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Abstract 

Relative forecast performance of forecast units may periodically evolve over time. Therefore, it is desirable to take 
into account their forecast periodicity when forming forecast combinations. When dealing with small samples and 
small number of models, using panels is an efficient way of pulling out the additional information provided by that 
periodicity in the data. We capture this periodic information with different weights at different periods that we then 
keep in the out-of-sample combination. As in the simple average, we do not estimate weights, but instead compute 
them from panels of forecasts taken as given data. Empirical and bootstrap exercises illustrate the superiority of this 
method over fixed weight schemes. 

JEL Codes: C11, C22, C53 

Keywords: Forecast combination puzzle, Period-based weights, Panel decomposition, Changing seasonality, 
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1. Introduction 

1.1 General 

Faced with multiple forecasts of the same variable, an issue that immediately arises is how best to exploit 
information in the individual forecasts. It is well known, from a simple portfolio diversification argument, that unless 
one can identify ex ante a particular forecasting model that generates smaller forecast errors than its competitors and 
whose forecast errors cannot be hedged by other models' forecast errors, forecast combinations offer diversification 
gains that make it attractive to combine individual forecasts rather than relying on forecasts from a single model. Its 
success will depend, however, on how well the combination weights can be determined (Timmermann, 2006). 

The simplest example of a combination is that of the average of model forecasts. More sophisticated methods of 
combinations, however, usually do not improve it in empirical applications. Some authors have called this fact as 
forecast combination puzzle (e.g. Stock & Watson, 2004). Many of them consider that this puzzle is due to the 
instability of the estimated weights (e.g. Smith & Wallis, 2009). The usual low accuracy of the combinations based 
on estimated weights relative to those based on fixed weights normally reflects a poor small-sample approximation of 
optimal population weights by estimated weights. In small samples, estimation of weights requires that the number 
of individual models, J, be smaller than the number of observations, T1, in a training sample. To get close to an 
optimal weighted forecast, we need a large J, but then, as J increases, we need to estimate an increasing number of 
weights (curse of dimensionality) that works against forecasts based on estimated weights, increasing their MSE 
when J approaches T1. Besides, in the limit when (J, T1) → ∞, a feasible bias-corrected average forecast is an 
optimal forecast identical to the conditional expectation (Issler & Lima, 2009). 

1.2 Literature Review  

While a forecast combination that assumes constant weights follows naturally in the case with a time-invariant 
distribution for the forecasts and realizations, outside this framework it has been useful to consider more general 
combination schemes by explicitly modeling time-variation in the weights: Smooth time-varying parameter model 
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(Zellner, Hong, & Min, 1991), switching indicator model (Deutsch, Granger, & Terasvirta, 1994) or a mixture model 
(Elliott & Timmermann, 2005). Stock & Watson (2004) find that the best combination method in terms of MSFE is 
the simplest one (equal weights) or combinations with weights that change little over time; Yang (2004) developed 
AFTER (Aggregated Forecast Through Exponential Re-weighting) an algorithm to form time-varying weights in the 
combination; Zou & Yang (2004), Sánchez (2008), and Wei & Yang (2012) proposed some modifications of the 
AFTER algorithm; Ravazolo, van Dijk, & Verbeek (2007), and Terui & van Dijk (2002) proposed to estimate the 
weights using state dependent models and Kalman filter estimation of the weights. Recent proposals are Guidolin & 
Fangzhou Na (2007) and Guidolin & Timmermann (2009). In these cases, the weights vary according to a switching 
model with different states, suited to capture the presence of time-variation (structural shifts) in the predictability. 

