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We propose a method for local, region-based matching of planar shapes, especially as those shapes that change over time. This is
a problem fundamental to medical imaging, specifically the comparison over time of mammograms. The method is based on the
non-emergence and non-enhancement of maxima, as well as the causality principle of integral invariant scale space. The core
idea of our Region Matching Algorithm (RMA) is to divide a shape into a number of “salient” regions and then to compare all
such regions for local similarity in order to quantitatively identify new growths or partial/complete occlusions. The algorithm
has several advantages over commonly used methods for shape comparison of segmented regions. First, it provides improved
key-point alignment for optimal shape correspondence. Second, it identifies localized changes such as new growths as well as
complete/partial occlusion in corresponding regions by dividing the segmented region into sub-regions based upon the extrema
that persist over a sufficient range of scales. Third, the algorithm does not depend upon the spatial locations of mammographic
features and eliminates the need for registration to identify salient changes over time. Finally, the algorithm is fast to compute and
requires no human intervention. We apply the method to temporal pairs of mammograms in order to detect potentially important

differences between them.
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1. INTRODUCTION

Shape matching is a key issue and an established area of
research in computer vision. In our previous work we have
noted that shape description using Integral Invariants (II)
yields signatures that are invariant to articulations and bend-
ing, and which are robust to noise. Geometric invariants,
which are invariant under affine, Euclidean, or similarity
transformations, may be used to describe shapes. Shape
matching is a particularly challenging problem in medical
image analysis, most often for pairs of images of the same
patient taken at different times. Such image pairs may show
differences that are the result of illness, response to therapy,

or, more prosaically differences in the imaging conditions.
Projective invariants may help with many small changes; but
cannot deal with complete or partial occlusion of articula-
tions of the shape which are frequently diagnostically impor-
tant to take into account. For example, irregular change in the
sizes of nuclei in Fine Needle Aspiration (FNA) may suggest
the presence of malignancy. Image registration techniques
have previously been used to address this issue.'-?] Registra-
tion techniques, both rigid and non-rigid, yield a dense warp
map that establishes correspondences between all pixels in-
side a shape and focuses on shape retrieval and matching
instead of quantifying regions at a local level. Other tech-
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niques require a “shape space”, which depend on training
data to enable comparisons.!*! These approaches aside, there
appears to have been little or no research aimed at identi-
fying and quantifying new growths and partial occlusions
by comparing two planar shapes regardless of scale, spa-
tial variations, and orientation. This is the problem that we
address.

The first step in comparing two shapes is to align them by
identifying key points. The alignment of curves and match-
ing of shapes is discussed in Ref.[*! based on local curvature
information, and often produces good results. However, cur-
vature, being a second derivative, is intrinsically susceptible
to noise. Our algorithm imposes a metric based on circular
111 on a shape, which, in combination with a scale space
analysis, %! enables us to obtain descriptive information and
key points, then divides the shape into a number of regions
based on those key points. II are used for shape matching in
Ref.P! In that work, dynamic programing and Fast March-
ing Algorithms are used to match shapes and to establish
point-wise correspondences between them. Those studies
neither detect nor quantify changes in shapes. This paper
presents a method that does not depend upon a (computation-
ally expensive) optimization algorithm. Instead, we compare
shapes as closed planar contours with no self-interactions
between them. We use circular II to describe the shapes. II
are descriptors that robustly define edges, corners and peaks,
thus delineating salient regions in the shapes that we use to
subdivide them, again using II scale space.

Background

We assume that a shape describes a single entity in the form
of a closed contour.!*°! Shape description defines an anatom-
ical structure at several scales of observations. A compre-
hensive overview of shape representation with respect to
application categories is given in Refs.[%°1 A brief list is
recalled in Figure 1.

