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Abstract 

We develop an alternative view to the modern finance theory that essentially suggests equilibria in efficient markets 

by taking a risk-based view of asset returns in stock markets. Based on a mathematical analysis of stock market data 

using multi-scale approaches, we will alternatively describe markets and factors as trend-based fractal processes and 

analyze well-known factor premiums, which leads to a return-based view of markets and a model of investors 

reacting to market environments. We conclude that markets could be viewed alternatively as fractal, non-stationary 

and, at most, asymptotically efficient. 

Keywords: momentum effect, low volatility effect, value effect, size effect, efficient market theory, Mandelbrot, 
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1. Introduction 

Are markets efficient, as suggested by Fama (1970)? To date, several developments in modern finance come to very 

different conclusions. In order to support our central claim that one can easily built an alternative view we first 

review relevant historical literature which builds todays financial theory. Efficiency is based on statistical 

independence of asset returns. However, as we review in Section 1.2. there is a vast amount of empirical research 

showing that certain measurable ‚factors‗ influence the future development of asset returns. Also from the 

mathematical side (as reviewed in Section 1.3) there is work showing that statistical independence is violated. In 

Section 1.4. we state the basis of our own work that scale (meaning the time horizon) does matter when analysing 

phenomena which is essentially is the building block for connecting these different observations.  

1.1 Historical Summary 

Core to the hypothesis are several historical steps, which can be rooted in Bachelier‘s (1900) and Einstein‘s (1905) 

random process models, particularly the geometric Brownian motion. While Albert Einstein modeled molecule 

movements, Bachelier used these processes to develop an option pricing theory. In his research, Fama (1995) 

summarized the previous work of Cootner (1964), Fama (1965), Kendall and Hill (1953), and Moore (1962) by 

stating the independence of price changes. This viewpoint was even supported by the work of Granger and 

Morgenstern (1963) using spectral analysis – but only for the short run. These key mathematical properties were in 

line with the general findings by Markowitz (1952), who is seen as the founder of modern portfolio theory. In his 

work, he theorised investors beeing rational by assuming that they should incorporate (discounted) expected returns 

and covariances in their investment decisions. With the efficient frontier, it was possible for Sharpe (1964) and 

Lintner (1965) to independently formulate the capital asset pricing model, introducing a risk modeling approach 

using beta as a risk factor. Sharpe (1964) documented that ‗[…] investors are assumed to agree on the prospects of 

various investments – the expected values, standard deviations and correlation coefficients. [ … ] Needless to say, 

these are highly restrictive and undoubtedly unrealistic assumptions.‘ (p. 433-434) Under these assumptions, he 

showed how equilibrium could be achieved. As soon as investors (with specific risk tolerance) realize inefficient 

portfolios, they can switch to efficient ones. Fama, Fisher, Jensen and Roll (1969) showed how quickly (or efficiently) 

stock market prices can react to new information, which is consistent with the Efficient Market Hypothesis (EMH) of 

Fama (1970). The independence claim of that theory finally leads to the important application of the option-pricing 

model of Black and Scholes (1973). 
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Concerning the capital asset pricing model, empirical tests for verification were carried out by Fama and MacBeth 

(1973), where the underlying model of a linear relationship between risk and return could not be rejected. In more 

recent empirical studies, this risk-based view was extended by Fama and French (1992), and Fama and French (2008) 

using mainly the ‗value effect‘ and the ‗size effect‘ for a risk-based explanation of asset returns. With growing 

numbers of further studies showing excess returns, the 5-factor model was introduced by Fama and French (2015). 

Blitz et al (2018) criticized that some of these factors do not have a risk-based explanation, and proposed to extend 

these models by incorporating low volatility and momentum. 