Alternatively, we find that the changing relative forecast performance often encountered in the literature 
(García-Ferrer, Bujosa, de Juan, & Poncela, 2006) is mainly due to (and we can take advantage of) periodical 
variations in the data; in particular, it is advisable the use of seasonally unadjusted data (Matas-Mir, Osborn, & 
Lombardi, 2008). This periodicity in the data is in most cases caused by an evolving seasonality that may not be well 
captured by standard models with stationary seasonality. Whereas seasonal ARIMA models have become standard 
tools for univariate forecasting, periodically integrated time series models are rarely used in the empirical literature. 
Apart from examinations of theoretical properties of periodic time series models (Boswijk & Franses, 1996; Franq, 
Roy, & Saidi, 2011), there are few papers reporting on the performance of these models applied to economic data. In 
most cases under study, it is shown that periodic models improve the in-sample fit considerably whereas they are 
inferior with respect to ex-ante forecasting (Herwartz, 1999). Other times, forecasts improve by using a combination 
with weights that vary over periods (Novales & Flores de Frutos, 1997). 

Our approach may be related to the work on forecast combination (Bates & Granger, 1969; Deutsch et al., 1994; 
Guidolin & Timmermann, 2009; Granger & Ramanathan, 1984; Hoogerheide, Kleijn, Ravazzolo, van Dijk, & 
Verbeek, 2010, LeSage & Magura, 1992), dimension reduction (Poncela, Rodríguez, Sánchez-Mangas, & Senra, 
2011); periodic ARMA models (Basawa & Lund, 2001; Boswijk & Franses, 1996; Franq et al., 2011; Franses & 
Paap, 2004; Herwartz, 1999; Jones & Brelsford, 1967; Novales & Flores de Frutos, 1997; Osborn & Smith, 1994), 
panel-data methods (Issler & Lima, 2009). 

1.3 Objective 

In this paper, we propose a forecast combination procedure for the case of periodic data. Given a set of J forecasts 
for a (seasonal) time series with M seasons (panels), we split the data into M panels. For each panel, the weights are 
built on a decomposition of the variability of the forecasts. The variability (sum of squares of the difference between 
each prediction and the overall mean for the panel) is decomposed like in a two-way fixed effect ANOVA model, with 
one factor being the forecast unit, and the second factor being the time. For each panel, the overall mean, the mean of 
each forecast unit (along time) and the mean for each time (across models) are calculated. The historical data are 
treated as fixed. Once the parameters of the ANOVA model (for each panel) are calculated, the weights assigned to 
each combining forecast are based on the variability explained by the forecast units. The larger the distance between 
the mean of the predictions of a forecast unit and the overall mean, the larger the weight. The overall mean is the 
mean of the predictions of all forecast units for that panel. Consequently, actual values of the target variable are not 
used at all, and the relative prediction performance of the alternative forecast units is not needed at all either since 
actual values cancel out in the definition of the Split-then-Combine (STC) weight. 

When dealing with small samples and small number of forecast units, using panels is an efficient way of pulling out 
the additional information provided by that periodicity in the data. As in the simple average, we do not estimate the 
weights (beyond the fact that averages are sample analogues of their population counterparts). Our STC approach 
uses a panel decomposition of forecasts as an instrument to extract their fixed effects. Then, panel-varying weights 
adapt quickly to structural changes or breaks take into account the relative size of each fixed effect to form the STC 
combination which is kept in the out-of-sample period. In summary, we aim for weights that are (i) Not built upon 
forecast errors; (ii) Panel-varying; (iii) Not estimated; and (iv) Unchanged in the out-of-sample forecasting. 

The paper is organized as follows: In Section 2, we introduce the terminology and set forth the panel decomposition. 
In Section 3 an empirical analysis is carried out to assess and compare the STC and other combinations. Section 4 
presents the results of a bootstrap experiment. Finally, Section 5 concludes and puts forward some lines for future 
research. 