Contour-based shape descriptions are reported extensively
in Refs.[*3! For example, B-splines have been used to rep-
resent shapes and to match them.!!'%!! Chain codes are an
effective shape representation, especially for coding;!'®! how-
ever, as they are sensitive to discretization errors in rotation
and scale, they are rarely used to match shapes. The most
widely used methods to describe shapes are based on curva-
ture.l!7- 18] This can work well and also has an extensive basis
in mathematics.[*"1%29 In practice, the main disadvantage
of using curvature, which is a differential invariant, is that
its measurement is highly sensitive to noise. II, which are
fundamentally related to differential invariants, can be used
effectively for shape representation/?!! and reconstruction,??!
and are robust to noise.?!:23-241 Al-Kadi et al. also measured
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feature robustness under noise presence in medical images
and is reported in Refs.?>-?71 II outperform differential in-
variants!?%2! for invariance to small perturbations in shapes.
Circular II is a structural approach that describes a shape
in a unique way,®” as do conic IL.??! Structural invariants
are known to deal with partial occlusions and partial match-
ing of shapes, which further emphasizes their importance in
medical imaging.
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Figure 1. A list of the most popular shape analysis methods
proposed to date, together with their classification (mostly
described in Ref.1))

2. METHODS

Various methods are discussed briefly to cover the breath of
the subject, which relates to a huge body of literature that
further amounts to variety applications. As mentioned earlier
our method is based on the II scale space, which is inspired
from Ref.!>*! and eventually provides the basis for the RMA
that we develop.

2.1 Approaches to match shapes

Typically, point-wise correspondences are established to
match shapes based on intrinsic statistical properties found
by anatomical modelling or by computing a matching cost
for the points on the boundary.?!:3?! Landmarks are gener-
ally identified in two shapes using a certain descriptor,**!
for example with genetic algorithms,'** Eccentricity trans-
formations,'* phase congruency,*®3" differential meth-
ods!7-18:381 or I1. Descriptors that represent a shape as a trans-
formation, such as Fourier components,3°! highlight salient
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features in a shape at the cost of suppressing deformation
and ignoring translation or rotation.?>! Techniques3¢-40-44!
that establish a dense correspondence between shapes by
embedding 2D or 3D shapes in a canonical domain usually
fail to deal effectively with shape articulations. Indeed, the
fact that they preserve geodesic distances,*#7! phase an-
gles and other structural features, makes it difficult to cope
with isometric deformations, such as bending.[48’49] Other
techniques involve shape appearance in descriptions, such as
shape skeletons,”! graph matching,'-34 contour flexibil-
ity,1> Laplace spectra,'®! partial differential equations!®’->%]
and the rolling penetrate descriptor.®! Histogram geome-
tryl®%! has also been evaluated to subdivide shapes into parts
using topographic features and then to register them.

Sebastian>%3%! presented an alignment criterion which com-
pares one curve to another, one of which is considered to
be the model curve. Dijkstra’s algorithm was used with en-
couraging results to correspond points on the two shapes.!'8!
Other studies!®*%!l confirmed its efficiency in matching vi-
sual parts and shape contexts. However, the method suf-
fers from the “city block” problem and sub-pixel accuracy,
which has subsequently been improved'®?! using the Fast
Marching Algorithm.[%3-6%1 Other effective methods to match
shapes include: Eccentricity transforms,*3-66-681 Skeletoniza-
tion,1®-70 dynamic programing,**! Fast Sweeping Algo-
rithm,”1:72' Ant Colony Optimization,!”*! Bee Colony op-
timization,!”#7% and Bending invariants.[””-78) Comprehen-
sive surveys of shape matching techniques with respect to
local correspondence can be found in Refs.[7*-8!]

A descriptor is called an invariant if it can accommo-
date a certain shape transformation class.®?! A projec-
tive transformation, from the set of transformations known
as the projective group, is widely used in computer vi-
sion. Transformation groups or group actions are tools
to generate application-specific invariants!®®:33-11 and are
central to invariant theory.l”°?! Invariants can be alge-
braic;18293-%1 geometrical®3°% combinations of coplanar
points or planes;[**%%-97-103] differential 2036 1041101 or Inte-
gral [21.2%: 1111121 Gince algebraic and geometric invariants
are defined for the whole shape rather than boundary, and
since differential invariants are very sensitive to boundary
noise, we use circular II that are relatively robust to boundary
noise. In this paper, we refer to circular II simply as II. At
first glance, II are similar to the SUSAN feature detector,113!
which has been used in a variety of applications!!'*12% and
reproduced with various enhancements.!'?°-123] However, the
fundamental limitation of SUSAN, which renders it far less
relevant in our application, is the assumption of homogeneity
in a circular region. Medical images, especially mammo-
grams, are at best piecewise homogeneous. Various shape
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signatures have been proposed;?!:30-93. 112, 124.125] however,
none of them quantify changes in regions while matching
shapes. This is what distinguishes our method.