1.2 Factors 

An increasing number of factors affect future asset returns. Theoretically important is the low volatility effect, i.e., 

companies with lower risk estimates have higher risk-adjusted returns, essentially contradicting the capital asset 

pricing model, which states the opposite. Observations of this effect originated in Friend and Blume (1970) and 

Black, Jensen and Scholes (1972) and were continued by Haugen and Heins (1975) and Frazzini and Pedersen 

(2014). One of the most drastic contradictions to the theory above is momentum. This factor was originally based on 

the research of Jegadeesh (1990) and Jegadeesh and Titman (1993) and has been validated (out of sample) and 

studied by Grinblatt, Titman and Wermers (1994), Chan, Jegadeesh and Lakonishok (1996), Carhart (1997), 

Rouwenhorst (1998), Liew and Vassalou (1999), Moskowitz and Grinblatt (1999), Schiereck, De Bondt and Weber 

(1999), Hong, Lim and Stein (2000), Lee and Swaminathan (2000), Grundy and Martin (2001), Jegadeesh and 

Titman (2001), Okunev and White (2003), Cooper, Gutierrez and Hameed (2004), George and Hwang (2004), 

Moskowitz, Ooi and Pedersen (2010), Bandarchuk and Hilscher (2012), Novy-Marx (2012), Asness, Moskowitz and 

Pedersen (2013), and Daniel and Moskowitz (2016), among others. 

In contrast to the mathematical factors of low volatility and momentum, the value effect has been integrated into the 

3-factor model of Fama based on original studies of Stattman (1980), Basu (1983), Rosenberg, Reid and Lanstein 

(1985), and Chan, Yasushi and Lakonishok (1991). These studies have demonstrated that the average returns are 

related to book-to-market value and earnings-price ratios. These studies were reaffirmed later, e.g., by Pontiff and 

Schall (1995) or Asness, Moskowitz and Pedersen (2013). Another value-related factor is the dividend yield, which 

was reported in Dhillon and Johnson (1994) and discussed in Charest (1978), and Fama and French (1988).  

The list of factors that affect future asset returns is even longer and the situation is even more complex. Gupta and 

Kelly (2019) analyzed 65 well-known factors and showed that the factors can be combined via a momentum strategy 

generating even stronger abnormal returns than the factor combinations alone. It should be mentioned that this 

experiment is similar to the research of Haugen and Baker (1996), who assembled 60 fundamental and technical 

factors and showed how they can be tested monthly to derive abnormal returns. 

In addition to this kind of ‗factor zoo‘ (see Feng, Giglio and Xiu (2017)), there are two other main critiques regarding 

the assumptions of modern finance theory. 

1.3 Mathematical Analysis 

The basic assumption of the independence of asset returns has been questioned, e.g., in Taylor (1962), who used 

spectral analysis and the concept of price-trends to reject the hypothesis of an underlying random walk for asset 

prices. Similarly, Stevenson and Bear (1970) analyzed frequencies and serial correlations to reject the random walk 

model. Lo and McKinlay (1998) showed via a scaling argument (measuring volatility at different scales) that 

volatility does not scale in a way the underlying model intends and strongly reject a random walk model. Mandelbrot 

(1963) used a scaling argument for price increments to assume asset prices as ‗Paretian‘. Later, Mandelbrot and Van 

Ness (1968) were able to generalize geometric Brownian motions by using the Hurst exponent as a third statistical 

force (in addition to drift and volatility). However, they confessed that the deviations are slight and may not 

contradict the model of efficient markets. The work of Peters (1989) showed (using the R/S analysis of Mandelbrot) 

that stock markets and bond markets ‗[…] tend to trend in one direction – until some exogenous event occurs to 

change their bias.‘ (p.32) 

1.4 Behavioural Finance 

Whereas the mathematical critique centers around whether market prices follow random walks, the work of DeBondt 

and Thaler (1987), Shiller (2003), Kahneman (2011) and Thaler (2015) challenges the underlying assumption of 

rational investors, the mathematical analysis used in this work might be a stronger argument. As stated in the 

introduction scale does matter when discussing phenomenas, which is addressed by Campbell (2014) by discussing 

the fundamental disagreements in finance theory‘[…] the joint hypothesis problem in tests of market efficiency, 

which is as much an opportunity as a problem and patterns of short- and long-term predictability in asset returns.‘ 
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(p.593) 

1.5 Outline of Work 

With respect to this brief summary, one must ask why major achievements in the history of finance are so diverse and 

contradictory. Why do different research teams answer a simple question such as ‗Are markets efficient?‘ in 

completely different ways?  

