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Abstract 

Objective: The layer of fat that accumulates around the heart, called cardiac adipose tissue (CAT), can influence the 

development of coronary disease and is indicative of cardiovascular risk. While volumetric assessment of magnetic 

resonance imaging (MRI) can quantify CAT, volume alone gives no information about its distribution across the 

myocardial surface, which may be an important factor in risk assessment. In this study, a three-dimensional (3D) modeling 

technique is developed and used to quantify the distribution of the CAT across the surface of the heart. 

Methods: Dixon MRI scans, which produce a registered 3D set of fat-only and water-only images, were acquired in 10 

subjects for a study on exercise intervention. A previously developed segmentation algorithm was used to identify the 

heart and CAT. Extracted contours were used to build 3D models. Procrustes analysis was used to register the heart models 

and an iterative closest point algorithm was used to register and align the CAT models for calculation of CAT thickness. 

Rays were cast in directions specified by a spherical parameterization of elevation and azimuthal angles, and intersections 

of the ray with the CAT surface were used to calculate the thickness at each location. To evaluate the effects of the 

spherical parameterization on the thickness estimates, a set of synthetic models were created with increasing 

major-to-minor axis ratios.  

Results: Based on the experimental data from the synthetic models, the average error in CAT thickness ranged from 1.25% 

to 17.3% for increasing major-to-minor axis ratio. 

Conclusions: A process was developed, based on Dixon MRI data, to provide 3D models of the myocardial surface and 

the cardiac fat. The models can be used in future segmentation algorithm development and for studies on changes in 

cardiac fat as a result of various interventions.  
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1. Introduction 

Obesity is associated with significant risk of developing cardiovascular disease [1, 2]. Excess adipose tissue in the human 

body is divided into two main categories: subcutaneous, located below the skin, and visceral, located in the abdominal 

cavity and surrounding the internal organs. One of these ectopic fat depots is associated with the heart and develops 

between the myocardium and visceral pericardium. This fat deposit is known as epicardial adipose tissue (EAT). There 
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can also be additional adipose tissue between the visceral and parietal pericardium; this fat is typically referred to as the 

paracardial adipose tissue (PAT). We subsequently refer to the combined EAT and PAT as cardiac adipose tissue (CAT). 

The CAT is metabolically dynamic and secretes active cytokines that can influence coronary arterial wall homeostasis and 

the development of coronary artery disease (CAD). More specifically, there is no fascia between the myocardium and the 

EAT [3]. The EAT is therefore in direct contact with the coronary vasculature and can maintain an active inflammation 

process and the progression of CAD [4].  

Studies have shown that there is a strong relationship between CAT volume and CAD [4, 5]. CAT volume correlates directly 

with both the presence of CAD and severity of stenosis, but the relationship also extends beyond the volume of plaque 

alone. Soft, smaller heterogeneous plaques (“mixed” plaques), consisting of many different tissue types, but not blocking 

the entire lumen, are more metabolically active and therefore more dangerous. Increased CAT volume, measured by 

cardiac computed tomography (CT), is associated with development of the most dangerous types of plaques [5]. In addition, 

increased CAT volume also suggests increased likelihood of the presence of disease specifically in the left anterior 

descending (LAD) coronary artery [6]. The LAD is particularly significant because it perfuses large areas of myocardium 

around the left ventricle. Because of the strong link between CAT and cardiovascular disease, it is important to develop 

non-invasive, in-vivo quantification techniques.     

