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Abstract 

Upward trends in programming careers and increases in programming in less traditionally computer-oriented 
occupations threaten to further increase the current underrepresentation of both females and individuals from racial 
minority groups in these disciplines. Using administrative data (2009 – 2014), the present study compares 
demographic characteristics of students enrolled in a course that introduced programming: a multidisciplinary data 
analysis course, an introductory programming course, or an introductory computer science (CS) gateway course. The 
multidisciplinary data analysis course enrolled significantly more female students and students with lower Math SAT 
scores. Females were overrepresented in the data analysis course and underrepresented in the introductory 
programming and CS gateway courses relative to the larger campus community, with similar findings for 
underrepresented minority students. Less emphasis on traditional approaches to introductory programming and 
increased interdisciplinary opportunities to tackle real world questions may be one way to improve access to 
programming experiences for students from a wider range of educational, social and economic backgrounds. 
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1. Introduction 

Currently, over half of the top 25 highest paying in-demand jobs require specialized or general programming skills; 
for example software engineer, data base administrator, computer hardware engineer, security engineer, data scientist, 
analytics manager, solutions architect, software architect, etc. (Glassdoor, 2015). In addition to the predicted increase 
of 17.7% in these and other technical occupations between 2012 and 2022 (Bureau of Labor Statistics, 2013), 
programming is becoming increasingly relevant in many other growing careers, such as research in the sciences and 
other domains (Hambrusch et al., 2009; Merali, 2010), which have previously imposed less computational and 
technological demands (Barnes, 2010; Glassdoor, 2015; Wing, 2006).  

Importantly, without considerable changes to the system, the underrepresentation of females and individuals from 
racial minority groups in these careers is likely to continue. Recent reports from large technology companies (e.g., 
Apple, Facebook, Google, Twitter, Microsoft, Cisco, Intel, etc.) have again focused attention on this lack of diversity. 
Employee data from 2014 indicates that most large technology companies employ more than 70% males and with 
few exceptions, well less than 10% Blacks or Hispanics (Mangalindan, 2014). These disparities are even more 
pronounced when considering diversity in both leadership and technical roles where, at Google for example, females 
hold as little as 17% of the technology positions, while Blacks and Hispanics occupy only 3% of positions in 
corporate leadership (Google, 2015). In academia, females earned less than 20% of the computer science [CS] 
bachelor degrees in 2012 while Blacks and Hispanics each earned approximately 10% (National Science Foundation 
[NSF]). As traditionally non-computational careers are increasingly depending on technological skills such as 
programming, these disparities will potentially expand. 

These disparities at all stages are well known, as is the leaky pipeline metaphor (Blickenstaff, 2005), with 
considerable attention directed towards potential causes (e.g., Varma, 2006; 2010) and potential solutions (e.g., 
Whittaker and Montgomery, 2012). Though increased funding from both the private (e.g., Apple Inc. and the Gates 
Foundation) and public sectors (e.g., NSF), along with the launch of university programs (e.g., Alvarado and Dodds, 
2010; Eney et al., 2013) and national initiatives specifically targeted at diversifying the pool of students exposed to 
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programming curriculum prior to higher education (e.g., Girls who Code, ARTSI Alliance, and All Star Code) has 
accelerated in recent years, there is still considerable room for improvement. Overall progress has been slow and 
limited in scope (for reviews of challenges, see Frieze and Quesenberry, 2013; Peckham et al., 2007; Whittaker and 
Montgomery, 2012). This is in addition to ongoing efforts to improve computer science education for all students 
(e.g., Porter et al., 2013). 

