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Abstract 
Objective: The aim of this investigation was to validate our numerical model of type B aortic dissection with our 
experimental results from a bench-top-model.  

Methods: Various numerical meshes were constructed using a finite-volume based computational fluid dynamics (CFD) 
solver (ANSYS Fluent 15) to simulate pulsatile flow and pressure in dissected aorta models. The κ-ω Shear Stress 
Transport (SST) turbulence model was imbedded. All simulations were carried out for four cardiac cycles to achieve a 
periodic solution, and the results obtained in the fourth cycle were used in the validation.  

Results: We validated the numerical results, for several tear size and location, with our experimental data. CFD results of 
type B aortic dissection with various tear size and location were strongly correlated with the in vitro results.  

Conclusions: CFD tools have a potential role in evaluating different scenarios and aortic dissection configurations. 
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1 Introduction 
Acute aortic dissection is a life threatening condition with a death rate of 1% - 2% per hour after symptom onset [1]. Aortic 
dissection is a tear within the inner layer of the aortic wall that allows blood under pressure to advance within the media as 
a dissecting intramural hematoma. The result is a two lumen channel separated by a septum or dissection flap that consists 
of intima and part of the media. Aortic dissection may propagate either distally or proximally from the entry tear and may 
involve vessel branches [2, 3]. Most dissections have additional distal tear(s) through which blood may enter and egress the 
false lumen. This double lumen arrangement creates the mechanical conditions responsible for both acute complications 
(visceral and lower extremity ischemia) and chronic ones (development of thoracic aortic aneurysms). 
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Numerical simulations of a type B aortic dissection present special complexities. There are two parallel flow channels of 
different outflows and elastic properties. The communication between the two channels (“tears”) may be single or multiple 
and of variable sizes. In recent years, numerical methods for modeling the aorta have been increasingly used in the study of 
its diseases [4-9] and its treatment with medical devices [10-15]. Few studies have focused on modeling the hemodynamics of 
aortic dissection. Tse et al. [16] used computational fluid dynamics (CFD) to study the hemodynamics of development of a 
dissecting aneurysm. This study used a patient-specific dissected aorta and assumed rigid aortic walls. Blood flow was 
assumed laminar and incompressible Newtonian fluid. Velocity and pressure waveforms applied at different locations of 
the aortic model were obtained from various articles in the literature. Fan et al. [17] used CFD in an idealized geometry of an 
aortic dissection model to assess the effect of three features: ratio of the area of the false lumen to that of the true lumen, 
size of the reentry tear, and position of the reentry tear, on the post–operative risk analysis after endovascular stent graft 
deployment. To simplify their model, the aortic wall and the intimal flap were assumed rigid and the renal, celiac, superior 
mesenteric artery and iliac arteries were not represented.  Pulsatile velocity inlet and pulsatile pressure outlet waveforms 
were used.  

Soudah et al. [18] applied CFD methodology to the characterization of hemodynamics in an idealized geometry of chronic 
aortic dissection (rigid flap) and validated it with in vitro results [19]. No branches were included in their model. Time- 
dependent velocity and pressure waveforms taken from the in vitro experiments 19 were applied as boundary conditions to 
the model. There were large differences in the results obtained from CFD simulations and experimental measurements [19] 
when they compared the results of their flexible physical model (The true lumen wall was made of silicone and the false 
lumen outer wall of latex) with their rigid CFD model. Karmonik et al. [20] provided CFD simulations with aortic 
dissection models derived from MRI image data to study the pressure changes in a laminar numerical model when 
covering entry and exit tears and removing the intra-arterial septum. Their boundary conditions were unrealistic: they 
assumed zero pressure outlet boundary conditions for the innominate, left common carotid, left subclavian, celiac and 
superior mesenteric and renal arteries. Pressure is pulsatile and cannot be assumed constant at these locations. Khanafer 
and Berguer [21] showed how dissections develop and progress in an idealized simplified descending aorta numerical 
model: the media layer undergoes larger wall stress than the intima and adventitia layers which is an important factor in the 
development of aortic dissections. 