As we will argue in the following sections, this question is also a question of scale. Mandelbrot (1967) addressed the 

question of ‗How Long is the Coast of Britain?‘ and introduced the concept of statistical self-similarity, which shows 

that the answer depends on the scale used for the measurement. We will use multi-scale techniques from wavelet 

theory (i.e., the Haar wavelet, the simplest form of a discrete wavelet transform) and show that log returns can be 

seen as coefficients of the lowest possible scale of that transform of the original data. Second, we use an explicit 

trend model based on a continuous wavelet transformation introduced by Berghorn (2015) to analyze trends. 

Reaffirming the work of Peters (1989) using R/S scaling analysis, we view markets to be fractal and inefficient in the 

long run and efficient in the short term. More specifically, we assume trend-based non-stationary processes of 

Berghorn and Otto (2017) and discuss how this view affects the core assumptions of Markowitz (1952). 

Consequently, we will discuss whether investors will potentially converge to efficient frontiers. We will extend 

original experiments by Berghorn and Otto (2017) and revisit the factors of momentum, low volatility, size, and 

value. We will argue that this subset of factors has a trend-based replication (a linear transfer function with some 

accuracy) and show that the resulting portfolios are similar to those produced by classical factor approaches in 

finance. We derive from these experiments why value and momentum are mathematically anti-correlated and why 

neither is correlated to low volatility – it is a matter of scale. We will also discuss why value strategies can be 

regarded as risk factors, whereas momentum and low volatility can be seen as trend factors. Concerning momentum, 

we will present a case study illustrating how these trends can occur, although markets seem to react efficiently on 

arriving information. We then use a return-based linear model of asset pricing and show that even a restricted set of 

factors, namely, momentum, value, and low volatility, has similar statistical power compared to the capital asset 

pricing model. Additionally, we view these factors as investor styles that generate excess returns in different market 

regimes, similar to Anderson and Noss (2013). Under this assumption, investors will not view asset characteristics 

for their portfolio decision homogeneously, as assumed by Sharpe (1964). Finally, we will review certain aspects 

discussed in the introduction from the viewpoint of (fractal) trend-based investor reactions and conclude that markets 

may be seen as asymptotically efficient once the role of scale has been clarified and incorporated into the model. 

2. Market Data, Definition of Factors, and Trending 

In subsequent chapters we will show that an explicit trend model (modelling upward und downward trends in 

end-of-day price data) can be used to describe factor behaviour (measuring e.g. the price-earning ratio or 

momentum). In brief this is done by selecting a trend model parametrisation which allows classical factors being 

described by a regression model with high accuracy. Our simulation results are based on the combined market S&P 

500 and STOXX 600 constituted at May 10th 2019. Data provider is Bloomberg. Because this research is focused on 

the characteristics of time series data, we do not compensate for any index changes. We construct a value weighted 

market proxy as used in Berghorn (2015). This construction design is equivalent to the one used to constitute the 

DowJones Index, and it serves as a market proxy in the remainder of this work. The dataset itself contains 1,105 

assets combining large cap US and European stocks. The period used for the analysis is the beginning of 2004 

through the end of 2018 (15 years). Any asset that has been integrated into the index after 2018 is excluded. The 

resulting set of assets comprises 1,100 companies. 

We will apply factors to this dataset, i.e., we will measure certain characteristics (either trend characteristics, 

historical price performance or fundamentals) over some past periods on a monthly basis. Classical factor 

calculations comprise momentum, low volatility, price ebitda ratio, dividend yield, and price book ratio.  