2. Panel decomposition and the STC approach 
Consider two periods: A panel period from 1 to T1 and an out-of-sample period from T1 +1 to T2 -h, where h denotes 
a forecast horizon. In the first one, we are given forecasts from J forecast units. The second one is then used to 
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compute and assess a forecast combination. In the STC approach, we first split the 1T J   forecasts into M panels 

with  1 /T M J forecasts each one,  1,...,m M . Then, we choose J weights,   1,...,j J , to compute the 

STC combination for that m. 
Table 1. Panel decomposition in fixed and aggregate effects for panel ,m h steps ahead  forecasts 
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2.1 Fixed, aggregate, and residual effects 
We can always decompose the panel observations into three components: A fixed effect that captures intrinsic 
characteristics; an aggregate effect that captures common dynamics; and a residual, idiosyncratic error term. For 
panel m, consider the following identity, 
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In particular, 

(i) When the ratio    ( )/m m
AV V   is large, we would expect a combination to capture better the common dynamics of 

forecasts; 
(ii) The proportionate j-fixed effect, 
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defines our panel-m, sum-one STC weights  1,...,j J that form the combination 
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It is important to note that: 

  1.- The larger the distance between the mean of the predictions of a model and the overall mean, the larger the 
weight; i.e., the more different the model, the more informative its fixed effect is. 

  2.- We do not use the actual value of the target variable to compute the weights. 

  3.- Real out-of-sample forecasting is done; 

  4.- Weights vary for every forecast unit and panel. 

  5.- Only the restriction that the weights sum to unity is used. 

  6.- The procedure is valid for any forecast horizon. 

  7.- If an outlier or break is in the panel period, the STC weights will adapt as soon as the forecasts do. 

  8.- If an outlier or break is in the out-of-sample period, nothing can be done. The combination will, in general, be 
biased. However, as pointed out by Elliot & Timmermann (2005) or Guidolin & Fangzou Na (2007), time-varying 
weights will usually capture the presence of structural shifts in the target variable. 

2.2 Sum-one precision (SOP) weights 

To compare the accuracy of our STC procedure, we use the varying-weight SOP combination as a benchmark, 
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j T   is the inverse of the average standard error of the j-forecast unit for panel m. 

3. Application 

3.1 Data collection, variables, and forecasting models 

For this application, we have chosen the variables and models considered in García-Ferrer, de Juan, & Poncela 
(2006). There are three reasons to do so. First, the variables may be freely downloaded from Dirección General de 
Tráfico (Note 1) webpage, so we can easily update the sample at any time; second, these time series cover a long 
period of monthly data from 1975 to 2010 (432 monthly observations); third, the models are already identified and 
easy to implement (Note 2). 

The variables are: ACC (total number of traffic accidents in Spain), ACCR (road traffic accidents), ACCU (urban 
traffic accidents), FAT (fatalities in the following 24 hours after the accident), FATR (fatalities after a road accident), 
INJ (injured passengers), INJR (injured passengers in road traffic accidents), and INJU (injured passengers in urban 
traffic accidents). Therefore, the number of target variables is 8N  . The evolution of the variables in Figure 1 
shows a changing seasonal behavior over time, particularly at the end of the sample. 
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Figure 1. Evolution of the variables in the application. Sample: 1975M1-2010M12 

 
Figure 2. Means by season for each one of the variables 
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This fact can also be appreciated in Figure 2 that shows the average by seasons of each variable. In particular, during 
the summer season, August was by far the most dangerous month in terms of number of accidents, fatalities and 
injured passengers. The changing seasonality implies in our case that the average data for summer months gradually 
shrinks because accidents, fatalities, and injured passengers are spread out over three months (July, August, and 
September) instead of just only one (August). Figure 2 shows a decreasing August and a jumping July and 
September. From the beginning of the sample, August data are the highest, while along the end there are cases in 
which July's are higher. 

Models for each variable are explained in García-Ferrer et al. (2006) and summarized in Table 2. Model 1, 

12(0, 1, 1) (0, 1, 1)sARIMA ARIMA  , is a benchmark with some interventions that pick up several additive outliers. 

The other five are transfer function models. Consistently estimated filters in models 2, 3, and 4 are not nested in 
models 5 and 6. Model forecasts contain different information that allows for model combination with no 
encompassing. The potential problem in a situation where some (or all) of the models we combine are nested is that 
the innovations from nested models can exhibit high cross-sectional dependence, thus preventing a weak LLN from 
holding (Chamberlain & Rothschild, 1983; Stock & Watson, 2002) unless the smallest model is correctly specified. 
Given a correct specification of the smallest model, its population forecast will be the conditional expectation, 
making the bias and residual effect zero, as well as those models that nest it. Any model that nests the smallest, 
correct one will have irrelevant estimated parameters that will converge to zero in probability (Note 3). 
 

