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Abstract 
Introduction: The performance of computer-assisted detection (CAD) software depends on the quality and quantity of the 
dataset used for supervised learning. To realize the continuous clinical use and performance improvement of CAD 
software, it is necessary to continuously collect data for supervised learning in practical use and to improve CAD software 
by retraining with the collected data. In this study, we investigated the performance improvement of cerebral aneurysm 
detection software based on retraining the classifier through a simulation-based study. 

Methods: We collected data for retraining during the practical use of our cerebral aneurysm detection software and 
retrained the classifier for false positive (FP) reduction using the collected data. The effect on improving the performance 
was compared by changing the number of training cases and the training algorithms. 

Results: The performance was improved significantly (p < .05) by retraining using additional training cases. In contrast, 
there were no statistical differences in the performance upon retraining among the four training algorithms for boosting. 
The sensitivity at 3 FPs/case was improved from 81.5% to 89.5% by retraining with additional training cases. 

Conclusions: The performance of the software was effectively improved by adding training cases rather than by changing 
the training algorithm. 

Key words 
Computer-assisted detection, Cerebral aneurysm, Magnetic resonance angiography, Retraining, Boosting 

1 Introduction 
Computer-assisted detection/diagnosis (CAD) software has been developed by many research groups, and commercial 
CAD software has also been released [1-3]. However, most radiologists have not yet utilized CAD software in daily practice 
since the performance of current CAD software has certain limitations [3]. 
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The performance of CAD software depends on the quality and quantity of the dataset for supervised learning. If the 
characteristics of data used in development and in practical use are different, the performance of CAD software will be 
degraded. The data characteristics may be changed by updating the imaging hardware or imaging protocols for the 
software, even in a single institute. Therefore, it is desirable to use the same data characteristics for development and 
practical use. However, it is difficult to collect a dataset of significant quantity and quality in the initial development of 
CAD software. Hence, it is necessary to continuously collect data for supervised learning in practical use and to update 
CAD software by retraining it with the collected data. 

To realize the continuous clinical use and performance improvement of CAD software, we defined a roadmap for the 
development, clinical use, and refinement of CAD software as follows: 

 Phase I: Development and implementation of the algorithm and initial training classifier using the dataset for the 
initial development. 

 Phase II: Clinical use and evaluation of the CAD software implemented in Phase I (including data collection for 
refinement). 

 Phase III: Algorithm refinement including the reselection of the classifier and the retraining of the classifier 
using the data collected in Phase II, followed by further clinical use. 

To realize Phase II in a routine reading environment, we previously developed a web-based CAD software processing and 
evaluation platform (clinical infrastructure for radiologic computation of united solutions clinical server, CIRCUS CS), 
which provides the on-line processing of CAD software and interfaces to evaluate the results obtained from CAD software 
(clinical feedback) [4, 5]. Two kinds of CAD software, which are for cerebral aneurysm detection in magnetic resonance 
angiography (MRA) images and lung nodule detection in computed tomography (CT) images of the chest [6], have been 
used and evaluated in the screening section of our institute since 2009. The collected feedback data enable us to improve 
the performance of CAD software by retraining the classifier. From our preliminary study on cerebral aneurysm detection, 
the performance of CAD software was improved by retraining the classifier by adding positive cases [5]. However, the 
number of positive cases used for retraining in the previous study was at most 110 cases. To clarify the performance 
improvement of CAD software by retraining the classifier, further investigation of the strategies for retraining, such as the 
use of even more training cases and the reselection of the classifier, is required. 

As a related study, several research groups have developed CAD software based on a life cycle including the design, 
development, and evaluation of CAD software [7, 8]. However, the refinement of CAD software after clinical use (Phase III 
described above) was not realized. 

In this study, we investigated a strategy to improve the performance of cerebral aneurysm detection software based on 
retraining using feedback data collected in the routine reading environment.  

2 Materials and methods 

2.1 Algorithm of cerebral aneurysm detection 
Figure 1 shows a flowchart of our detection method. The algorithm consists of three steps: preprocessing, lesion candidate 
extraction, and false positive (FP) reduction. 

 
Figure 1. Flowchart of our detection method 
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2.1.1 Preprocessing 
First, MRA images are resampled using trilinear interpolation to obtain the isotropic volume. The resampled voxel size is 
equal to the pixel size in the axial slice. After that, vessel segmentation is carried out. The steps in the processing procedure 
for vessel segmentation are described as follows: 

1) The mean and standard deviation of brain voxels, denoted brain and brain, are calculated from the center quarter 

region of the two central axial slices of the volume data. 