For the price data, we will use end-of-day data. Monthly, we will sort the measured characteristics using Z-scores 

(Note 1) and pick the top/bottom fraction of assets to establish a portfolio. To simulate realistic portfolios, we also 

subtract 0.1% of the whole volume to anticipate trading costs on a monthly basis. To harmonize with Berghorn et al 

(2021), we will use 10% deciles, i.e., 110 out of 1,100 assets, to evaluate the factor performance. 

We do not discuss in detail the statistics of the performance curves for individual factors and refer the reader to the 

literature mentioned in the references at the end of the paper. We report only key characteristics such as the drift of 

daily returns, the volatility of daily returns, and the ratio of both, i.e., the daily risk-adjusted returns and the maximal 

drawdown seen in the experiments. 
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In some examples, we will use random processes, namely, geometric and fractional Brownian motions. We estimate 

the drift, the volatility, and the Hurst exponent (by using the R/S analysis). For the sake of completeness and as 

Figure 1 shows, 977 of 1,006 assets (including the proxy value weighted market index) used in this work exhibit 

Hurst exponents greater than 0.5. This signals that trending in asset price series (or long term memory) is widely 

present as (as modelled by fractional Brownian motions). 

 

Figure 1. Hurst exponents - 0,5 per asset 

 

3. Wavelets, Trends, and Random Walks 

With the research in wavelet theory at the end of the last century (for an introduction, we refer to Louis, Maaß and 

Rieder (1994)), Ramsey, Usikov and Zaslavsky (1995), Ramsey (1999), and Ramsey (2002) used a new technology 

to examine the question of whether stock market data follow a random walk. Analyzing the U.S. stock market, 

Ramsey, Usikov and Zaslavsky (1995) found that ‗[…] there seems to be some evidence of non-randomness in the 

data‘ (p. 377), which can be related to the most simplistic form of a wavelet transform, the Haar transform. In the 

discrete case, wavelet theory is based on smoothing (averaging) data and collecting the missing details (in case of the 

Haar wavelet, it is the difference in adjacent data points) to preserve the information of a signal and reversibility. 

Let us assume that we have discrete end-of-day stock market data 𝑆𝑖
˜

∈ ℝ+ for 𝑖 = 1, . . . , 𝑛 with 𝑛 ∈ ℕ and 𝑛 > 1. 

Then, formally, the first step (on scale 1) of that discrete (and dyadic) transform is to calculate the smooth part of the 

data by calculating 

 𝑘 =
     

˜
+   

˜

√2
, where  =  

𝑛

2
                                   (1) 

In the second step, the details 𝑑𝑘 are collected using 

𝑑𝑘 =
     

˜
    

˜

√2
.                                        (2) 

As such, the calculation is subsampling the data (taking adjacent pairs of original values). If we use the natural 

logarithm on our original data 𝑆𝑖
𝑙𝑛
˜

: = 𝑙𝑛(𝑆𝑖)
˜

, this transform reflects a scaled and subsampled version of continuous 

returns. The smooth part  𝑘 is now recursively treated by the formulas above. Every step coarsens the data at dyadic 
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wavelet scales 1, 2, 4,… . As such, the coefficients  𝑘 and 𝑑𝑘 are using 2, 4, 8,… data points and can be 

interpreted as longer-term returns.  

From this perspective, it is already clear why the open question of whether data can be represented by a random walk 

model is answered so differently. Fama (1995) used a short-term view (essentially at wavelet scale 1), where Taylor 

(1962) used broader scales. 

3.1 Fractal Processes and Trends 

In the following section, we will focus on the question ‗are geometric Brownian motion and the generalization, the 

fractional Brownian motion, adequate models for representing stock market data‘? To answer this question, we will 

use an explicit trend model introduced in Berghorn (2015). Shifting now from the discrete notation 𝑆𝑘
˜

 for asset 

prices, we use 𝑆𝑘 as a continuous function for price records of asset  . When we refer to an individual stock, we 

will use the notation 𝑆𝑘, where   runs from 1, . . .1110. 