Both cardiac CT and cardiac magnetic resonance imaging (MRI) have proven useful in quantifying CAT [5-11]. MRI has 

emerged as a highly effective imaging modality for identifying whole body fat and ectopic fat depots [12]. “Dixon” 

technique sequences create a registered set of in-phase (IP) and out-of-phase (OOP) image volumes and can be used to 

highlight adipose tissue by producing fat-only and water-only images [13]. The three-dimensional (3D) data sets created by 

MRI are rich with information, but most of the work to date has focused on quantifying overall volume and has not 

assessed the distribution of the CAT [9, 11, 14]. In addition, automated and semi-automated algorithms have been developed 

to assess CAT volume from cardiac MRI, aiding in the cumbersome process of analyzing the large number of images 

involved with the 3D scans [15, 16]. In a previous study, our group has also worked to develop and test an automated 

segmentation algorithm to identify the CAT in 3D Dixon MRI images [17]. In addition, the shape of cardiac structures has 

been investigated extensively. Statistical shape models (SSMs) have been built to facilitate quantification and 

non-invasive measurement of cardiac structures and related functional parameters [18-22]. However, these studies have 

focused on atria and ventricles. Little work exists to investigate and model the CAT, including its quantity and distribution. 

The paracrine activity of the CAT is local in nature and the proximity of this adipose tissue to the coronary arteries may be 

an important aspect of cardiovascular risk dynamics. Therefore, the objective of this study was to develop a 

three-dimensional model for assessment of CAT distribution. 

2. Methods 

2.1 Image Data Acquisition 

The models were created using MRI scans of 10 female subjects enrolled in a study of exercise intervention on excess 

adiposity. Volunteer subjects were healthy, between the ages of 18 and 30 years old, and had BMI values between 30 and 

39.99 kg/m2 (Obesity Class I and II). Subjects were excluded if they had one or more of the following six characteristics: 

(1) at risk for cardiovascular events, (2) pregnant, (3) were on medications affecting endocrine or cardiovascular function, 

(4) have high blood pressure, (5) are already engaging in strength-training more than twice per week or any type of 

moderate-high intensity exercise program, and (6) are smokers. The study was approved by the local Internal Review 

Board and informed consent was agreed upon by each volunteer subject. 

For the MRI acquisition, coils were used to acquire data from both the thoracic and abdominal cavities using a 3.0 T Skyra 

system (Siemens, Munich, Germany) and a multi-echo T1-weighted Volumetric Interpolated Breath-hold Examination 

(VIBE) 2-point Dixon imaging sequence [23, 24] with a 20-second breath hold (TR/TE = 3.97/1.23 ms, flip angle = 9°). 

During image acquisition, subjects lay in a supine position, arms extended above their head, and support pillow beneath 

their knees. Image volumes with 120 slices (2.5 cm thick with 20% gap) and 320 x 260 pixels in each slice were acquired 

over a field-of-view (FOV) of 45 cm. Based on this geometry, the effective voxel size was 1.40625 x 1.40625 x 3.0 mm. 

The IP and OOP registered image volumes were used by the scanner software to reconstruct the fat-only and water-only 

images.  

2.2 Image Analysis and Modeling 

The automatic segmentation software used in this study for identification of the heart was developed and implemented in 

MATLAB (MathWorks, Natick, MA). Briefly, the MRI volumes were analyzed in three main steps: (1) rectification of the 

volumes from the 2 coils, (2) labeling of anatomical landmarks to facilitate segmentation, and (3) a sequential 

segmentation of anatomical structures and ectopic fat depots. Details of the algorithm are described in previous work [17]. It 
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provides segmentation of both the heart and the cardiac fat. The labeled images from the segmentation algorithm were 

further post-processed prior to extracting the heart and fat contours. An additional morphological opening and closing 

operation, using a circular structure element of radius 3, was used to smooth the boundaries of the shape. Then, contours 

were extracted from the labeled binary images using the Moore-Neighbor tracing algorithm [25] and saved for use in the 

modeling process. An example image slice with the labeled heart pixels and extracted heart contours is shown in Figure 1. 

Corresponding CAT pixels and extracted CAT contours are shown in Figure 2. 

 

Figure 1. Example heart segmentation 

Example Dixon MRI (water-only) image (a) and segmented heart (b).  A close-up of the segmented heart is shown in (c) 

and extracted heart contours (in yellow) are illustrated in (d). 
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Figure 2. Example CAT segmentation 

Example Dixon MRI (fat-only) image (a) and segmented cardiac adipose tissue (CAT) (b).  A close-up of the segmented 

CAT is shown in (c) and extracted CAT contours (in yellow) are illustrated in (d). 