2.2 Circular II

Many et al.””* applied circular II for shape matching. They
showed that it can robustly handle occluded shapes. Despite
its simplicity, it gives a unique shape description, which we
have previously exploited for region matching and shape
correspondence. It has properties of non-emergence and non-
enhancement of extrema in a linear fashion. It has also been
used for image enhancement and noise suppression.!'?61 11 is
similar to Gaussian smoothing in terms of implementation,
though it has very different diffusion and related properties.

IT is defined®! by considering a disc B,.(p) of radius r ap-
plied to every point p of a closed contour ~y, parameterized
to n points. The representative function that evaluates the
intersection of the disc B,.(p) and the contour + is as follows:

1 if ze{B.(p)N7}
0 otherwise

(B, (). O) () = { )

Where 7 is the interior of the curve. The local integral area
L(v) of the curve is given by the function I’ (p) at every
point p € 7 with integral kernel x as follows:

L(p) = / dz
Br(p)ﬁ:}’

The range of I (p), is a positive real and spans the interval
from zero to the area of the curve bounded by the disc.

@

Figure 2. Integral Invariant defined in Eq-2 and explained in
Ref.124

In the above equation 2 is the domain of the curve C. Figure
2 illustrates II as discussed in Ref.!?!l and given by Equation
2. Changing the size of the II kernel creates a scale space,
and which does not amplify noise. Rather it suppresses noise;
however, at the cost of image details, which is an inevitable
consequence of smoothing. In Figure 3, the value of the II for
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shape description occurs when the circle is centered not on a
point along the curve but near to it, so that the circle overlaps
the pink region. II have a strong and unique expression for
encoding shapes and is closely related to curvature functions.
In one sense, it is a weighted reciprocal of curvature, where
the II shape description is almost a vertically flipped version
of the graph generated by curvature. However, curvature

is based on differential derivatives which are sensitive to
noise, 28! though there is also a less popular way to compute
II from differentiating area invariants."'?! A comprehensive
mathematical evaluation of projective curvature and II is ex-
plained in Ref.""?! and with applications in Ref.""3%! Circular
I are referred to as II throughout this paper.

Figure 3. (a) and (c) are two
examples of closed polygons

2.3 Region Matching Algorithm (RMA)

This section explains the RMA that we have developed to
divide shapes into regions based on the causality of II scale
space and then quantifies those regions to estimate articula-
tions and new growth. Though RMA does not require initial
alignment for region matching, it can be used to find points
of initial alignment that are then used to establish point-wise
correspondences of shapes. Currently, regions are matched
simply on the basis of a least sum of squared differences,
which we have found works well in our application. If the
two shapes being compared are not expected to differ substan-
tially, then the normalized difference of centroids of regions
can also be used as an additional feature for finding similar-
ity. The variation between two regions can be presented in
terms of the number of pixels and percentage difference. The
areas of regions might be useful in applications where most
of the regions in corresponding shapes are likely to be the
similar in size. Other factors such as texture and gradient
measures as well as additional shape features can be used
with the existing shape descriptor to meet the requirements
of a specific application.!'?!

The core issue in scale space is scale selection. In our case,
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with integration kernels
imposed on them and
highlight the integration area
in red; (b) and (d) are the
corresponding Integral
Invariant for the complete
curves. (c) is the outline of a
segmented tumour mass from
the Mini-MIAS
mammographic database!!?”!

the maximum scale is selected in accordance with the size
of the shape and the size of the II kernel; and is applica-
tion dependent. The scale space of the kernel should range
from being able to identify localized changes in shapes to
describing the overall structure; that is, moving from a fine
to a coarse scale. At a coarse scale, shape description is less
sensitive to small perturbations and noise.

To divide a shape into regions, we first need to set the max-
imum or coarsest scale. The coarsest scale may be deter-
mined automatically by taking the mean value of the shape-
to-integration kernel ratio (SIR) of the two shapes. Let 7,44
be the maximum scale indicator (this equates to the radius of
the circular II disc at the maximum scale). Then comparing
shapes (51, S2) for region matching where the area of SIR
can be adjusted depending upon the size and variability of
the shapes.