Table 2. ( , , )b r s  identified orders in the estimated transfer function models for the variables included in the 
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The triplet ( , , )b r s  correspond to the orders of the polynomials in B in the usual definition of a transfer function 

model, that is: ( )
( ) ,
B b

t By B x Nti t

  , with 0 1( ) ( ... )s

sB B B       , 1( ) (1 ... )r
rB B B       and Nt  is 

the noise of the model usually identified as  (0, 1, 1) (0, 1, 1)
12

ARIMA  .The variables xi,t  are: 

, ,
1, 2, 3,

x IPI x NUVE x CGAS
t t t
     and  4,x CDIESELt  .  All the variables in the transfer function 

models are in logs to achieve the stationarity. 
3.2 The Sample 

(i) First subsample (Note 4): The estimation period is from January, 1975 to December, 1985 with 132 observations 
(11 years of monthly data); 

(ii) Second subsample: The panel period is from January, 1986 to December, 2005 with 240 observations (20 years 
of monthly data). In this subsample, we 

(a) Recursively generate one-, six-, and twelve-step-ahead forecasts for each model  1,..., 6j  and variable 

  1,..., 8i N  ; 

(b) Split into panels: For each forecast horizon  1, 6, 12h  , we classify by months the time dimension of the 

forecast panel to form a twelve-panel decomposition with 120  20 6 month-pegged observations each one. We then 

calculate the STC and SOP weights for each model. 
(iii) Third subsample: A first out-of-sample period is from January, 2006 to December, 2006. This subsample is used 
to assess three combination models; two of them based on panel-decomposition weights, and a third one given by a 
benchmark average of forecasts. We re-do this forecasting exercise for years 2007-2010. 

3.3 Results and Discussion 

In evaluating the forecasting accuracy of a forecast combination over the out-of-sample period, no single error 
measure captures the distributional features of the forecast errors when summarized across data series (Hyndman & 
Koehler, 2006). Hence, we consider several standard accuracy measures commonly used in evaluating the accuracy 
of forecasts (Note 5). In general, we find that APE and FGR are good for medium-term forecasting while the others 
are useful for short-term forecasting. Beside these global measures, we also considered monthly percentage 
prediction errors (PPE). 

The data evolve in a non-stationary manner and exhibit obvious variations in their seasonal patterns. Therefore, we 
expect larger forecast errors concentrated on those months, where seasonality is more variable, that may be 
counterbalanced with longer forecast horizons, thus making the use of RMSE and MAPE not only inappropriate but 
also misleading. Also, the forecast ability of the models is ambiguous. Models M1, M2 and M4 are better in terms of 
PPE and global measures, but none of them is best for all months and all forecast horizons (Note 6). 

3.3.1 Accuracy measures for combinations 

Tables in this section summarize the three combinations used in the Application. We show the results for  ACC only 
(Note 7). Panel models make possible to condition the data generation process of a time series entirely on the season; 
thus, appreciably reducing periodically varying forecast errors. 

Table 3 shows the number of beats across variables and monthly PPE. STC is the best while the Average model is 
the worst. Only in 2008, h = 1, the latter beats SOP. Varying-weight combinations (STC and SOP) outperform, in 
general, the fixed-weight one (Average model). We only find two matches in Average and SOP (2006, h = 6 and h = 
12). 
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Table 3. Number of beats across variables and percentage prediction errors (%) - Forecast Combinations 