The contours extracted from the segmented heart were imported into NX10 (Siemens PLM Software, Plano, TX) and used 

to build the 3D heart models. First, a spline was fit to the in-plane contours, approximating the data points, but smoothing 

the shape and providing structure. The tradeoff between the closeness of fit to the data points and the smoothness of the 

spline contour was adjusted manually for each set of contours from each image slice. Through-plane guide curves were 

also extracted from the original data points (every 15 degrees) and used to give the model structure along the direction of 

the long axis. The process was repeated using the cardiac fat contours to create the model of the adipose tissue. An 

example interim model with guide curves and completed model with both heart surface and fat layer is shown in Figure 3. 

 
  Figure 3. Example model with guide curves illustrated 

The heart surface with guide curves is shown in (a). The fat model, rendered as raw splines, is shown in (b). The fat model, 

rendered as a surface, is shown in (c). 
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Figure 4. Flow chart of algorithm 

The left-side path is used to create the average heart surface and the right-side path is used to calculate the fat thickness 

maps. The two are merged to create the overall surface model with mean fat thickness applied. 

The algorithm for analyzing the quantity and distribution of cardiac fat is shown in Figure 4 and uses the individual heart 

and fat models as inputs. The two major branches of the algorithm are indicated in the flow chart: a formulation of the 

average heart surface model and the computation of the average fat thickness across the surface of the heart for each data 

set. The average heart model was created using Procrustes analysis (step (1) in Figure 4 flow chart), which determines the 

optimal set of translation, scaling, and rotation transformations to align a set of landmarks or points. The heart models were 

represented in polygonal format with a set of vertices and triangular faces. Given X as the set of vertices from one model 

and Y as the set of vertices from another, Procrustes analysis aims to minimize the following in a least-squares sense where 

||X|| is the Euclidean norm of X: 

      (1). 

X and Y are 3 x k matrices (for three-dimensional Procrustes analysis) where k is the number of vertices. α is the scaling 

component (a scalar), β is the reflection and rotation component (a k x k matrix), and δ is the translation component (a 3 x 

k matrix).  Each of these, α, β, and δ are solved for via Procrustes analysis [26]. Once the individual matrices for each model 

(α, β, and δ) were computed, they were applied to the heart models to scale, rotate, and translate them for alignment. An 

example set of heart model vertices, before and after Procrustes registration, are shown in Figure 5. After each of the heart 

models were registered, the average surface was computed by taking the mean location of each of the corresponding 

vertices from the heart models, as indicated by step (2) in the flow chart. 

2
( , )D X Y Y X    
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Figure 5. Example heart vertices from Procrustes registration 

(a) shows the reference points (in blue) and data points (in red) before registration. (b) shows the reference points (in blue) 

and data points (in green) after registration. 

The other branch of the process involved the computation of the distribution of cardiac fat thickness across the surface of 

the heart for each individual model created. For this step, an iterative closest point (ICP) registration algorithm [27] was 

used to determine the appropriate rotation and translation matrices. Traditional ICP algorithms involve a similar construct 

as is shown in Equation (1), but without the scaling component. In this algorithm, the optimal rotation and translation 

matrices are determined using an iterative approach where corresponding points between the reference model and the data 

model are determined using a distance metric for each iteration. The difference between the reference points and the model 

points, as modified by the proposed rotation and translation matrices, is minimized iteratively in a least-squared sense until 

the convergence criteria are met or a maximum number of iterations is reached. The specific algorithm used here, proposed 

by Bergstrom and Edlund, is modified to limit the influence of outliers by re-weighting the least-squares problem for each 

iteration [27]. This step is represented in the flow chart (Figure 4) in step (3). The translation and rotation matrices 

determined for each individual model (based on the same reference model for each) were applied to the vertices of the fat 

model to align them and create a common frame of reference for fat thickness computation, denoted by step (4) in the flow 

chart. An example set of vertices from aligned fat models are shown in Figure 6a. 