Though programming curricula are traditionally provided in courses offered through computer science departments, 
the proliferation of programming across many disciplines (ACM, 2013; Hambrusch et al., 2009) provides an as yet, 
largely untapped opportunity for evaluating how newer multidisciplinary initiatives might expand exposure to 
programming (e.g., data science – Hardin et al., 2014, Heinrichs et al., 2011, Squire, 2012; bioinformatics – Tartaro 
and Chosed, 2015; and geography – Muller and Kidd, 2014). Programming involves learning to plan, write and 
execute the formal code of diverse computer languages that each rely on such skills as defining variables, creating 
algorithms, flow control, functions, setting parameters, understanding data structures, requesting input and output, 
setting up arrays, error handling, and debugging (ACM, 2013; Downey et al., 2012; Nolan and Temple Lange, 2010; 
Robins et al., 2010). Programming also enhances problem solving skills as students are required to decompose 
problems and develop appropriate algorithms (Burton and Bruhn, 2003; Robins et al., 2010). These are skills and 
computational ways of thinking (Wing, 2006) that are becomingly increasingly required in both traditional and 
non-traditional computational or technological careers.  

The hypothesis addressed in the present paper is that that reframing introductory programming experiences from the 
discipline-specific to an approach that tackles real world questions across multiple disciplines will contribute to 
improving access to programming skills for students from a wider range of educational, social and economic 
backgrounds. Previous publications have described the development of a multidisciplinary data analysis course 
(Dierker, et al, 2012) aimed at engaging students in data-oriented projects that rely heavily on programming. 
Utilizing a flipped classroom approach (Bishop and Verleger, 2013; Winquist and Carlson, 2014; Yarbo et al., 2014), 
the course is designed around student research projects of their own choosing and offers individualized hands-on 
experience in one of four code-based statistical software platforms (SAS, R, Stata, and SPSS). The course introduces 
students to several basic programming concepts and skills in the pursuit of managing and analyzing real world data. 
The skills taught are those that would be relevant across disciplines. From reading in their data (file input and output), 
to managing variables (variable types, creation, and modification), to selecting subsets of data (indexing and control 
structures), performing descriptive and inferential analyses (using functions with named arguments), and generating 
graphs (graphics output), students actively use formal syntax to write and execute programs aimed at managing and 
analyzing data. The course combines an emphasis on individualized research questions and hands-on problem 
solving during class time with acquiring programming skills in service of answering the students’ research question.  

Introduced into the curriculum in the fall of 2009 at a selective liberal arts college, one of the goals of the 
multidisciplinary data analysis course was to increase access to programming opportunities both generally and for 
students traditionally marginalized within many STEM fields (e.g., women, underrepresented students, educationally 
disadvantaged students, students pursuing majors that do not require programming courses). To evaluate the potential 
impact of this multidisciplinary data analysis course on access to programming opportunities, the present paper 
compares demographic characteristics of students enrolling in the multidisciplinary data analysis course to those 
enrolling in a traditional introductory programming or the CS gateway course. 

2. Method 

2.1 Participants 

Administrative data were examined for students enrolled between fall semester 2009 and spring semester 2014 in a) 
a multidisciplinary data analysis course (N = 463), b) an introductory programming course (N = 454), and c) the 
introductory gateway course to the CS major (N = 132). For students taking more than one of these courses during 
this 5 year period, only their first course was considered. Students were excluded from the present analyses if they 
took any of these courses prior to Fall 2009 (n = 11) or enrolled simultaneously in two of the courses (n = 12).  

The average enrollment per class section in the multidisciplinary data analysis course was 15.2 (SD = 5.9, range: 6 – 
22.4) compared to an average of 16.1 students per section in the introductory programming course (SD = 7.1, range: 
4 – 28.0) and 22.6 students (SD = 5.6, range = 16 – 31.0) in the CS gateway course.  

