i.e., highly certain) causative relationship between risk 

factor and outcome factor;  

 Selection effect, which stems of the observed sample not adequately representing the population of interest;  

 The exponential increase in operational complexity relative to the increase in domain size; 

 The assumption of a bell-shaped Normal (Gaussian) distribution, which ignores infrequent or rarely 

encountered processes or small-size populations whose mean and median fall well below the observed measures 

of central tendency. 

Biologic environments and processes usually demonstrate a balance between two Determinant processes, each dependent 

on a number of other Modifier and Associated processes and factors. Therefore, the Central Process is actually a function 

of two functions, each – in turn – is a function of a multitude of other functions. Subsequently, the probability of an Event 

relative to the Central Process becomes a function of functions, correlating the probability of each factor influencing the 

process line pathway [9-12]. 

Hence, predicting the probability of an event (E) can be expressed as: 

                 p(E)= p(C1) · p(C2) · p(C3)….· p(Cn) (1) 
 

            p(E) = p{C1, C2, …Cn} (2) 
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Since the objective of guidelines is to identify and stratify the probability of high-risk events in such complex, high-risk 
environments, it becomes imperative to utilize a predictive model [13, 14] which has the following properties: 

 Possibilistic decision-making property: To accommodate all the observed and suspected factors  

 Probabilistic decision-making property: To adequately correlate the different probabilities of each event relative 
to the incorporated factors  

 Prognostic decision-making property: To assign a hierarchy of the impact of predicted events on each of the 
possible End Results  

 Provision for the Utility of any specific course of action based on the predicted event, given the effect of such 
recommended action on the result of the Central process. 

Thus, a probability-based decision making tool should be designed to incorporate all known and suspected factors that  
do or may influence the course of a condition or a disease, assigning higher “weight” to those factors which have a more 
significant impact on this course toward one of more possible end results. In assigning such weight, the factors that 
contribute to the more serious and threatening result are assigned a higher weight, in accordance with the hierarchy of the 
possible end results. Also based on this hierarchy, the recommended course of action should correspond to these results.  

For example, the central process of coronary atherosclerosis is a balance between normal proliferative and reparative 
intramural growth within the vascular wall, and the pro-apoptotic, pro-atherothrombotic process. In constructing a 
predictive model for the risk of myocardial infarction, all the factors influencing these two basic processes must be  
taken into account, with those having a more pronounced effect on the course of either process given a higher weight. 
Meanwhile, the possible outcomes (e.g., massive myocardial infarction, stable angina, normal vascular growth) are 
arranged in a descending order of significance relative to their impact on the disease process, survival, Quality of Life, 
healthcare system burden, etc. An appropriate course of action is therefore recommended based on the probability of each 
end result. 

5 Conclusions 
Decision making in healthcare continues to present substantial challenges to the practitioners, patients as well as 
regulatory and administrative agencies. Inherently a very complex environment encompassing an almost infinite number 
of equally complex and high-risk environments, the field of healthcare defies attempts at simplistic rule-based decision- 
making. However, there is a rapidly growing need for robust, dynamic, real-life, adaptable and expandable bioinformatics 
solutions for decision-making support in clinical situations. Several applications have already been developed and are in 
use for isolated areas in biomedical sciences, such as gene mapping, drug design and development or optimization of 
specific drug therapy [15-18]. Although proven useful, such applications have a limited impact, if any, on the clinical 
practice, mainly because of a paucity of applications designed for the clinical, bedside practice areas. Most existing 
decision tree applications do not provide an automated clinical decision making or predictive function. Instead, the user 
usually supplements them with the patient-specific data and ultimately is the one to interpret the guideline content. 
Therefore, the healthcare community has remained reluctant to embrace computer-generated or interpretable guidelines. 
Reasons for this lack of adoption include a general distrust of automated systems in such high-risk situations, the 
perception of their incomplete consideration of all significant factors, the perceived loss of autonomy of practitioners and 
the lack of flexibility to fit different clinical environments.  

The timing is fortuitous: As a beneficial result of the recent healthcare legislation, and partly driven by the Accountable 

Care Organizations and Managed Care Organzations, there has been a rapid growth in healthcare informatics and the 

availability of large data sets. This offers a unique opportunity for the development of simple yet powerful computer-based 

and computer-interpretable decision making tools as comprehensive, evidence-based clinical guidelines. Of particular 
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importance in this context is the promotion of their acceptance and use by real-life clinicians, and therefore the crucial 

requirement for these tools to mimic the conventional diagnostic and management methodology, and not be perceived as 

“cold, mechanical or inflexible” tools.  

Probability based decision-making applications rooted in the Bayesian principle [19-22] incorporate a combined 

probabilistic and prognostic approach to predict the outcome of events in the disease process, the impact of interventions 

and their utility; in light of the preferences unique to decision-maker as they impact outcomes in terms of survival, 

morbidity, Quality of Life and other considerations; e.g., patient wishes, available resources, financial impact, etc. 

Because of their flexibility, logical design approach, the ease of construction on simple, available platforms and the 

“familiar feel” during implementation, their ability to handle large volumes of data, they can be helpful tools for risk 

stratification, outcomes predictions and therefore the development of realistic, evidence-based clinical practice guidelines, 

designed to beneficially alter the course of disease processes and improve the overall quality of healthcare. 
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