   ( )P

My   ( )STC

My  
T ly   

Total 

2006 1h   27 44 26 97 
 6h   24 50 24 98 
 12h   25 48 25 98 
 Total 76 (25.9) 142 (48.5) 75 (25.6) 293 
2007 1h   29 45 25 99 
 6h   34 39 26 99 
 12h   27 45 24 96 
 Total 90 (30.6) 129 (43.9) 75 (25.5) 294 
2008 1h   29 39 30 98 
 6h   41 42 14 97 
 12h   34 49 13 96 
 Total 104 (35.7) 130 (44.7) 57 (19.6) 291 
2009 1h   42 43 12 97 
 6h   34 45 30 109 
 12h   32 47 20 99 
 Total 108 (35.4) 135 (44.3) 62 (20.3) 305 
2010 1h   32 45 22 99 
 6h   33 48 16 97 
 12h   21 50 23 94 
 Total 86 (29.7) 143 (49.3) 61 (21.0) 290 
Total 06+07+08+09+10  464 (31.5) 679 (46.1) 330 (22.4) 1473 

 ( )P

My = Sum-one weights, precision combination; 
( )STC

My = STC combination; T ly  = Model Average combination. 

Table 4 shows the number of beats across variables and accuracy measures. Again, STC is the best (with the only 
exception of 2007). A fact already found in the previous section is that, for all forecast horizons, SOP outperforms 
STC in 2007, the first complete year in which a new traffic regulation was in force (Note 8). Taken together all the 
years, STC outperforms SOP by more than 10 percentage points (44.9% vs 33.5%). Notice that the fixed-weight is 
never better than any of the varying-weight combinations. 
Table 4. Number of beats across variables and accuracy measures (%) 

   ( )P

My   ( )STC

My  
T ly   

Total 

2006 1h   15 42 14 71 
 6h   20 33 23 76 
 12h   15 40 23 78 
 Total 50 (22.2) 115 (46.0) 60 (26.7) 225 
2007 1h   37 23 20 80 
 6h   38 21 25 85 
 12h   34 26 20 80 
 Total 109(44.5) 70 (28.6) 65 (26.5) 245 
2008 1h   18 38 5 61 
 6h   32 34 8 74 
 12h   21 41 7 69 
 Total 71 (34.8) 113 (55.4) 20 (9.8) 204 
2009 1h   29 35 18 82 
 6h   20 22 17 59 
 12h   28 31 21 80 
 Total 77 (34.8) 88 (39.8) 56 (25.3) 221 
2010 1h   21 37 14 72 
 6h   18 38 12 68 
 12h   23 34 11 68 
 Total 62 (29.8) 109 (52.4) 37 (17.8) 208 
Total 06+07+08+09+10 369 (33.5) 495 (44.9) 238 (21.6) 1112 
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 ( )P

My  = Sum-one weights precision combination; 
( )STC

My = STC combination; T ly   = Model Average combination. 

Figure 3 shows the STC weights for different combination periods (2006 to 2010). This figure helps to appreciate its 
evolving weights for each month and year. 

  

Figure 3. Precision and STC weights, 2006, ACC variable, h=1 
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Figure 3. Precision and STC weights, 2007, ACC variable, h=1 
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Figure 3. Precision and STC weights, 2008, ACC variable, h=1 
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Figure 3. Precision and STC weights, 2009, ACC variable, h=1 
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Figure 3. Precision and STC weights, 2010, ACC variable, h=1 
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is always the winner while the fixed-weight is always the worst. Hence, varying-weight combinations always 
outperform the fixed-weight one. 

These results confirm the need of periodic-weight combinations of forecasts. As a by-product, we found no definitive 
criterion for choosing a specific combination. Notice, however, that for RMSPE and sMAPE, there are so many 
matches that it makes difficult to distinguish among combinations. 

Table 5. Number of beats by accuracy criteria and forecast horizons 

 1h   6h   12h   

 
 ( )P

My   ( )STC

My  
T ly    ( )P

My   ( )STC

My  
T ly    ( )P

My   ( )STC

My 
T ly   

 APE   11 22 10 16 17 8 13 20 12 

 FGR   
11 22 9 16 17 9 13 20 12 

 RMSE   
21 26 17 20 22 16 18 27 13 

 MAPE   
22 27 10 23 22 14 21 27 12 

 MdAPE   
13 23 6 25 23 12 23 25 9 

 sMAPE   
23 27 12 18 24 16 16 27 17 

 sMdAPE  
18 25 7 22 23 12 17 26 8 

 TOTAL  
119 172 71 140 148 87 121 172 83 

 %   
32.9 47.5 19.6 37.3 39.5 23.2 32.2 45.7 22.1 

 ( )P

My = Sum-one weights precision combination; 
( )STC

My = STC combination;  T ly    = Model Average combination. 