The continuous wavelet transform 𝑊𝜓𝑆 is defined as a convolution of a signal 𝑆(𝑡) with a convolution kernel 𝜓 

WψS(a, b) =
1

a
∫
 ∞

+∞
Ψ(

t b

a
) S(t)dt                                 (3) 

for some admissible wavelets 𝜓 and a wavelet scale 𝑎 at location 𝑏. Rooted in the generalized Heisenberg 

uncertainty principle (Note 2), we choose the first derivative of the Gaussian function (which is then a wavelet). 

Consequently, the convolution has the most precise localization properties in frequency and time. If 𝜓  is 

differentiable, it follows that 𝑊𝜓𝑆(𝑎, 𝑏) is also differentiable, and we are able to determine local extrema 𝑀. The 

first derivative of such a smoothing process is similar to the Haar transform, i.e., the Haar transform calculating 

differences 𝑑𝑘 can be viewed as a scaled approximation to a first derivative. Return measurements, such as those 

used in momentum strategies, can consequently be seen as coarse approximation to a first derivative. In Berghorn 

and Otto (2017), a mathematical notation for a trend model is given. Essentially, between local extrema (under 

smoothing), linear trend segments are assumed. Formally, applying a wavelet transform 𝑊𝜓 with a ―smooth‖ 

wavelet 𝜓 (being differentiable) to an asset with prices 𝑆, we can apply an operator (see Berghorn (2015))  

𝑉𝜓(𝑎, 𝑆): 𝑆 → 𝑀(𝑎, 𝑆)                                    (4) 

where we assign a given price record 𝑆 the observed extrema under smoothing at wavelet scale 𝑎. We drop at this 

point the notation 𝜓, as we will exclusively use the Gaussian function. 𝑀(𝑎, 𝑆) can be seen as a set of indices 

𝑀(𝑎, 𝑆) = *𝑚1
𝑎(𝑆), . . . , 𝑚𝑚

𝑎 (𝑆)+,                                 (5) 

where 𝑚𝑙
𝑎(𝑆) is pointing to the location of the 𝑙-th extreme value under smoothing (see Evertsz (1998)). 

We now switch back to a discrete form and take the last observed local extrema under smoothing 𝑚𝑚
𝑎 (𝑆

~

) for a 

discrete signal 𝑆
˜

 and estimate for the  -th trend the size by 

𝐶𝑘
𝑠𝑖𝑧𝑒(𝑀(𝑎, 𝑆

˜

)): = 𝑚𝑘+1
𝑎 (𝑆

˜

) − 𝑚𝑘
𝑎(𝑆

˜

).                                (6) 

We can estimate a generalized trend drift 𝜇 using continuous returns 𝑟𝑖 = 𝑙𝑛(𝑆𝑖
˜

) − 𝑙𝑛(𝑆𝑖 1
˜

): 
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 ( 

~
)

𝑟𝑙                             (7) 

𝐶𝑘
 
(𝑀(𝑎, 𝑆

~

)) is generalized in the sense of allowing estimates of negative trends given a wavelet scale 𝑎. Using a 

single trend segment only, we can define the trend volatility in a similar way. 

We now view the market as an aggregate. For the following experiment, we calculate for a given wavelet scale 𝑎 

and an asset 𝑆𝑘(𝑡) the linear trend model and measure the trend sizes seen historically. We aggregate the market by 

collecting all trend sizes of all individual assets 𝑆𝑘(𝑡) for a given wavelet scale 𝑎 and report averages in business 

days. This procedure is finally compared with two models, the fractional and geometric Brownian motion, using the 

historically estimated drift, volatility, and the Hurst exponent (using an R/S analysis) for each individual asset of a 

market. We generate 1,000 realizations for every asset, calculate the trend sizes of these models and average the trend 

sizes observed per scale over all asset realizations. The resulting average trend sizes per scale show that market data 

has longer trends (see Figure 2) and a higher standard deviation (both measured in business days) when compared to 

the fractional and geometric Brownian motions (see Figure 3) (Note 3). From the trend model perspective, both 
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random processes can be viewed as similar (they are almost identical when the average trend sizes are compared). 