 
Figure 6. Fat thickness calculation 
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Two registered sets of fat model points are shown in (a). (b) illustrates the ray (in red) that is cast from the center of the 

model and used for fat thickness computation. The triangle that the ray intersects with is highlighted in yellow.  (c) 

illustrates an example of 2 intersection points that would be used for the thickness calculation along the ray and (d) is a 

close-up of the intersected triangle. 

Once registered to the common frame of reference, the thickness of fat was calculated across the surface of the heart (step 

(5) in the flow chart). The sampling strategy for the locations of fat thickness was based on a spherical parameterization 

(θ,φ) where θ represents the azimuthal angle (angle from positive x-axis) and φ represents the elevation angle (angle from 

the x-y plane). The points on the fat model were translated so that the origin of the 3D coordinate system was at the 

centroid of the model points. Then, for each pair of angles for θ from 90° to -90° and for φ from 0° to 360°, a ray was cast 

from the origin in the direction indicated by the pair of angles. To compute the fat thickness map for the (θ,φ) 

parameterization, intersections of the ray with the fat model were calculated. The models were represented as a set of 

vertices and triangular faces and the required intersection points were determined using a ray/triangle intersection 

algorithm [28]. The ray can be represented as shown in Equation (2) 

      (2) 

where R is the set of (x,y,z) coordinates of the ray vector, O is the origin, D is the set of (x,y,z) coordinates of the ray 

direction, and t is the distance along the ray. In the formulation used here, the directions, D, of each ray to use for the 

parameterization map were determined by converting from spherical to Cartesian coordinates, as shown in Equations (3), 

(4), and (5) 

           (3) 

            (4) 

                   (5) 

where r is chosen to ensure that the Cartesian point is sufficiently distant from the origin to be outside potential model 

surface intersections. Locations across the planar surface of each individual triangle are given by Equation (6) 

          (6) 

where u and v are the barycentric coordinates and V1, V2, and V3 are the three vertex locations of the triangle. The 

intersection between the ray and any given triangle, therefore, can be determined by setting Equations (2) and (6) equal to 

each other, rearranging the terms, and then solving the system of linear equations [28]. 

The fat deposits near the base of the heart and the ostia of the right coronary artery (RCA) and the left main coronary artery 

create non-trivial surface topologies in the fat models. They are not “connected” surfaces, meaning that there may be some 

points on the surface model that are not connected by a path along the surface to other points on the model. In other words, 

there could be multiple “objects” associated with the model surface. The fat thickness at any given (θ,φ) location was 

calculated as the total, accumulated thickness of adipose tissue that the ray traveled through as it passed through the model. 

This concept is illustrated in Figure 6b and 6d, where the intersected triangles on the surface are shown in yellow. 

Ray/triangle intersections, in Cartesian coordinates, were taken in pairs to calculate the adipose tissue thickness along that 

particular angle defined by the (θ,φ) location. The Cartesian coordinates of each point were used to compute adipose tissue 

thickness for each pair of intersections, as shown in Figure 6c and Equation (7). 

      (7) 

The adipose tissue thickness Rfat, in mm, was recorded for the fat map based on the (θ,φ) spherical parameterization. 

This process was repeated for all 10 models, and the resulting maps were used to compute an average fat thickness, as 

indicated by step (6) in the flow chart in Figure 4. The last step, indicated by step (7) in the flow chart, involved applying 

the average fat thickness values to appropriate locations on the average heart model. The mapping of locations of the 

average fat thickness to the average heart surface model was performed using the (θ,φ) spherical parameterization. For 

each vertex on the model, the x, y, and z Cartesian coordinates were converted to spherical coordinates using equations (8) 

and (9) as shown 

 R t O tD 

   cos cosx r  

   cos siny r  

 sinz r 

    1 2 3, 1T u v u v V uV vV    

2 2 2 2 2 2

2 2 2 1 1 1fatR x y z x y z     
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     (8) 

              (9). 