Winners in italics, while highest percentages in bold. 
 
Table 6. Summary results by accuracy criteria: Number of beats (%) 

  ( )P

My   ( )STC

My  
T ly   

 APE   40 59 32 

 FGR   40 59 31 

 RMSPE   59 85 46 

 MAPE   63 76 34 

 MdAPE   47 74 25 

 sMAPE   67 78 46 

 sMdAPE   53 74 24 

 TOTAL  369 (33.1) 505 (45.4) 238 (21.4) 

 
 ( )P

My = Sum-one weights precision combination; 
( )STC

My  = STC combination; T ly   = Model Average combination. 

Winners in italics, while highest percentages in bold. 
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4. Bootstrap Analysis 

In this section, we are interested in the small-(J, T1) behavior of the STC weights associated to the models 
corresponding to each month in our panel decomposition. Approximate properties of the theoretical distribution of 
model weights are untrustworthy because the panel size (years 1986 to 2009) and the number of models (6) are small. 
The alternative is to estimate the properties we require from simulated panel, model-forecast datasets. A bootstrap 
analysis based on the out-of-sample forecast errors usually requires the forecast errors to be serially uncorrelated, as 
would typically be the case in forecasting models at horizon h = 1. At longer horizons, the forecast errors will not be 
iid and the standard bootstrap method may not be valid. A possible solution to this problem is to construct forecast 
errors and recover the underlying white noise errors by fitting an MA(h-1) process to the sequence of h-step-ahead 
forecast errors. This allows the construction of bootstrap samples by first resampling the serially uncorrelated white 
noise residuals using standard bootstrap methods, and then constructing bootstrap replicates of the h-month-ahead 
forecast errors from the implied moving averages. Another solution is to fit the forecasting models on 
non-overlapping observations and proceed as for h = 1. This approach is simple, but may involve a considerable 
reduction in estimation precision. Remember, however, that the STC combination weights are not based on forecast 
errors. 

In this study, we have generated bootstrap samples for general stationary data according to Politis & Romano (1994) 
and computed the bootstrap estimate of the standard error and bias of the STC weights (Note 9). For consistency, the 
(mean) block length should grow with the panel size at an appropriate rate. A default growth rate proportional to the 
third root of the panel size is used. This rate is "optimal" under certain conditions. However, in general the growth 
rate depends on the specific properties of the data generation process. A default value for the proportionality constant 
has been determined by a Monte Carlo simulation using a Gaussian AR(1) process [AR(1)-parameter of 0.5, 500 
observations] and the constant has been chosen such that the MSE for the bootstrap estimate of the variance of the 
empirical mean is minimized. All the computing has been carried out with R (Note 10). Once the bootstrap samples 
for each model are obtained, we apply the STC procedure to get replicates of their associated STC weights. Then, by 
linearly applying the bootstrapped panel STC weights to the out-of-sample model forecasts, we obtain the 
bootstrapped bias and SE of the out-of-sample STC forecast. 