 

 

Figure 2. Averages of trend sizes seen (Random Walk vs. Stock Market Data) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Standard deviation of trend sizes seen (Random Walk vs. Stock Market Data) 

 

As seen above, trends in assets (as an aggregate) follow a linear relationship to business days. With higher scales a, 

the difference in trend sizes between models and real data increases. For example, if one chooses a coarse scale, e.g., 

𝑎 = 64, one finds that trends are already approximately 21 business days longer in aggregate than realizations of 

fractional and geometric Brownian motions, which potentially allows a monthly re-balancing (assuming 21 business 

days per month). However, the statistical analysis also shows that the width of the distributions is fundamentally 

different. As shown in Berghorn (2015), individual assets exhibit drastic trend characteristics that cannot be modeled 

by the geometric Brownian motion, which is similar to Mandelbrot‘s view, who expressed that market data are 

―wilder‖ with respect to outliers than normal distribution can provide. 

3.2 Wild Trends: An Example 

We now consider assets that have a history of price records for more than 5 years (Note 4). We decompose all assets 

into trends and calculate the trend sizes at scale 23. Finally, we select the 100 longest trends seen and sort the assets 

according to their trend sizes (see Figure 4). 
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Figure 4. "Wild" trends: 100 longest trend sizes at Wavelet Scale 23 

 

Using 10,000 random walk realizations, we determine the trends of these realizations at scale 23 and analyze how 

often we would see such a situation under a model using the estimated drift and volatility of the individual assets. 

The answer shows that this situation is rare: 95% of assets have a random walk representation, which has a 

probability close to zero to render such long trends. 

3.3 Discussion 

In aggregate, for small scales a, the deviations between trend sizes seen in the market and random walk realizations 

―converge‖ to zero. In that regard, fractional Brownian motion modeled by Mandelbrot represents inefficient markets 

(if scale a is coarse enough); however, it is still not sufficient because market data exhibit even longer trends. In 

Berghorn and Otto (2017), a fractal, trend-based (and therefore non-stationary) model is chosen to determine whether 

momentum markets can be generated. 

From a theoretical point of view, there are important consequences, as in non-stationary, fractal markets, some key 

assumptions of Markowitz (1952) are not fulfilled: two investors estimating expected returns as well as the 

associated covariances using different time horizons will obtain different estimates. There is another theoretical 

argument that can be made in conjunction with the central limit theorem. The Haar transform illustrated above is 

reversible. Let f be a reconstruction coefficient applying the inverse of the Haar transform 

 2𝑘 =
𝑠    

√2
 and  2𝑘+1 =

𝑠 +  

√2
,                                  (8) 

using the coefficients  𝑘 and 𝑑𝑘 from (1) und (2). Under the assumption that  𝑘 and 𝑑𝑘 (on all levels of that 

transform) are independent variables, the recursive back transformation to obtain  𝑘 would follow the central limit 

theorem because independent random variables are added. This argument chain follows the reasoning of Rice (1995). 

In other words, trend structures are difficult to see when multi-scale approaches are not involved. 

It is also noteworthy to mention that statistical tests are a very ‗coarse‘ view. As shown in Berghorn and Otto (2018), 

trend sizes might stem from a lognormal distribution. 

4. Factors 

Gupta (2019) observed 65 different factors from the literature on a monthly basis (using the previous month‘s 

performance) to create a portfolio of outperforming factors in the following month. 

In our view, this approach is similar to the work of Haugen and Baker (1996), who examined 60 factors (fundamental 
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Figure 4: Given a subset of data that is long enough (5 years or longer), we analyze trend sizes for this 
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and technical ones) and estimated the slopes (betas) of a linear regression between the market and the relevant 

factors over a period of one year. In the second step of that work, a return estimate for all factors and for all 

individual assets was calculated by using these betas multiplied by the ranking of an asset. These return estimates 

were finally ranked and used for an investment decision. 