The multidisciplinary data analysis course was offered through the Quantitative Analysis Center, a collaborative 
effort of academic and administrative departments that supports quantitative analysis and programming across the 
curriculum and provides an institutional framework for collaboration across departments and disciplines in the area 
of data driven research. Titled “Applied Data Analysis,” the course is described in the university’s online catalog as a 
“project-based course, [in which] you will have the opportunity to answer questions that you feel passionately about 
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through independent research based on existing data. Students will have the opportunity to develop skills in 
generating testable hypotheses, conducting a literature review, preparing data for analysis, conducting descriptive and 
inferential statistical analyses, and presenting research findings. The course offers unlimited one-on-one support, 
ample opportunities to work with other students, and training in the skills required to complete a project of your own 
design. These skills will prepare you to work in many different research labs across the University that collect 
empirical data.” There are no prerequisites.  

Offered through the CS department, the introductory programming course is titled “Introduction to Programming” 
and is described in the on-line catalog as providing “an introduction to a modern high-level programming language 
including a discussion of input/output, basic control structures, types, functions, and classes. The lectures will also 
discuss a variety of algorithms as well as program design issues.” In courses prior to Fall 2012, the course 
description also indicated that “while there are no formal prerequisites, familiarity with using computers is assumed.” 

The CS gateway course is titled “Computer Science I” and is described in the on-line catalog as “the first course in a 
two-course sequence … that is the gateway to the computer science major.” The majority of sections noted that “the 
course will focus on one particular programming language as well as associated computing and mathematical 
concepts and formalisms” and that the “course is intended for CS majors and others who want an in-depth 
understanding of programming and expect to continue programming after this course.” Earlier sections noted that 
while there were no prerequisites, the course was significantly more challenging than the introductory programming 
course. This was revised starting in spring 2013, to state that some previous acquaintance with computer 
programming is highly recommended and that students typically are concurrently enrolled in Calculus. No 
prerequisite courses were listed.  

All three courses were open to all students. The data analysis course could be used as one option to fulfill a major 
requirement for psychology, earth and environmental science, government, neuroscience and behavior, and sociology. 
Only the CS gateway course counted towards the CS major. All three courses could be counted toward the major 
requirements for biology or could be applied to the natural sciences and mathematics general education 
recommendations.  

All three courses introduced students to programming concepts such as basic file input and output, variable 
manipulation and types, indexing, the use of functions from existing libraries, and basic control structures such as 
if-then. Additionally, all three courses emphasized the need to develop algorithms in order to solve a problem and the 
need to test the accuracy of that algorithm. Within the multidisciplinary data analysis course, these skills were 
learned in the context of data and an empirical research question. Within both of the CS courses, these topics, along 
with more advanced programming concepts, were learned largely through a series of basic and applied exercises. The 
programming and CS courses typically used either Python or Java, while the data analysis course used syntax-based 
SAS, R, Stata, or SPSS. 

2.2 Measures 

Administrative data were supplied by the institutional research office. This data included gender and the following 
variables:  

Race/Ethnicity. Self-reported race/ethnicity included endorsement of one or more of the following categories: Black, 
White, Hispanic, Asian or other. Those not endorsing any of those categories were considered unknown. Black 
and/or Hispanic students were categorized as underrepresented minority students (URM). 

Financial aid. Students with demonstrated need receiving grants and/or self-help financial aid were compared to 
those enrolled in the university without financial assistance. 

High school type. Students’ high school backgrounds were collapsed based on whether they attended a public vs. 
non-public high school. The non-public category included private schools, religious schools, and homeschools.  

Standardized test scores. The majority of the students (84%) provided SAT (Math, Critical Reading, and Writing) 
scores. 

Class year. Class year (freshman, sophomore, junior, senior) was dichotomized into lower vs upper classmen, with 
students having 4 or fewer semesters until graduation considered upperclassmen. 

2.3 Analyses 

Binomial tests were conducted to determine how representative each course’s enrollment was of the larger university 
community. Across courses, bivariate analyses were conducted on the relationships between each student 
characteristic and course enrollment. Chi-square Tests of Independence and ANOVA were used for categorically and 
continuously measured characteristics respectively. For significant bivariate associations, logistic regression analyses 
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were conducted to evaluate the presence of possible confounding effects of other student characteristics on the 
association of interest. For significant associations, their interactions were also tested. 