As an example, Table 7 refers to the variable ACC (Note 11). It shows, for h = 6 and h=12, the bootstrapped squared 
bias of each model's weight as a percentage of its bootstrapped MSE (six first columns). The last two columns 
compare the performance of the out-of-sample (year 2010) bootstrapped absolute forecast errors of the STC and 
Average combinations using the bootstrap replicates from the bootstrapped panels, taken the actual value of ACC and 
model forecasts in the out-of-sample period as given (Note 12). In general, model weight biases are statistically 
insignificant and slightly smaller for h = 6 as expected. The bootstrapped weighting scheme differs depending on the 
month, but there is no evidence of a consistent superiority of any model's weight in all months. On the other hand, 
bootstrapped combinations reflect a low August with a jumping afterward also found in the Application. All this 
makes it even more attractive the use of combinations. In particular, STC has been able to properly weight each 
model in such a way that systematically outperforms the average of them. The Average has consistently higher 
bootstrapped SEs than those of STC's. This result remain statistically unchanged among different variables, months, 
and forecast horizons, and it is consistent with other Monte Carlo studies where the number of models is sufficiently 
small compared with the number of observations in the training sample (see, for instance, Issler & Lima, Table 3). 
Although the optimal-weighted forecast and a bias-corrected average forecast are asymptotically equivalent (and this 
is one way of solving the combination puzzle), what we have found here is that, in small samples with a small 
number of forecast units, the STC with panel-varying weights fares better than an Average. The greater accuracy of 
the forecasts based on STC weights relative to those based on fixed ones may reflect a good small-sample 
approximation of optimal population weights by panel-varying weights. This may be considered as another look to 
solving the puzzle. 
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Table 7. Bias and Stantard Error (SE) of the STC and Average (AVE) forecast errors for 2010 ACC variable - 
Bootstrap Simulation Results 

  h=1 h=6 h=12 

  Bias SE Bias SE Bias SE 
January  ( )STC

My  
-7.39 7.41 6.10 7.85 8.55 10.21 

 
T ly   

-1.94 159.50 -2.46 169.84 -5.75 170.86 

February  ( )STC

My  
8.23 9.65 3.53 8.17 1.86 9.53 

 
T ly   

5.81 163.10 5.21 171.30 4.69 178.80 

March  ( )STC

My  
4.15 10.33 0.13 14.50 -8.90 15.86 

 
T ly   

4.96 183.77 3.99 198.19 8.29 195.51 

April  ( )STC

My  
3.90 14.77 1.79 14.73 2.00 15.36 

 
T ly   

2.08 186.71 -0.53 190.14 -0.39 186.21 

May  ( )STC

My  
-1.67 4.23 -8.88 7.10 -6.36 8.50 

 
T ly   

-5.59 164.07 3.52 197.36 -1.06 172.81 

June  ( )STC

My  
-3.79 5.69 5.45 4.91 0.58 4.91 

 
T ly   

-7.08 188.19 5.37 164.68 3.56 164.68 

July  ( )STC

My  
0.70 3.25 4.98 8.57 2.96 7.80 

 
T ly   

-3.35 154.93 -6.75 160.45 0.75 164.70 

August  ( )STC

My  
-7.11 19.89 2.68 22.71 9.73 23.22 

 
T ly   

-2.33 138.26 -0.60 144.25 1.66 140.69 

September  ( )STC

My  
0.17 14.44 5.45 60.03 1.85 14.80 

 
T ly   

6.94 139.56 11.62 140.36 -2.76 142.38 

October  ( )STC

My  
25.31 71.88 4.37 8.86 -4.36 8.69 

 
T ly   

60.22 101.57 41.00 121.27 28.45 114.15 

November  ( )STC

My  
-3.09 7.55 -1.37 6.43 -0.82 6.00 

 
T ly   

18.01 145.21 35.89 132.11 35.65 130.12 

December  ( )STC

My  
5.90 6.02 1.73 2.98 1.41 2.59 

 
T ly   

1.28 152.51 -5.28 155.93 -7.56 149.44 

 