This (θ,φ) coordinate pair was used as in index into the average fat map and the closest value was used as the fat thickness 

for that location on the heart surface. Bilinear interpolation was used to determine fat thickness values for shading of the 

model between vertices. 

2.3 Synthetic Model Experiments 

To evaluate the effects of the spherical parameterization on the thickness estimates, a set of synthetic models were created. 

The first was spherical, but the remaining models were ellipsoids and created with a major axis increment of 10 mm. The 

minor axes were held constant at 110 mm.  

Table 1. Dimensions of synthetic models created for error assessment. All measurements are in mm. 

Model 
Inside 

Minor 

Outside 

Minor 

Inside 

Major 

Outside 

Major 
Thickness 

Synthetic_1 102 110 92 100 8 

Synthetic_2 102 110 102 110 8 

Synthetic_3 102 110 112 120 8 

Synthetic_4 102 110 122 130 8 

Synthetic_5 102 110 132 140 8 

Synthetic_6 102 110 142 150 8 

Synthetic_7 102 110 152 160 8 

Synthetic_8 102 110 162 170 8 

Synthetic_9 102 110 172 180 8 

Synthetic_10 102 110 182 190 8 

      

Table 1 provides the dimensions of the ten models used for error assessment. The spherical model was created with inner 

radius of 102 mm and outer radius of 110 mm. The top was opened by trimming the model corresponding to a plane offset 

by 45 mm from the center of the sphere. For the ellipsoid models, ellipses in the Y-Z plane, with 8 mm between them were 

revolved around the Z axis. The same trimming operation was performed to create the opening in the top. Each of these 

models was used as input to the thickness measurement algorithm outlined in Step 5 shown in the Flow Chart in Figure 4. 

The thickness measurements for each synthetic model were averaged and compared to the known thickness for each model. 

The average error rate was compared to the ratio of major-to-minor axis length (from the outer surface) for each model. To 

approximate major and minor axes lengths for the fat models used in this study, a least-squares ellipsoid fit was performed. 

This provided a means for comparison to the error assessment data from the synthetic models. 

3. Results 

Two example cardiac fat maps are shown in Figure 7a and 7c, with fat thickness in mm denoted for each coordinate pair of 

the spherical parameterization of (θ,φ) indicated along the x-axis and y-axis of the maps, respectively. In addition, the 

application of the fat thickness to the heart model surface, via interpolated shading, is shown for both example models in 

Figures 7b and 7d. The mean fat thickness for all 10 models is shown in Figure 8a and the corresponding heart model with 

mean fat thickness indicated via interpolated shading is shown in Figure 8b. In addition, the associated standard deviation 

map and corresponding painted heart model are shown in Figures 8c and 8d, respectively. 

In the synthetic models, the average percent error for the spherical model was 1.25%. However, the average percent error 

for the synthetic model with the longest major axis was 17.3%. Figure 9 shows a plot of the average percent error versus 

the ratio of major to minor axis length of the synthetic models, with images of the models included for visual reference. 

Figure 10 shows an example of an ellipsoid fit to the vertices of one of the fat models. Based on this process, the average 

major to minor axis ratio was 1.59 (± 0.24). For a ratio of 1.6, the synthetic models demonstrated an average percent error 
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of approximately 14-15%, which, for the 8 mm thick models, would correspond to an average error of approximately 1.2 

mm. 

 

Figure 7. Example results 

Example fat maps are shown in (a) and (c) and the corresponding heart surface models with fat thickness applied are 

shown in (b) and (d), respectively. 