Advances in computational techniques have provided us with an essential tool for the investigation of diseases such as 
aortic aneurysm and dissection, where the integrity of the aortic wall is determined by hemodynamic factors. To the best of 
our knowledge, there are only a limited number of numerical studies in the literature to model flow and mechanical 
stresses in aortic dissection and they all consisted of studies using either non-synchronized (i.e. from different sources) 
boundary conditions at the inlet and outlet locations of the model or geometries of aortic dissections without branches. The 
aim of this investigation was to build a verifiable numerical model of aortic dissection against our experimental results of 
a bench-top-model of a type B aortic dissection for various tear sizes and location. Numerical analysis permits the 
computation of mechanical forces in structures of irregular geometry or submitted to variable and extreme physical 
conditions. A clear advantage of numerical models over their animal counterparts is their ability to test multiple variables 
simultaneously. Animal models are limited since they only allow for testing of a few variables per experiment and animal. 
In contrast, a numerical model can display the effects of many variables, as well as the effects of these variables among 
themselves. 

2 Methods 

2.1 Mathematical formulation 
Three-dimensional Computer Aided Design (CAD) software (Solid Works Corp.) was used in this investigation to create 

an aortic dissection model with normal human geometry. To this model, we assigned variable tear sizes and location as 

shown in Table 1. A schematic diagram of the model is shown in Figure 1a. The physical model used in this validation had 
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In these equations, ρ is the density, t is the time, x is the coordinate, kG represents the generation of turbulence kinetic 

energy due to mean velocity gradients, Gω  
represents the generation of ω, kΓ  and ωΓ  represent the effective diffusivity of 

k and ω, respectively. kY  and Yω  
represent the dissipation of k and ω due to turbulence, Dω  

represents the cross-diffusion 

term, kS  and Sω  
are user-defined source terms. The modeling of these variables is given in the theoretical manual of 

ANSYS Fluent 15.0 software. 

2.4 Numerical scheme 
We used a finite volume solver (ANSYS Fluent 15.0) to solve the Reynolds averaged Navier-Stokes equations. Second- 
order upwind scheme was used for spatial discretization in momentum and turbulence model equations. Moreover, second 
order implicit scheme was used for transient formulation. Mesh independence tests were carried out and the results showed 
that the mesh consisting of 150,246 4-Node tetrahedral elements in total with local refinement in the tear region was 
adequate (see Figure 1b). The Newton-Raphson method was used to solve the discretized equations in the fluid region.  
The solution was assumed to have converged when the relative change in the dependent variable between two successive 
time steps was < 10-4 as shown below: 

                                                   41
,,

1
, 10−++ ≤−  γγγ λλλ jijiji                                                        (3) 

where γ
i, jλ  represents any particular dependent variable at time step γ. All simulations were carried out for four cardiac 

cycles to achieve a periodic solution, and the results obtained in the fourth cycle are presented here. This cycle was divided 
into fixed uniform time steps of 0.005 s. 

3 Results 
In this section, we compared our in vitro pressure waveforms in false and true lumens with their numerical predictions. 
Simulations were carried out for four cardiac cycles to achieve a periodic solution. Synchronized pressure boundary 
conditions obtained from our in vitro measurements were applied at the inlet and outlet branches of the numerical model. 
The results presented below are based on the information output in the final cycle. 

3.1 Comparison between experimental and numerical results of 65 mm2 
proximal tear and different distal tear size models 
Our numerical scheme was first validated against the in vitro experimental results for 65 mm2 proximal tear and different 
distal tear size models as shown in Figures 3-5. Pressure was measured in true and false lumens of the in vitro experimental 
model at a distance of 125 mm from the top of the aortic arch and was used to validate the values predicted by the 
numerical model in the same location. Figure 3 shows a good correlation between the numerical and in vitro experimental 
results of 65 mm2 proximal tear model (maximum relative error true lumen 3.8%, false lumen 0.85%). The effect of the 
distal tear presence of 20 mm2 and 40 mm2 on the pressure waveforms in both true and false lumens were depicted in 
Figure 4 and Figure 5, respectively. Excellent correlation was obtained between the pressure results in true and false 
lumens as shown in Figure 5 and Figure 6.  
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4 Discussions 
The present CFD tool was validated in different bench-top models of aortic dissection models representing different 
scenarios of proximal and distal tears. The numerical results were in excellent correlation with our in vitro measurements 
of pressure waveforms in true and false lumens. This study showed that CFD tools have a potential role to correctly 
capture the main features of pressure traces recorded in vitro of type B aortic dissection with various tear size and location. 
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