5. Conclusion 

Relative forecast performance of forecast units may periodically evolve over time. Therefore, it is desirable to take 
into account their forecast periodicity when forming forecast combinations. When dealing with small samples and 
number of forecast units, using panels is an efficient way of pulling out the additional information provided by that 
periodicity in the data, in most cases by an evolving seasonality that may not be well captured by standard models 
with stationary seasonality. We compute weights from panels and keep them fixed in the out-of-sample period. Thus, 
the forecast combination puzzle associated with estimated weights is not an issue with our procedure. Empirical and 
bootstrap exercises illustrate the superiority of this method over fixed weight schemes. With monthly data for eight 
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traffic accident variables in Spain, we decompose the information given by six model forecasts into twelve panels 
and form two varying-weight forecast-combinations that have outperformed, according to seven accuracy criteria, 
one-, six, and twelve-step-ahead out-of-sample model forecasting as well as a standard fixed-weight combination 
such as the average of them. In particular, our Split-then-Combine combination is the best choice. Panel 
decompositions may also be used to form panel forecast combinations after a previous individual-model selection is 
carried out (Combination-after-Selection), possibly resulting in different models, or number of them, for different 
periods. When the number J of forecast units is large, this approach would have the expected effect of acting as 
panel-based, dimension-reduction procedure that may complement others such as period-based principal components 
or seasonal dynamic factor analysis. These are extensions that we are currently investigating. 
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Notes 
Note 1. An institution from the Spanish Ministry of Inner Affairs that, among other things, is in charge of all aspects 
related to the road safety in Spain. 

Note 2. We first estimated the models and obtained the forecasts to construct the panel data and form the panel 

decomposition. We carried out the estimation with SCA   by exact ML because, in this case, it is more efficient. 
However, using LS do not change our conclusions. Moreover, with a very large sample as ours, normality of the 
innovations is very plausible. In fact, tests applied to residuals do not reject the hypothesis. 

Note 3. Issler and Lima (2009, section 2.1) consider a continuous set of models and split the total number of models 
J into M classes, each of them containing m nested models, so that J mM . Hence, models within each class are 
nested, but models across classes are not. For each class of nested models, innovations can exhibit high 
cross-sectional dependence, but cross-sectional dependence of forecast errors across classes is expected to be weak. 
By choosing a large enough number of diversified classes of models, keeping some nested models poses no problem 
since the mixture of models will still deliver the optimal forecast. In small samples with few models, however, we 
should avoid nested models. 
Note 4. The first subsample is included here because in this Application we did not have “directly available 
forecasts.” We also applied our panel decomposition to data provided by the Survey of Forecasters. In this case, 
however, there was no need to consider an estimation period because we already had at our disposal the forecasts. 

Note 5. They are: Annual Percentage Error (APE), Forecasted Growth Rate, (FGR), Root Mean Squared Error 
(RMSE), Mean Absolute Percentage Error (MAPE), Median Absolute Percentage Error (MdAPE), Symmetric Mean 
Absolute Percentage Error (sMAPE), and Symmetric Median Absolute Percentage Error (sMdAPE). See 
García-Ferrer et al. (2004) for the first two.  

Note 6. All the forecasting results for individual models are also available from the authors upon request. 

Note 7. Similar results were obtained in forecasting different quarterly data from the Survey of Professional 
Forecasters website. Separate results for the forecasts obtained for each year, forecast horizon, variable, model, 
combination, and accuracy measure are available from the authors upon request. 

Note 8. Since July, 2007, and established very high traffic fines. This fact caused a break in the evolution of the 
variables. 

Note 9. The "stationary" bootstrap is a block resampling with block lengths generated from a geometric distribution 
with a given mean length. Other alternatives are the "fixed" and "model-based" resampling. The former is a block 
resampling with "fixed" block length: Each replicate time series is found by taking blocks of fixed length from the 
original time series and putting them end-to-end until a new series of length given by the length of the original time 
series is created. The latter, which is very similar to the parametric bootstrap, avoids the complicated problem of 
choosing the block length, but relies on an accurate model choice being made. 

Note 10. R Development Core Team (2012). R: A language and environment for statistical computing. R Foundation 
for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/. See also Davison 
& Hinkley (1997), Kim (2009), Canty & Ripley (2011), and Trapletti & Hornik (2012). 

Note 11. Results for the other variables in this Application are available from the authors upon request. 

Note 12. Bootstrapped biases and SE of weights for all models (6), months (12), forecast horizons (3), and variables 
(8) are available from the authors upon request. In general, the results are very similar to those mentioned here. 

 

 

 

 


