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Abstract 

The aim of this paper is to investigate the relative importance of various bankruptcy predictors commonly used in the 
existing literature as well as ad hoc variables by applying a variable selection technique. Based on a sample of 4,796 
Belgian private firms, a forward stepwise logistic regression procedure is employed. Our results confirm that lower 
levels of liquidity, solvency and profitability increase the probability of bankruptcy while younger and smaller firms 
are more likely to be bankrupt. Furthermore, the proportion of accruals in total assets is negatively related to the 
probability of failure and improves the accuracy of our model.  
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1. Introduction 

Corporate bankruptcy often implies considerable social costs that affect owners, employees, clients, suppliers, 
financial institutions and government. For instance, Graham, Kim, Li and Qiu (2014) showed that the magnitude of 
the decline in annual wages one year after bankruptcy is 30% of pre-bankruptcy wages. According to Eckbo, 
Thorburn and Wang (2015), two-thirds executives face a median present value income loss equal to five times their 
pre-departure income. As corporate bankruptcy can induce harsh consequences for many stakeholders, business and 
academic communities are deeply involved in the investigation of bankruptcy prediction. As a result, numerous 
studies have tried to explore the potential predictors of corporate bankruptcy over the last decades (Du Jardin, 2009).  

Most of prior works on corporate bankruptcy employed accounting-based variables (Altman, 1968; Beaver, 1966; 
Lin, Ansell & Andreeva, 2012), i.e., financial ratios constructed from only accounting data, or a mix of accounting 
and market-based variables (Campbell, Lo & MacKinlay, 1997; Shumway, 2001; Tinoco & Wilson, 2013), i.e., 
financial ratios built from market and accounting data. Although these models offered significant improvements in 
predicting corporate bankruptcy, little attention has been paid to the importance of considering advanced selection 
techniques to select the most relevant and reliable bankruptcy predictors (Tian, Yu & Guo, 2015). In this study, we 
endeavor to fill this gap by adopting a forward stepwise logistic regression method that provides conclusive evidence 
of the role of accounting-based predictors to forecast bankruptcy in private firms.  

Opting for predictor selection techniques enables us to identify relevant bankruptcy predictors and improve the 
accuracy of the predictive model (Fan & Li, 2001). By using a stepwise procedure to select bankruptcy predictors, 
we contribute to the literature in two ways. First, we answer to a recent call for more robustness in the selection of 
empirical predictors that perform well in predicting corporate bankruptcy (Du Jardin, 2009). Second, based on an 
exhaustive set of bankruptcy predictors frequently employed in the existing literature, we identify the most relevant 
ones. By so doing, we provide additional insights on the application of corporate bankruptcy theories in empirical 
research (Tian et al., 2015).  

This paper is structured as follows. In the first section, we review the literature on bankruptcy prediction models. 
Research method and results are presented in the subsequent sections. In the concluding section, we discuss the 
results and identify several limitations and directions for future research.  

2. Theoretical Background 

Bankruptcy prediction has received increasing attention from the finance and accounting literature since the late 
sixties. Seminal research of Beaver (1967) started to analyze the antecedents of bankruptcy by leading a discriminant 
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analysis on a single ratio (cash-flow/total debt) while Altman (1968) developed a multidimensional approach that 
combined five accounting ratios to calculate the well-known “Z-score” in order to predict corporate bankruptcy. 
Over years, numerous modelling techniques have been designed to provide a more complete understanding of the 
bankruptcy phenomenon and improve the accuracy of the models. In that sense, Du Jardin (2009) reveals that more 
than 50 methods have been used to build bankruptcy prediction models (discriminant analysis, logistic regression, 
probit regression, rules induction, spline regression, neural networks, gambler’s ruin model, hazard model, and so 
on). 

One of the most frequently employed statistical techniques in bankruptcy forecasts is the logit model (first used in 
Ohlson, 1980). This model offers several advantages that make it superior to alternative procedure. For instance, 
logit models do not require the potential bankruptcy predictors to be normally distributed and allow to combine 
several bankruptcy indicators into a multivariate probability score which indicates the likelihood of corporate 
bankruptcy (Balcaen & Ooghe, 2006; Karlson, 2015). Given the reliability of logit models to assess corporate 
bankruptcy (Acosta-González & Fernández-Rodríguez, 2014; Gupta, Gregoriou & Healy, 2015), this statistical 
technique will be used in this study. 