2) The initial mask for the brain is extracted as the set of connected voxels with voxel value  brain 2brain. After 

that, closing with a spherical kernel of 5.9 voxel radius and erosion with a spherical kernel of 9.9 voxel radius are 
applied to obtain the final brain mask Mbrain. 

3) The initial vessel region within Mbrain is extracted as the set of connected voxels with voxel value  brain 2.5brain. 

The number of extracted voxels is defined as Vinit. 

4) Connected component analysis is performed, and then at most two components with the following conditions are 
selected. 

- The number of connected voxels is greater than or equal to 2.7% of Vinit. 

- The x-coordinates of the center of gravity is between 0.25 and 0.75 of the width of Mbrain. 

- The y-coordinates of the center of gravity is between 0.32 and 0.72 of the height of Mbrain. 

5) Dilation with a spherical kernel of 1.9 voxel radius is carried out. The result is defined as Rvessel. 

2.1.2 Lesion candidate extraction 
The shape index S(x,) [9, 10] is calculated at the voxels of Rvessel using the original voxel values, where x is the 

3D-coordinates for the position of the voxel and  (voxel) is the standard deviation of the Gaussian filter. In this study, we 

adopted multiscale integration based on the Hessian [11, 12] eigenvalues [6]. Let the eigenvalues of Hessian be 1(x,), 

2(x,), and 3(x,) (1(x,)  2(x,)  3(x,)). In our multiscale integration, Hessian eigenvalues are calculated for 

several values of , and opt(x) is determined as follows: 

    


,minarg 1
2 xx opt (1)

The range of  is set to {1, 2, 3, 4, 5} voxels in experiments. After that, Sopt(x) is calculated as follows: 

    xxx optopt SS ,  (2)

After calculating Sopt, a voxel-based differentiation process based on a classifier using the Mahalanobis distance ratio [13] is 

employed at voxels with Sopt(x)  0.75. The feature values of voxel-based differentiation are as follows: 

 voxel value (I(x)) 

 principal curvatures (k1, k2, k1/k2) 
[9, 10] 

 Sopt(x) 

 magnitude of first derivatives of I(x) (|∇I(x)|) 

 Sblob, Sline, Sbif 

Sblob, Sline, and Sbif, which enhances the blob, line, and bifurcation derived from the Hessian eigenvalues, respectively, are 
defined as follows: 
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 is set to 30 in experiments. The voxels with a Mahalanobis distance ratio of greater than or equal to 2.0 are extracted. 

After that, conditional closing within Rvessel with a spherical kernel of 1.9 voxel radius and connected component analysis 
are performed. All components fewer than 10 voxels are discarded. 

2.1.3 FP reduction 
A classifier ensemble trained by the boosting algorithm [14] is employed to classify lesion candidates into true positives 
(TPs) and FPs based on 63 feature values of the candidates. Each of the weak classifiers is formed from a feature measured 
at a region and its threshold. The feature values are as follows: 

 Numbers of voxels (V) and surface voxels 

 statistics of voxel values (minimum, maximum, mean, second moment, standard deviation, skewness, kurtosis, 
and entropy) 

 contrast measures (Contrast1 and Contrast2 in [15]) 

 sphericity 

 ratio of V to the number of voxels in the bounding box 

 similarity of sphere (Ss) 

 statistics of the distance between the center of the candidate and its boundary (minimum, maximum, mean, 
second moment, standard deviation, skewness, kurtosis, and minimum/maximum) 

 statistics of k1, k2, k1/k2, shape index, curvedness [9, 10], opt, |∇I|, Sblob, Sline, and Sbif (minimum, maximum, mean, 

and standard deviation) 

The similarity of sphere in the ith lesion candidate is defined as follows: 

   
 iV

iV
iS S

s   (8)

where VS(i) is the number of intersecting voxels between the ith lesion candidate and the volume of the equivalent sphere 
whose center is defined as the center of gravity of the candidate. 
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2.2 CIRCUS CS 
Our cerebral aneurysm detection software described previous subsection was installed as a plug-in for CIRCUS CS [4, 5]. 
Figure 2 shows an example of the result of cerebral aneurysm detection displayed in CIRCUS CS. In Figure 2, the top three 
lesion candidates with the highest likelihood are displayed. A radiologist labeled each lesion candidate as follows: 

 known TP: cerebral aneurysm  2 mm in diameter recognized before CAD reference 

 missed TP: cerebral aneurysm  2 mm in diameter overlooked before CAD reference 

 FP: false positive of the CAD software 

 pending: difficult to label as TP or FP 

Figure 2. Example of CAD result 
displayed in CIRCUS CS. The 
top three lesion candidates are 
displayed, each of which has 
toggle buttons to indicate “known 
TP”, “missed TP”, “FP”, and 
“pending”. 