From a high-level perspective, it can be considered that both studies address the well-known fact from literature that 

factors (e.g., momentum or value) have long underperformance periods. Furthermore, these approaches again 

confirm the strong anti-correlation between the momentum and value effect. 

The reasoning why the approaches in Haugen and Baker (1996) and Gupta (2019) work is given in the following 

experiment. 

4.1 Factor Trending 

Let us assume that we have continuous stock market records 𝑆𝑘(𝑡). We can now measure the return at some scale 

𝑎 ∈ ℤ\*0+ with 

 (𝑎, 𝑆𝑘, 𝑡) =  𝑖 𝑛(𝑎)
  ( )   (   𝑎 )

  (   𝑎 )
                                 (9) 

We explicitly allow negative scales that can be interpreted as an anti-momentum measurement because assets with 

negative past returns are ranked higher. 

Let us assume that we allow double sorting via Z-scoring. In other words, we combine two measurements 

 (𝑎1, 𝑆𝑘 , 𝑡) and  (𝑎2, 𝑆𝑘 , 𝑡), normalize for all measurements i seen in the market by Z-scoring, and finally add both 

normalized measurements. In the following experiment, we choose for each following month the best generalized 

momentum combination of two scales 𝑎1 and 𝑎2, where scales 𝑎1 and 𝑎2 vary from -72 months to +72 months. 

Every generic factor is executed with only 30 assets, and the factor performance from a previous month determines 

the factor used in the following month. This technique of using 1-month-momentum to generalized momentum 

strategy exhibits momentum characteristics, as shown in Figure 5. 

 

Figure 5. Momentum of generalized momentum (30 assets) 

 

This generalized momentum approach supports the viewpoint of Haugen and Baker (1996) and Gupta (2019), but 

does not use any fundamental data or economic data. It is based solely on the past performance characteristics of 

assets. Thus, the price development of assets is not independent from the past and allows timing. 

4.2 Trends and Factors 

In the following section, we consider the regression model 

   (𝑡) =  𝑖   𝑖    
(𝑡)   𝑖, ,                                (10) 

where  𝐹𝑖(𝑡) represents the daily return of a classical factor 𝐹𝑖 (such as momentum). We regress the logarithmic 
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daily returns of a trend replication  𝑇
 𝑑

 given a set of scales with varying dimensions 𝑑. As such, we use the 

notation   , where   is a generic set of scales. For example, in the three-dimensional case, we use 

 3 = **−12 , . . . ,12 +  *−12 , . . . ,12 +  *−12 , . . . ,12 ++. 

The boundaries are chosen to limit the optimization process. Please note that we use for different factors 𝐹𝑖 different 

dimensions 𝑑.  

We then measure the coefficient of determination  2 and determine the optimal scale 𝑎 ∈    so that  2 is (sub-) 

optimal. In essence, we would like to identify scales 𝑎 ∈    that best explain the factor 𝐹𝑖 under consideration. 

In the regressions, we use momentum, low volatility, value strategies and the size effect. Each experiment reports 

key strategy characteristics such as daily drift, daily volatility, daily risk-adjusted return, and maximum drawdown. 

In the case of a higher number of scales, this replication approach involves heavy computational efforts. Therefore, 

we use the pattern search approach developed by Hooke and Jeeves (1961), which may come close to global optima. 

To verify whether the outcome of this optimization is artificial, we extend these experiments by measuring the 

portfolio distance between the original factor and the wavelet trend-based replication. To remain consistent with later 

sections, we will now assume decile portfolios, i.e., we consider 110 assets in the monthly ranking. 

4.2.1 Portfolio Distance 

Let us assume that we have 1,100 assets, and rank monthly assets according to a factor 𝛤, i.e. we map a stock 𝑆𝑘 to 

𝛤: 𝑆𝑘 → 𝛾 at some timepoint 𝑡. 