Tmaz = [MEAN(TS1 100> TSsmas) | (€)
Where rg,,,.,, =/ 250l =11, 2].
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3. RESULTS

First, we illustrate the application of RMA to the pair of
shapes shown in Figure 4. Figure 5 shows the II signature at
the coarsest scale. This illustrates the effectiveness of RMA
for initial alignment of two shapes. It finds the best region
with the minimum matching cost and designates its starting
point as a point of initial alignment. A second example is
given in Figure 6, where a new growth has been identified
(which corresponds, in fact, to the rabbit’s tail). Other ex-
amples are given in Figures 7 and 8. The accuracy of initial
alignment for shapes with locally distinct geometry is high,
as is evident from Table 1.

We have applied RMA to a range of shapes from the Kimia
database, and assessed its performance for within-group sim-
ilarity. The accuracy of region matching is assessed manually
as a surrogate for ground truth. Experiments were carried out
on 146 dissimilar shapes from four similar object groups of
the Kimia database. Region matching for each pair of shapes
was assigned a score from 1-6, whereas the accuracy of new
growth and occluded regions was assessed qualitatively and
assigned a grade from 1-4. The results are summarized in
Table 1.

Shape - 1

Shape - 2

11> R-3in 81

Figure 4. RMA applied to two shapes of “dude” category
from Kimia database for local region matching. Regions are
identified accurately in this example while quantifying
regional change in each part. The regions are identified
correctly because of the prior initial alignment, which is
basically to align shape signatures to start from the most
similar points.

The relatively poor results of RMA on hand shapes stem
from the fact that the inner left, right and center fingers of
each hand have very similar structures. Similarly, the sym-
metry of kite shapes is also a misleading factor in identifying
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regions correctly. In machine vision, matching asymmetry
is generally accepted and may not be counted as an error, in
which case the results improve dramatically. Incorporating
translational and reflection symmetries into our framework,
while enabling the detection of new growths and occlusions;
is the subject of current work.

200 200
0 0
200

o] 100 200 300 400 500 0 100 200 300 400 500
100 /\M 100W
0 . . . . , 0 . . . .

o] 100 200 300 400 500 0 100 200 300 400 500

Figure 5. Integral invariant signature at the coarsest scale
with causal peaks of two shapes in Figure 4, for shape-1 on
the top and shape-2 in the bottom row. Left: the signatures
are shown without initial alignment. Right: after initial
alignment; the causal peaks at the coarsest scale are
highlighted in red. Plots of I7(p), against the
parameterization of the shape at every point p.

1
185 %> R-3

S v

6: 14 %< R-T in S2

1
5:11%,‘R-5i S2
“4:52 %>R-5in Sz

Figure 6. RMA applied to two shapes of “bunny” category
from Kimia database for local region matching. Shape on
the right is been identified with a new growth in comparison
with the shape on the left.

The temporal mammograms that were used in this study were
made available to us by Matakina Technologies. We begin
by applying a variation of the hierarchical algorithm based
on iso-contours.'*!) The reason for using this algorithm here
is that it is computationally very efficient, and indeed it can
be the basis of a real time system, even without resorting to
a GPU implementation. The algorithm segments the com-
plete internal topography of the breast in a structured way
that can subsequently be used to establish correspondences
between mammograms. The algorithm has worked well of
mammograms we have processed to date.
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Table 1. Results of applying RMA to variable and occluded shapes from the Kimia database. Note that matching
asymmetry is considered to be an error (we have mammograms in mind), though in machine vision applications it may be

deemed acceptable, which would further improve the results.

Criteria “pbunny”/Rabbits  “dude”/Man “fgen”/Alien “kk”/Kite “hand”
Initial Alignment 91.7 100 91.67 77.78 55.56
Detection of new growth 98.05 None 90 91.38 53.34
Regional Correspondence 98.33 100 86.11 91.61 78.05
Sheps -1 Shape -2 tailed examples of RMA applied to regions segmented and
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Figure 7. Continued to the next page for caption

An example of alignment for a segmentation of nested re-
gions is shown in Figure 9. RMA matches regions in shapes
irrespective of their sequence. However, in this particular
case the accuracy of matching is obvious by comparing the
II signatures of both mammograms after initial key-point
alignment.