Beyond the regression technique, another point must be stressed to build accurate bankruptcy prediction model: 
variable selection. Usually, a two-step procedure is chosen to select the most accurate variables. Reviewing 190 
papers on bankruptcy prediction models, Du Jardin (2009) showed that, during the first step, 40% of studies only 
used variables that have been found to be good predictors in prior research. In other words, the variables are included 
in the model because they were significant in past empirical works. However, this procedure is quite reductionist as 
bankruptcy predictors can be reliable in one context but not in another owing to their contingent nature (Balcaen & 
Ooghe, 2006; Du Jardin, 2015). To mitigate this concern, the first step of this research proposes to adopt a 
mix-method that includes variables whose predictive power has been demonstrated in prior studies as well as ad hoc 
variables with the aim to improve the accuracy of the model.  

In the second step, an automatic procedure is commonly employed to build the final set of bankruptcy predictors. 
Dash and Liu (1997) suggested to distinguish between complete methods and heuristic methods. While the former 
enables to find an optimal solution provided the evaluation criteria is monotonic, the latter relaxes the monotonic 
assumption on the selection criteria. As a result, heuristic procedures allow researchers to explore all possible 
combinations for the selection criteria to finally restrict attention to a smaller number of potential bankruptcy 
predictors (Acosta-González & Fernández-Rodríguez, 2014). Some of the most popular methods are the forward or 
backward stepwise procedures, which sequentially include or exclude variables based on various criteria such as 
t-ratio statistics or the probability of F (Miller, 2002; Lussier & Corman, 2015). Despite their relevancy, few studies 
engage in such procedures. According to Du Jardin (2009), only 26% of prior works on bankruptcy prediction adopt 
stepwise selection procedures, which hampers the robustness of their results. As a consequence, this research uses 
forward stepwise logistic regressions to build the most accurate model of bankruptcy prediction (Karas & Reznakova, 
2014)  

3. Method 

3.1 Data Collection 

In this study, we used a sample of 4,796 Belgian private firms whose 826 companies were declared bankrupt between the 
years 2010 and 2014. The Bureau Van Dijk (hereafter, BVD) database was employed to identify the firms that had 
experienced a bankruptcy between 2010 and 2014. This database was also used to gather information about the financial 
and accounting ratios as well as firm’s characteristics. 

3.2 Regression Procedure 

Since the dependent variable is a dichotomous qualitative variable, a binary logit regression model was used, as is the case 
in many studies regarding the occurrence of bankruptcy filing (Ohlson, 1980; Premachandra, Bhabra & Sueyoshi, 2009). A 
logit model describes the relationship between a dichotomous dependent variable that can take value 1 (bankrupt business) 
or value 0 (healthy), and k other explanatory variables x1, x2... xk. These variables can be quantitative or qualitative. Since 
the dependent variable is binary (dichotomous), the latter follows the Bernoulli distribution such that Pi = P (yi = 1) is the 
probability of bankruptcy and 1 - Pi is the probability of non-failure. The estimated model requires the endogenous variable 
to be a linear combination of exogenous variables: 

yi* = β Xi + εi                                            (1) 

where ε is the error term and β the vector of coefficients 
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and where 

yi = 1 if yi* > 0 

yi = 0 if yi* ≤ 0 

The probability of non-default (a posteriori) of business i is given by: 

P (yi = 0) = P (yi* ≤ 0) = P (β Xi + εi ≤ 0) = P (εi ≤ - β Xi) = F (-β Xi) = 1 – F(β Xi) = 1 – Pi   (2) 

Similarly, the probability of failure (a posteriori) of business i is represented by: 

P (yi = 1) = P (yi* > 0) = P (β Xi + εi > 0) = P (εi > - β Xi) = 1 - P (εi ≤ - β Xi) = F (β Xi) = P  (3) 