3. Results 

3.1 Students’ Representativeness of the Wider Campus Community 

Females were found to be overrepresented in the data analysis course (61%, CI: 56 – 65%; university: 52%, z = 3.76, 
p < .001) and underrepresented in the introductory programming (30%, CI: 25 – 34%; z = 9.58, p < .001) and CS 
gateway (23%, CI: 16 – 31%; z = 6.72, p < .001) courses. URM students were also overrepresented in the data 
analysis course (24%, CI: 20 - 28%; university: 19.4%, z = 4.24, p < .001) and underrepresented in the introductory 
programming course (12%, CI: 9 - 16%; z = 2.46, p = .013). The CS gateway course enrolled statistically similar 
rates of URM students (14%, CI: 9 – 22%; university: 19.4%) compared to the larger university community and 
higher rates of students from public high schools (67%, CI: 58 – 75%; university rate: 53%, z = 3.06, p = .002). 
Enrollment of students from public high schools was similar to the university rate for both the data analysis course 
(54%, CI: 49 – 58%) and the introductory programming course (56%, CI: 51 – 60%). Each course enrolled similar 
proportions of students receiving financial aid in comparison to the larger university community.  

3.2 Student Characteristics by Course 

Comparisons of student characteristics in the data analysis course versus both the introductory programming course 
and the CS gateway course are presented in Table 1. Each course enrolled similar proportions of White students, 
Asian students, and students receiving financial aid. Average SAT scores in critical reading and writing were also 
statistically similar across the three courses.  

The data analysis course however, enrolled significantly more females (60.7%) compared to both the introductory 
programming course (29.5%, χ2(1) = 88.7, p < .001) and the CS gateway course (22.7%, χ2(1) = 58.8, p < .001). 
Further, the data analysis course enrolled students with significantly lower average math SAT scores (M = 685, SD = 
69) compared to both the introductory programming course (M = 722, SD = 58) and the CS gateway course (M = 739, 
SD = 55), F(2, 878) = 50.7, p < .001, Tukey’s HSD. While each of these differences persisted when controlling 
individually for all other student characteristics, a significant interaction between Math SAT and financial aid status, 
when comparing the data analysis course to the introductory programming course, showed that among students with 
the highest Math SAT scores (730-800), those receiving financial aid were more likely to enroll in the data analysis 
course than students not receiving financial aid (See Figure 1). 

 

 

Figure 1. The association between GPA and enrollment by financial aid status 
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Higher rates of both Black and Hispanic students were enrolled in the data analysis course compared only to the CS 
gateway course. When analyses were conducted based on under-represented (URM) student status (i.e., Black and/or 
Hispanic), the data analysis course was found to enroll significantly higher rates of URM students (24%) than both 
the introductory programming course (12%, χ2(1) = 20.1, p < .001) and the CS gateway course (14%, χ2(1) = 4.9, p 
= .03). However, when controlling for Math SAT scores, these effects were no longer significant.  

Notably, the CS gateway course (67%) was found to enroll a significantly higher proportion of students from public 
high schools than the data analysis course (54%, χ2(1) = 6.65, p < .01). A significant interaction between public 
school status and gender (p = .02) revealed that this was true only for females.  

The data analysis course was found to enroll significantly fewer students in their freshman and sophomore year (37%) 
than both the introductory programming course (57%, χ2(1) = 38.1, p < .001) and the CS gateway course (85%, χ2(1) 
= 96.5, p < .001). Overall, effect sizes were found to be small to moderate.  