If the lesion detected by the radiologist was not included in the three candidates detected by the CAD software, the 
radiologist manually entered the location of the aneurysm by clicking on the 2D image (see Figure 3). 

Figure 3. Interface for entering 
false negative locations. A 
radiologist enters the locations of 
correct aneurysms, if not indicated 
by CIRCUS CS, by clicking on 
the 2D image. 
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In the screening section of our institute, the double-reading method combined with CIRCUS CS was used with the 

procedure. First, two radiologists independently interpreted MRA images without seeing the CAD results. After that, they 

independently reviewed the CAD results and independently registered their personal feedback into CIRCUS CS. Finally, 

the two radiologists discussed and determined the final clinical diagnosis and the consensual feedback was registered. 

2.3 Simulation of retraining using data collected in routine reading 

environment 
We investigated the performance improvement of our cerebral aneurysm detection software by simulation for the case of 

retraining the classifier using feedback data collected in the routine reading environment. In this study, we focused on the 

classifier for FP reduction. In contrast, we did not retrain the voxel-based classifier for lesion candidate extraction. This is 

because there was little improvement in performance from the result of a pilot experiment in which the voxel-based 

classifier in the cerebral aneurysm detection software was retrained by adding 15 positive cases including false negatives 

(FNs). 

2.3.1 Datasets 
This study was approved by the ethical review board of our institute. Three-dimensional time-of-flight unenhanced MRA 

was performed as a part of brain screening using three 3T MR scanners (two Signa HDxt and one Discovery MR750,  

GE Healthcare, Waukesha, WI, USA). The acquisition parameters were as follows: field-of-view, 240 mm; matrix size, 

512×512; pixel spacing, 0.469 mm; slice thickness, 1.2 mm; slice interval, 0.6 mm; repetition time, 25 msec; echo time, 

2.7 msec for Signa HDxt and 2.9 msec for Discovery MR750; flip angle, 15 degree. In this study, we utilized the following 

three datasets. 

Dataset for initial development: This dataset contains image files and clinical properties including areas of lesions 

defined by pixel-by-pixel painting. These data were registered in our image database system, named CIRCUS DB [4]. 

Dataset for additional data: This dataset includes 309 positive cases collected between August 2009 and February 2012. 

The dataset is divided into two groups. The first group, called “group 1”, includes 155 positive cases collected between 

August 2009 and March 2011. The second group, called “group 2”, includes remaining 154 positive cases. 

Dataset for evaluation: This dataset includes the cases of 1,779 first-time visitors to the screening section of our institute 

between March 2012 and December 2013. 

The datasets for additional data and evaluation contain the results obtained from CAD software and consensual feedback 

data. Table 1 shows the numbers of cases in the datasets. Each positive case includes at least one aneurysm of 2 mm or 

more in diameter, which was determined by consensual reading by two experienced radiologists. Table 2 shows the size 

distribution of aneurysms for each dataset. 

Table 1. Number of cases for each dataset 

Dataset for 
Number of cases 

Total cases Positive cases 

initial development 181 53 

additional data (group 1) 155 155 

additional data (group 2) 154 154 

evaluation 1,779 110 
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Table 2. Size distribution of aneurysms for each dataset 

Size (mm) 

Dataset for 

Initial development 
Additional data 

Evaluation 
Group 1 Group 2 

2 41 58 71 51 

3 24 75 67 38 

4 17 30 23 25 

5 8 8 8 4 

≥ 6 10 9 5 6 

Total 100 180 174 124 

2.3.2 Simulation conditions 
Figure 4 shows the relationship between the training data and test data in the simulation. Retraining and evaluation were 
performed by adding each group of additional data (total: 2 steps). We also compared four types of training algorithm  
for boosting, which were AdaBoost [14], MadaBoost [16], cost-sensitive [17] AdaBoost, and cost-sensitive MadaBoost. 
MadaBoost has higher tolerance to outliers of feature vectors than AdaBoost. A cost-sensitive algorithm is an effective 
means of classification when training data is imbalanced. In this study, we adopted the AdaC2 algorithm [17]. The number 
of weak classifiers used for boosting was set to 300 in the experiments. The area under the receiver operating characteristic 
(ROC) curve (AUC) was utilized as the evaluation criterion. We calculated the AUC using the R pROC package (version 
1.7.1) [18] and also carried out a bootstrap test to compare the effects of differences in the number of training cases and the 
training algorithm, respectively. The number of bootstrap replicates was set to 100. 

Figure 4. Relationship between training data 
and test data for simulation. 

3 Results 
Figure 5 shows learning curves obtained by simulation. From the results of the bootstrap test, the difference between the 
baseline and step 1 was significant for all the training algorithms (p < .05). Also, the difference between the baseline and 
step 2 was significant for all the training algorithms (p < .05). Consequently, the AUC was improved by increasing the 
number of training cases for all the training algorithms. 