The logit model assumes that the errors follow a logistic distribution where the distribution function is: 

F (x) = (1 + e - x) – 1                                        (4) 

Therefore, it is possible to calculate the probability of non-default of business I as follows: 

P (yi = 0) = F(-β Xi) = (1 + e βXi ) – 1 = 1 – Pi                          (5) 

Similarly, the probability of the default of business i is:  

P (yi = 1) = F (Xi β) = (1 + e - βXi) - 1 = Pi                            (6) 

The β coefficients were estimated using the method of maximum likelihood and the model is analysed with Stata 
software. 

3.3 Variable Selection 

Dependent variable. Bankruptcy is a dichotomous variable coded with the value of 1 if the company is bankrupt, 0 
otherwise. 

Independent variables. Numerous studies have included a large amount of accounting-based variables and 
market-based variables to improve the accuracy of bankruptcy forecast model (e.g. Altman, 1968; Beaver, 
McNichols & Rhie, 2005; Bharath & Shumway, 2008; Charitou, Dionysiou, Lambertides & Trigeorgis, 2013). 
However, most of them used sub-optimal selection criteria. According to Du Jardin (2009), only 35% of empirical 
research in the field employs an effective variable selection method. In this study, stepwise logistic regressions were 
used to identify and select the best combination of variables predicting bankruptcy (Shin & Lee, 2002; Shin, Lee & 
Kim, 2005).  

Forward stepwise selection consists to find the single best predictor variable and add variables that meet specified 
criteria (Tsai, 2009). More specifically, this method sequentially includes variables based on F-statistic 
considerations until none improves the model (Miller, 2002). The final model only contains effective predictors with 
a significant coefficient. In building the model, 20 potential predictors were used based on prior studies such as 
Altman, (1968), Beaver (1966), Beaver et al. (2005), Ding, Song and Zen (2008), Ohlson (1980), Reznakova and 
Karas (2014), Tsai (2009), Tseng and Hu (2010), Wang and Lee (2008). 11 ad hoc variables were also included to 
take into account the contingent nature of bankruptcy predictors (Du Jardin, 2009, 2015).  

To select the most accurate and relevant predictors during the stepwise selection procedure, we used several criteria. 
Following Tsai (2009), we employed .05 probability of F as a cutoff line of entry to select one of the variables which 
is crucial to the model. To avoid co-linearity problems with the variables selected in applying this procedure, we 
set .10 probability of F as a limit of removal (Tsai, 2009). Thus, one variable was included in the model if the 
probability of F is less than .05 and removal from the models if the probability of F is more than 0.1. The probability 
of F corresponds to the contribution of the variables to the model whether they reach the significance or not. 
Applying this forward stepwise technique to the accounting-based variables reported in Table 1, the following 
independent variables were included in our model: 

Firm age corresponds to the number of years the firm has been in business. Firm size is the natural logarithm of total 
assets. Accruals is measured as accruals divided by total assets. Current represents a measure of the current ratio 
(current assets/current liabilities). EBIT/TA is a profitability ratio that is measured as earning before interests and 
taxes divided by total assets. Solvency corresponds to a commonly employed measure of the solvency ratio: (Net 
income + depreciation) / (Short-term liabilities + Long term liabilities). VA/TW captures labor productivity and is 
measured as the value added per worker.  

 

 



http://ijfr.sciedupress.com International Journal of Financial Research Vol. 7, No. 2; 2016 

Published by Sciedu Press                        150                          ISSN 1923-4023  E-ISSN 1923-4031 