 

Table 1. Student characteristics by course 

 Multidisciplinary 
Data Analysis 

(n = 463) 

Introductory 
Programming

(n = 454) 

CS Gateway

(n = 132) 
Statistics 

First and Second Years 170 (36.7%)a  260 (57.3%)b 113 (85.6%)c χ2(2) = 108.0, p < .001, V = 0.32 

Female 281 (60.7%)a 134 (29.5%)b 30 (22.7%)b χ2(2) = 115.2, p < .001, V = 0.33 

Public High School 248 (53.6%)a 252 (55.5%)a 88 (66.7%)b χ2(2) = 7.2, p = .027, V = 0.08 

Financial Aid 226 (48.8%) 200 (44.1%) 69 (52.3%) n.s. 

Racial Categories1     

White 256 (55.3%) 272 (59.9%) 79 (59.8%) n.s. 

Black 59 (12.7%)a 28 (6.2%)b 9 (6.8%)a,b χ2(2) = 12.9, p = .002, V = 0.11 

Hispanic 56 (12.1%)a 30 (6.6%)b 11 (8.3%)a,b χ2(2) = 8.4, p = .015, V = 0.09 

Asian 89 (19.2%) 116 (25.6%) 30 (22.7%) n.s. 

Other  43 (9.3%) 44 (9.7%) 17 (12.9%) n.s. 

Underrepresented(URM)2 111 (24.0%)a 56 (12.3%)b 19 (14.4%)b χ2(2) = 22.4, p < .001, V = .0.15 

SAT M (SD) n = 384 n = 381 n = 116  

Math 684.7 (69.1)a  722.3 (57.5)b 738.6 (55.0)b F(2, 878) = 50.7, p < .001, η2 
= .10 

Critical Reading 692.9 (72.7) 688.9 (75.0) 705.3 (69.7) n.s. 

Writing 680.7 (73.3) 680.5 (76.7) 697.6 (74.0) n.s. 
1 Racial categories are not mutually exclusive.  
2 Underrepresented minority students (URM) are those indicating Black and/or Hispanic ethnicity  

 

4. Discussion 

This research considered the potential impact of offering a multidisciplinary data analysis course on access to 
programming opportunities for students underrepresented in traditional programming courses. Supporting our 
hypothesis, the data analysis course enrolled significantly more females and students with significantly lower math 
SAT scores than either of the programming courses offered through the CS department. These findings persisted even 
when controlling for race, financial aid status, high school type, and class year. Further, the multidisciplinary data 
analysis course was also found to enroll higher rates of females and URM students compared to their representation 
in the wider campus community. While each of the three courses enrolled similar rates of students with or without 
financial aid, among those students with the highest math SAT scores, those receiving financial aid were more likely 
to enroll in the data analysis course. Taken together, these findings confirm that less emphasis on a traditional 
approach to introductory programming and more opportunities to tackle real world questions in the context of 
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multiple disciplines may contribute to improving access to programming experiences for students from a wider range 
of educational, social and economic backgrounds (see Stephenson et al., 2007).  

Importantly, however, our findings that the data analysis course enrolled significantly fewer students in their 
freshman and sophomore year than both the introductory programming course and the CS gateway course suggests 
that the programming experience students received in the data analysis course may have been less likely to impact 
their academic trajectory. In particular, earlier involvement in research and longer time periods of research 
involvement have been shown to promote continued coursework and majoring in CS (Russell et al., 2007; 
Tashakkori et al., 2011). Overall, quality research participation has positive effects on students’ skills and retention in 
STEM (Kilgo et al., 2015; see Barker, 2009), with some evidence suggesting stronger benefits for underrepresented 
students (Lopatto, 2007). Programming opportunities that engage students in research within and across disciplines 
can be used to increase high quality experiences that engage students in both programming and STEM.   

Preliminary analyses based on exit survey results from students who completed the data analysis course indicated 
that more than a third of students were interested in taking a future programming course. This suggests that attracting 
more freshman and sophomores to the data analysis course would likely provide greater opportunities for students to 
build on basic programming skills in future coursework. More research is needed to consider the future coursework 
and career choices of these students and how their experiences in the multidisciplinary data analysis course might 
offer another pathway into the increasing number of occupations in which programming skills are beneficial. 