 



http://jbgc.sciedupress.com                                                                Journal of Biomedical Graphics and Computing, 2018, Vol. 8, No. 1 

Published by Sciedu Press                                                                                                                                                                                     23 

 

Figure 8. Mean results 

Mean fat thickness map (a) and mean heart surface model (b) with fat thickness applied. Also shown are the associated 

standard deviation map (c) and standard deviation heart surface model (d). 
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Figure 9. Synthetic models 

Plot of average percent error versus major-to-minor axis length ratio for model error assessment. An illustration of each 

model is included above the corresponding data point for visual reference. 

 

Figure 10. Example ellipsoid fit 

Example ellipsoid fit (in green) to an example set of fat model vertices (in red). The resulting major-to-minor axis length 

ratio was used for comparative assessment with the synthetic model data. 
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4. Discussion 

MRI and CT provide volumetric 3D image data sets that can be used to quantify cardiac fat, but they are expensive 

imaging modalities and not widely available. Echocardiography, a real-time imaging modality that is substantially less 

expensive than MRI or CT, has also been used to measure cardiac fat [29]. However, typically only single, linear thickness 

measurements are taken from the free wall of the right ventricle [30, 31]. Little work assessing the distribution of fat or how 

it may change with respect to time is available. The model built in this study demonstrates that, while the epicardial and 

paracardial fat does tend to deposit near the coronary arteries and in the interventricular groove, there is a range of 

thicknesses and locations of cardiac fat. A SSM built from previously acquired MRI data, incorporating the layer of fat, 

could be used in conjunction with echocardiography to provide volumetric information without requiring live MRI or CT 

imaging, overcoming the limitations of single thickness measurements at one location on the right ventricle. An 

echocardiographic-based system could provide assessment of cardiovascular risk, via the cardiac fat volume and 

distribution, in a manner substantially less expensive than MRI or CT. In addition, a system like this could be used to study 

the effect of intervention, including exercise, nutrition, or other treatments, on the distribution of the cardiac fat, without 

requiring subjects to go to MRI or CT scanners. 

The quality of any model is only as good as its input. The Dixon MRI image data sets used as the source of the contours for 

this study were designed to provide fat quantification for more than just cardiac depots and were not ECG-gated. Therefore, 

the identification of the epicardial fat (inside the visceral pericardium) separate from the paracardial fat (between the 

visceral pericardium and the parietal pericardium) was challenging and not attempted for this specific model. They were 

combined into one depot and labeled cardiac fat. The quantification of the thickness and distribution of cardiac fat in 

general is not well studied or described in the literature and this model will serve as a foundation to build upon for 

segmentation algorithm development and for studies in cardiac fat changes with intervention. Additional data can be 

added to the model, based on cardiac MRI data, as it is available and the model can be evolved to distinguish epicardial 

from paracardial fat. In addition, the heart and fat contours were extracted from segmented binary images. The 

segmentation algorithm was described and tested [32], but further validation of its accuracy would lend more confidence to 

the model. 

The model in this study was built using a spherical parameterization. This has several implications – the first of which is 

related to the typical deposition of the fat. The primary distribution of the fat is across the surface of the myocardium, 

forming a closed surface with the inner layer of that surface in contact with the myocardium. With this configuration, 

radial thickness measurements, as derived from the spherical parameterization align well and fit the topology of the 

surface. However, near the ostia of the coronary arteries, there is often additional fat that appears “inside” the heart when 

performing the segmentation in this study. Therefore, the simple model of the heart being on the inside and the fat being on 

the outside does not hold true for the entire surface. This being the case, the approach for making the fat thickness 

measurements can be thought of as projecting the fat thickness onto the inside of a sphere – areas of the (θ,φ) spherical 

parameterization where the cast ray intersects additional deposits of fat result in thicker measurements for that location in 

the map. This effect can be seen in Figure 9a, near elevation angle 80° - 40° and azimuth angle 240° - 300°. It can also be 

observed on the surface model with fat thicknesses color-coded (Figure 9b). The other artifact of the spherical 

parameterization is that the “north pole” of the sphere, a single point, maps to the entire first line in the maps of cardiac fat 

(elevation angle 90° and azimuth angle 0° - 360°) and the “south pole” maps to the entire last line (elevation angle -90° and 

azimuth angle 0° - 360°). This artifact affects the fat images, but once mapped back onto the heart surfaces, the visibility of 

the effect is minimized because the mapping is performed in reverse.   