Table 1. List of variables 

Variable Shortcut Variable Shortcut Variable Shortcut 
Firm age Firm age Number of days of 

supplier credit 
SupplierDays Total liabilities/Total 

assets 
TD/TA 

Log of total assets Firm size Long term 
liabilities/Total assets 

LTL/TA Net income/Total 
liabilities 

NI/TL 

Shareholder 
equity/Total assets 

Solvency Gross sales margin GSM Net income/Current 
liabilities 

NI/CL 

Current ratio Current Net sales margin NSM Net income/Current 
assets 

NI/CA 

EBIT/Total assets EBIT/TA Net income/Sales NI/S Cash-flow/Current 
assets 

CF/CA 

Accruals/Total 
assets 

Accruals Net income/Total 
assets 

NI/TA Cash-flow/Total 
liabilities 

CF/TL 

Value added/Total 
workers 

VA/TW Cash-flow/Equity CF/E EBITDA/Total 
liabilities 

EBITDA/TL

Value added/Tax 
expense 

VA/TE Cash-flow/Total 
liabilities 

CF/TD Current 
liabilities/Sales 

CL/S 

Acid test Acid Net Working 
Capital/Sales 

NWC/S Inventory turnover  InvTurn 

Log of sales  LnS Net Working 
Capital/Total assets 

NWC/TA   

Number of days of 
client credit 

ClientDays Long term 
liabilities/Equity 

LTdebt/E   

 

4. Results 

4.1 Descriptive Statistics 

Descriptive statistics and Pearson’s correlation matrix are reported in Table 2. It appears that bankrupt firms are 
younger (p < .01) and smaller (p < .01). Additionally, it must be noted that the solvency ratio (p < .01) and the 
current ratio (p < .01) are negatively correlated with the probability of bankruptcy. Profitability seems to be 
negatively linked to bankruptcy since a negative correlation is found between both EBIT/TA (p < .01) and VA/TW (p 
< .01) and bankruptcy. It is also observed that accruals are positively correlated to bankruptcy (p < .01). Interestingly 
enough, larger firms display higher levels of solvency ratio (p < .01), current ratio (p < .01), EBIT/TA (p < .01) and 
VA/TW (p < .01). Older firms are only characterized by higher levels of solvency ratio (p < .01) and current ratio (p 
< .01). Furthermore, both firm age (p < .01) and firm size (p < .01) are negatively correlated to accruals.  

 

Table 2. Means, standard deviations, and correlations  

Variable Mean S.D. 1 2 3 4 5 6 7 8

1. Bankruptcy 0.172 0.378 1       

2. Firm age 16.554 11.148 -0.076*** 1      

3. Firm size 5.762 1.852 -0.233*** 0.237*** 1     

4. Accruals 0.027 0.071 0.159*** -0.071*** -0.219*** 1    

5. Current  3.337 8.351 -0.123*** 0.081*** 0.057*** -0.015 1   

6. EBIT/TA -2.232 93.549 -0.053*** -0.000 0.096*** -0.081*** 0.010 1  

7. Solvency  36.149 38.841 -0.386*** 0.152*** 0.095*** -0.070*** 0.381*** 0.217*** 1 

8. VA/TW 84.314 121.427 -0.193*** 0.027 0.322*** -0.053** 0.064*** 0.145*** 0.151*** 1

* p ≤ .10. ** p ≤ .05. *** p ≤ .01. 
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4.2 Regression Analysis 

The results of our regression are presented in Table 3. Both firm age (p < .01) and firm size (p < .01) are negatively 
related to bankruptcy. Regarding the relationship between profitability and bankruptcy, we observe that both 
EBIT/TA (p < .01) and VA/TW (p < .01) are negatively related to the probability of bankruptcy. A negative relation is 
reported between the degree of liquidity, assessed by the current ratio, and bankruptcy (p < .01) while a negative link 
exists between the solvency ratio and the probability of bankruptcy (p < .01). Furthermore, a positive relationship is 
observed between accruals and bankruptcy (p < .01).  

 

Table 3. Logit regression 

  Logit regression 

  Coef. Std. Dev. 

Current -0.203*** (0.124) 

EBIT/TA -3.381*** (0.710) 

Solvency -0.026*** (0.004) 

VA/TW -0.026*** (0.005) 

Accruals 4.212*** (1.336) 

Firm size -0.131*** (0.034) 

Firm age -0.003*** (0.000) 

Intercept 1.731*** (0.007) 

Observations 23 980 

Model Chi2 423.32*** (7 df) 

Log Likelihood -377.966 

* p ≤ .10. ** p ≤ .05. *** p ≤ .01. 