Unexpectedly, the CS gateway course was found to enroll higher rates of students from public high schools 
compared to the larger campus community. This held true for female, but not male public high school students in the 
CS gateway course compared to the data analysis course. In fact, 26 of the 30 females who were first enrolled in the 
CS gateway course came from public high schools. This may reflect the relatively recent efforts in the public K-12 
system to engage female students in high quality computing and STEM experiences (e.g., McGee et al., 2013; 
Stephenson and Wilson, 2012). Thus, despite few females entering the gateway course as their first college level 
programming experience, those who did may have been the product of accelerating institutional K-12 efforts to 
attract women to programming (Armoni and Gal-Ezer, 2014). 

Through the use of formal syntax to write complex programs aimed at managing and analyzing data, the data 
analysis course introduces students to several of the same concepts and skills covered in traditional programming 
courses (Nolan and Temple Lang, 2010; ACM, 2013). Notably, however, the data analysis course is not described as 
a programming course in the on-line course catalog. Instead, emphasis is placed on student projects, independent 
research, and applied skills. Despite this limited reference to programming, students enrolling in the data analysis 
course following fall semester 2009, were aware through word of mouth that they would be writing programs in the 
service of their projects. Anecdotally, while a minority of students in the data analysis course did have previous 
research experience and clearly enrolled for the exposure to a new code based platform, the vast majority did not and 
were instead motivated by the opportunity to answer their own applied research questions and/or to fulfill a 
requirement for their major. Importantly, our approach of using contextualized projects and research to motivate 
students is one that has also been undertaken in CS courses (Jenkins, 2001; Goldweber et al., 2012) and has been 
shown to be particularly motivating to female students (Rader et al., 2011). 

The content and context of the courses is important to consider because programming, well-known to be a difficult 
skill to acquire, is learned by doing, and requires a considerable investment of thought, practice, and motivation to 
master (Carter et al., 2011; Jenkins, 2001; Settle et al., 2014). Jenkins (2001) found that a considerable portion of the 
students in an introductory CS course were motivated to learn programming only because it was required. This 
presents a problem for both attracting and engaging students. Without an interdisciplinary, applied context (e.g., 
Guzdial, 2010), it is unlikely that programming will become a common requirement outside of the CS major, 
although work continues on introducing computational thinking into courses across the curriculum (e.g., Curzon et 
al., 2009). 

A limitation of the present study is a quasi-experimental design that would benefit from replication within 
educational contexts that might allow for random assignment to diverse introductory programming experiences. 
Further, the courses compared in the present study are not required of students at the university, though in some cases 
they count toward specific majors. Thus future research should evaluate introductory programming experiences in 
terms of their success of retaining students in a variety of STEM majors.   

In summary, the present study presents a multidisciplinary applied data analysis approach to introducing 
programming as one potential way to increase the access of underrepresented students to programming concepts and 
skills. This research joins a literature that has many examples of such innovations, but this course stands out for the 
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combination of its design (flipped classroom, project-based, etc.) with its emphasis on programming as a 
problem-solving tool applicable across many disciplines. Importantly, the kind of programming experience that is 
needed has been changing fairly rapidly with the introduction of new computer languages and application program 
interfaces (e.g., ACM, 2013). In a recent paper, Gasson and Haden (2014) introduce four non-exclusive types of 
computer users: the theoretician (focusing on the mathematical formalisms), the practitioner (developing software 
and hardware), the power user (see Dorn and Guzdial, 2006), and the end user (using non-specialized software). The 
power user, who will use programming concepts in the service of a problem or task in their own field of expertise, 
represents the type of programmer whose role is most clearly expanding across diverse occupations. 
Multidisciplinary project-based courses such as ours may be an important step in attracting larger numbers of 
students from diverse backgrounds into introductory courses that will begin to provide the education and experience 
needed to play this kind of role. 
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