Shape correspondence using RMA has been applied to
the regions segmented in this way, as illustrated in Figure
10. The mammograms are de-noised using a Perona-Malik
anisotropic diffusion filter. The lesions from pairs of tem-
poral mammograms are put into regional correspondences.
In some cases the algorithm identifies the segments (and as-
sociated sub-regions) that correspond to new growth, while
at the same time calculating the percentage change in other
sub-regions. It may be noted that the number of regions in
both shapes may not be equal. Some obvious mismatches
can also be seen where the regional differences are substan-
tial or the non-corresponding regions are very similar. The
correspondence of regions does not currently depend upon
the texture or gradient information enclosed in them. De-
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matched from temporal mammograms are given in Figure
11.

Shape -1

e v
;o i
| 25%< R-8in 52

T4 %= R-Tin 52

: 25% = R-8in 51

=JR-3 in 52 7:4%= R-Tin 51

:31%>= R- 4in 52
:31%= R-4in 51

Shape - 2

1:49 %03 Rt in 54
Fi 53 %< R-2 in 51
#
/
/ #1 % R-Fn §1

1: 13 Ba= R-1in 52
253 %= R- 2in 82

5 31%> R-din 52

: 6% R-2in

;3 %= R- Bin 52

:29%= R-Fin 52

Shape- 1

Shape- 2

Mes Groneth-2
1: 1084= R-1in 51

< R-Zin 51

418> R- 2in 52

Figure 8. Examples of RMA application on 2D planar
shapes of varying spatial scale. Some mismatches can also
be seen as the algorithm is similarity driven, independent of
spatial information.

4. CONCLUSION
This paper has introduced a novel local RMA using II scale
space. Shape matching and correspondence algorithms usu-
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ally match and establish point-wise correspondences between
two shapes and may even handle partial occlusion. However,
they typically do not quantify partial occlusions nor identify
complete occlusions or new growth. It is important to mea-
sure regional differences quantitatively within each shape
and establish correspondences based upon region matching.
For masses, it is vital to analyze their growth and notice
the emergence or disappearance of any region. This can
be helpful in detecting new growths and identifying their
orientation. Following region of interest segmentation, we
have introduced a method of local shape correspondence and
region matching using II scale space. II are calculated for
segmented shapes from mammograms at all scales. The algo-
rithm identifies causal peaks of this scale space as key points
and breaks the shape into sub-regions based upon them. The
best matching region is selected as a point of initial alignment
and regions are corresponded based on a similarity measure.
RMA gives encouraging results in detecting tumor growths
and its aggressiveness with respect to shape.

5 ‘ |
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;| I‘\w”‘ L Inhl'

Integral invariant signatures of two shapes wthout keypoint alignment
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Figure 9. Segmented regions from temporal mammograms
on the left while their corresponding scale spaces is given on
the right hand side

The fundamental limitation of this approach is that it does
not know the spatial layout of the regions it is matching,
which of course has to be spatially invariant. This has re-
sulted in the mismatching in Figures 7, 8 and 12, and will not
improve existing models if this framework is extended to the
point-wise corresponding. Transformations to incorporate
information from inside of the shape can be applied prior to
applying RMA, which will add value to the shape signature
and reduce correspondence error. Some of the examples of
such shape transformations are bending invariants, eccen-
tricity transform and interpolation of medial axis within the
shape.
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Figure 10. Above is the scale space signature of two
corresponding shapes in Figure 8 at the coarsest scale. On
the left, the signatures are unaligned whereas on the right
side they are aligned using RMA.

Shape - 1

~——

70 180 10 00 210 20 20 240

Figure 11. Final RMA results of the regions segmented in
Figure 9 and aligned for a match in Figure 10. Detailed
examples are given in Figure 12.
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Shape -1 Shape - 2 Shape- 1 Shape - 2
Shape - 1 Shape - 2 Shape - 1 Shape - 2
Shape - 2
Shape - 1 Shape - 2
Shape - 1 Shape- 2
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Shape- 1 Shape - 2
Figure 12. Region matching of corresponding contours on the temporal mammograms. The red circles in the shapes
identify points of initial alignment. Regions are color-coded and show both good and bad examples of regional
correspondences.
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