 

As robustness check, we led an out-of-sample analysis. As such, the sample was divided into two parts. The first part 
included 70% of the observed group (3,357 firms) and acts as the training group. The rest of the sample (1,439 firms) 
represented the control group that was employed to test the model obtained on the training group. The out-of-sample 
analysis revealed high levels of accurate prediction since the estimated parameters did not differ significantly from 
our initial regression. Furthermore, we run additional robustness tests by changing the division percentage of both 
groups. However, setting the observed group and the control group both at 50% , or even 25% of the initial sample 
for the observed group and 75% for the control group, did not change our percentage of accurate prediction 
significantly.  

5. Discussion and Conclusion 

Bankruptcy prediction is a critical issue that has been widely explored in the finance and accounting literature. 
Although numerous improvements have been noted in the construction of bankruptcy prediction models over the last 
decades (Balcaen & Ooghe, 2006; Du Jardin, 2015), a long way has still to be done regarding the accuracy of those 
models (Reznakova & Karas, 2014). Using a comprehensive Belgian bankruptcy database constructed from Belfirst, 
we adopt a forward stepwise logit regression procedures in order to extract the most accurate model based on an 
initial set of 31 variables containing the most commonly employed bankruptcy predictors as well as ad hoc variables 
whose inclusion was likely to improve the fit of the model.  

Our results suggest that bankruptcy can be predicted by a subset of 7 variables: firm age, firm size, EBIT/TA, VA/TW, 
Solvency, Current and accruals. In addition to the variables related to solvency, liquidity and profitability whose 
predictive power has already been shown (e.g. Altman, 1968; Beaver, 1966; Beaver et al., 2005; Ohlson, 1980; Tsai, 
2009), it is interesting to note that the proportion of accruals in total assets improves the predictive power of the 
model. This observation is in line with prior research suggesting that higher levels of accruals is an indication of the 
presence of errors in the accruals-estimation process (Richardson, 2003), which is likely to increase the probability 
of bankruptcy (Al-Attar, Hussain & Zuo, 2008).  

The contribution of this article to the academic literature is twofold. First, by employing a stepwise forward logit 
regression procedure to build our bankruptcy prediction model, we answer to a recent call for more robustness in the 
variable selection process (Acosta-González & Fernández-Rodríguez, 2014). Moreover, we also included ad hoc 
variables to take into account the contingent nature of bankruptcy prediction, a procedure that has been overlooked in 
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empirical research so far (Du Jardin, 2009, 2015). Taken together, these elements contribute to the literature as they 
are oriented towards more accuracy in the construction of bankruptcy prediction models. Second, our findings also 
add a unusual bankruptcy predictor with the proportion of accruals in total assets. By so doing, we emphasize the 
importance to take into account ad hoc variables in order to extend corporate bankruptcy theories (Tian et al., 2015). 

This study also suffers from several limitations that must be acknowledged. First, we used a forward stepwise 
procedure. Even if such using such a procedure has been found reliable (Acosta-González & Fernández-Rodríguez, 
2007), over-identification concern can appear in the model. It means that false significant variables could be included 
in the final model (Lovell, 1983). Therefore, future research should adopt a method that alleviates this problem such 
as computational search procedures (Acosta-González & Fernández-Rodríguez, 2014) or data mining and machine 
learning techniques (Tsai, 2009). Furthermore, this study addressed bankruptcy prediction using a sample of Belgian 
private firms. Since bankruptcy prediction models must be contextualized to offer relevant and accurate forecasts 
(McSweeney, 2001), our study could be replicated in other institutional, legal or organizational contexts. 
Additionally, we used static bankruptcy predictors to build our model. As such predictors only capture an imbalance 
at a determined moment, an alternative method would be to use variation variables that consider year-on-year 
changes in the predictors to address bankruptcy in a dynamic way (Du Jardin, 2009).  

In conclusion, we hope that, by developing a further understanding of bankruptcy prediction in private firms, this study 
will stimulate future research on this complex and important issue of finance and accounting studies. 
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