Regarding the difference between the training algorithms, MadaBoost was inferior to the other algorithms at all steps. 
From the results of the bootstrap test, the difference between MadaBoost and AdaBoost or cost-sensitive AdaBoost was 
significant at the baseline (p < .05). However, there were no statistical differences among the AUCs for the four training 
algorithms at step 1 and step 2. 

Figure 6 shows the free-response ROC (FROC) curve for each step, and Table 3 shows the sensitivities at 3, 5, and 9 
FPs/case derived from the FROC curves shown in Figure 6. The training algorithm for each step was selected on the basis 
of the maximization of the AUC. From these results, the sensitivity was improved by increasing the number of training 
cases, particularly at small FPs/case. As shown in Table 3, the sensitivity at 3 FPs/case was improved from 81.5% to  
89.5% by retraining. 
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Figure 5. Learning curves for retraining of 
classifier 

 

Figure 6. FROC curve for each step. The training 
algorithm for each step was selected on the basis of 
the maximization of the AUC 

Table 3. Sensitivity of our cerebral aneurysm detection method derived from Figure 6 (Unit: %) 

Step 
FPs/case 

3 5 9 

Baseline 81.5 87.0 94.4 

Step 1 87.1 91.1 93.5 

Step 2 89.5 93.5 95.2 

4 Discussion 
The results of the simulation-based study show that the performance of the cerebral aneurysm detection software was 
improved by retraining with data collected in the routine reading environment. According to the results shown in Figure 5, 
the performance of the software was improved by increasing the number of training cases for all the training algorithms. 
However, there were no statistical differences in the AUCs between step 1 and step 2. This is because the effect on 
improving the performance tends to decrease with increasing number of training cases [19]. If the performance becomes 
saturated in spite of adding more training cases, there is scope for algorithm refinement including the refinement of feature 
values using the data collected during practical use. Regarding the training algorithms, the AUC of MadaBoost was 
inferior to that of the other algorithms at all steps. However, there were no statistical differences in the AUCs among the 
training algorithms at step 1 and step 2. In this study, the performance of our software was effectively improved by adding 
training cases rather than by changing the training algorithm. The effects of our software on radiologists’ detection 
performance in the routine reading environment including inter-observer and intra-observer variability are under way. 

A number of research groups have reported a variety of computerized detection methods for cerebral aneurysms [20-25]. 
Yang’s method [23] which was validated using the largest number of cases among these studies, achieved sensitivities of 
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80% at 3 FPs/case and 95% at 5 FPs/case. From the results shown in Table 3, the baseline in our method was equivalent in 
performance to Yang’s method, and our method after retraining was superior to Yang’s method. 

At our institute, the initial version of the cerebral aneurysm detection software, in which the classifier for FP reduction was 
trained by the AdaBoost algorithm using the dataset for the initial development, was utilized from August 2009 to March 
2012. Since April 2012, a refined version of the software, in which the classifier for FP reduction was trained by the 
cost-sensitive MadaBoost algorithm using the dataset for the initial development with additional data, has been utilized. 

The limitations of this study are discussed as follows. First, the voxel-based classifier for lesion candidate extraction was 
not retrained on the basis of the results of the pilot experiment by adding a small dataset. To train the voxel-based classifier 
using more cases, it is necessary to define the areas of lesions by pixel-by-pixel painting. However, it is time-consuming to 
paint lesions on images. To reduce the time required to paint a lesion in the routine reading environment, the development 
of a painting interface with semi-automatic/interactive image segmentation functions is required. Such an interface is 
under development as part of the refinement of CIRCUS DB. 

The second limitation is that the datasets used for retraining and evaluation were collected from only three 3T MR 
scanners in our institute. The quality of MRA images depends on the scanner, particularly the strength of the static 
magnetic field [26]. For example, artificial signal loss of the vessel is observed due to magnetic susceptibility artifacts 
caused by adjacent bone or air. In general, the extent of the artifact depends on the strength of the static magnetic field [27]. 
Hence, it is necessary to investigate a strategy that can be used to improve the performance of CAD software for each 
scanner. To effectively collect data for retraining from various scanners in multiple institutions, we have implemented 
CIRCUS CS in a teleradiology environment, and a multicenter trial has been underway since September 2011 [28]. 

5 Conclusions 
We have investigated the performance improvement of our cerebral aneurysm detection software based on retraining the 
classifier for FP reduction using feedback data collected in the routine reading environment. According to the results,  
the performance of the software was effectively improved by adding training cases rather than by changing the training 
algorithm. 
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