An additional consideration of the spherical parameterization is what effect it may have on the approach presented for fat 

thickness measurement. As expected for a spherical model, the error is small but increases linearly as the model stretches 

along the major axis, as shown in Figure 9. Based on the ellipsoid fit to the fat models, the average ratio of major to minor 

axis length was 1.59 (± 0.24). In reference to the plot in Figure 9, this would correspond to approximately 14-15% error in 

the fat thickness measurement. While this degree of error is not overwhelming and likely within the resolution of the MRI 

image data, improvements in the parameterization could reduce the error. In addition, a modified parameterization would 

allow a modified approach to the direction of the thickness measurement. For example, normals from the heart surface or 

from the inner surface of the fat model could be calculated and used to provide a direction for thickness computation that is 

improved from the current spherical approach where rays are cast from one central point. 

While the two-dimensional maps of fat thickness alone and the map of mean fat thickness for all 10 models provides 

information regarding the distribution of cardiac fat, the 3D model required a mean heart surface to act as the substrate for 

visualization. Many approaches exist for the generation of cardiac models, though most prior work has been focused on the 

ventricles and the ventricular walls for use in analysis of cardiac function [33]. Typically, models are created via matched 

sets of landmarks from each of the training data sets. Frangi et al. developed models of the left and right ventricle using a 
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multi-resolution non-rigid registration technique and a custom approach for automated landmark identification [34]. 

Lotjonen et al. used a similar approach, but included the atria in their modeling [18]. Lorenz and von Berg presented a more 

comprehensive model and included both the coronary arteries and the large vessels [20]. They used a deformation algorithm 

to match a surface model to the image data to identify surfaces for each image data set and used Procrustes registration to 

determine a mean surface model. In this study, the myocardial surface models were registered in a similar manner using 

Procrustes analysis, where point-correspondence was assumed between corresponding vertices of each mesh. The 

advantage of this approach is that no landmark identification was necessary, as is typical for point-distribution models 

(PDMs). However, a bias towards the reference mesh can result. 

A process was developed, based on Dixon MRI data, to provide 3D models of the myocardial surface and the cardiac fat. 

Because the fat was identified and included in the modeling process, the models provide a means to assess CAT thickness 

and distribution on the myocardial surface. The models were aligned into a common frame of reference using an ICP 

registration algorithm, facilitating the creation of fat thickness maps for each model. The thickness measurements were 

created by casting rays, computing intersections with the fat surface model, and accumulating thickness. An average heart 

surface was created using Procrustes analysis and the mean fat thickness map was applied to the average heart surface 

model for visualization and assessment of fat distribution. Experiments were performed to assess the error resulting from 

the spherical parameterization used. Synthetic models were created, with successively larger major-to-minor axis length 

ratios, and used as input to the thickness computation algorithm. The average percent error versus major-to-minor axis 

ratio was calculated. Ellipsoids were fit to the fat model points to provide an approximate major-to-minor axis ratio for the 

model data and provide a comparative assessment with the errors derived from the synthetic data. The data from the model 

error assessment suggests that the process developed in this study provides valid and meaningful information regarding fat 

thickness and its distribution across the myocardial surface.  

The current study is limited in that only 10 MRI scans have been used to create the current model. However, this work 

demonstrates a framework that can be used moving forward and data from other studies can be added to improve the 

robustness of the model. Additional validation of the segmentation algorithm would also strengthen the process. Future 

work will investigate the integration of the model itself into the segmentation strategy to improve the utilization of a priori 

shape information. The model developed here can be used for both MRI segmentation and as a basis for an 

ultrasound-based system where volume measurements can be created by registering ultrasound image planes to the 3D 

model and a deformable model or active surface algorithm is applied based on the CAT identified in the ultrasound planes. 
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