The resulting portfolio has a sorting of assets 𝐴𝛤(  , ), . . . , 𝐴𝛤( 𝑛 , ) at time 𝑡. We repeat our study with a factor 𝛤′ 

and obtain a different ranking 𝐴𝛤′(  , ), . . . , 𝐴𝛤′( 𝑛, ). Under the assumption, that we use only 110 of the top-ranked 

assets, i.e. the 10% decile, we then compute the distance of a portfolio position by applying 𝛤 and 𝛤′ and 

normalize this with the maximal possible distance of portfolio 𝐷𝑚𝑎𝑥  

𝐷(𝛤, 𝛤′, 𝑆, 𝑡) =
   ( , )   ′( , ) 

    
                                  (11) 

with  

𝐷𝑚𝑎𝑥 = (1,100 − 1)  (1,099 − 2)  ⋯ (1,100 − 109 − 110). 

In the following, we briefly discuss the main findings for each factor and summarize the results in one table. Therein 

we use for almost every factor the trend drift (𝐶 
𝜇
(𝑀𝑙𝑎 𝑡(𝑎, 𝑆)) of the last visible trend seen at a scale a for the 

monthly ranking. In particular, we decompose every asset into trends given a wavelet scale a and estimate the daily 

drift on the last trend segment visible. This trend drift is then used for the ranking of the monthly rebalancing. 

4.2.2 Momentum 6M and Momentum 12M 

We first address the momentum strategy based on the historic performance of assets measured over 6 months. Figure 

6 illustrates the linear relationship (by using model of equation (10)) of the momentum strategy to a trend model. In 

particular we can find a linear regression model which describes the linear relationship of the classical factor end the 

trend model based factor, where assets are ranked based on the last visible trend at scale 23 using the trend drift. The 

risk-adjusted return of the original momentum factor is 0.0492 vs. 0.0434 of the replication. 
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Figure 6. Replication of higher momentum decile (6M) using 110 assets 

 

For longer time horizons (e.g., 12 months used for the asset rankings), we also deduce coarser scales, i.e. assets are 

ranked based on the last visible trend at scale 41 using the trend drift (see Figure 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Replication of higher momentum decile (12M) using 110 assets 
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4.2.3 Low Volatility 

According to Berghorn and Otto (2018) and Berghorn et al (2021), the low volatility factor is a side of the same coin 

when compared to momentum. It has been shown that the volatility of returns of the last trend seen under smoothing 

with scale a generates similar performance characteristics compared to the original factor. For the classical factor of 

low volatility, we estimate monthly the volatility of the past three years (36 months) of every individual asset. Using 

the linear model fit from above, we obtain scale 89. Figure 8 shows the linear relationship of the low volatility factor 

to a trend model, where assets are ranked based on the last visible trend at scale 89 using an inverse volatility 

estimate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Replication of low volatility decile (36M) using 110 assets 

 

As defined in equation (9) above, we use a very generic concept of scale, i.e. we allow positiv scales as used above, 

but also negative ones. In the latter case we simply revert the ranking order by multiplying -1 to the computed trend 

characteristics (e.g. trend drift). This is being used in the following sections, where we focus on value strategies. As 

such, one can assume that negative scales will play an important role because an asset in a distress period will show 

up as more attractive when balance sheet data are combined with price data. Therefore, we use the pattern search 

approach for higher-dimensional scales. 

4.2.3.1 Value - Strategy 1: Low Price-to-EBITDA Ratio 

We evaluate the EBITDA and determine the 10% decile of assets with the lowest ratio of price and EBITDA on a 

monthly basis. Similar to the factors above, we are able to determine a trend-based strategy with high precision (see 

figure 9). The corresponding scales are 58, -128 and -39 and are partly negative. For all three scales, we will use the 

last visible trend and measure the daily drift on that segment. The measurements will then be combined using 

Z-scoring. 
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Figure 8: This experiment illustrates the linear relationship of the low volatility factor to a trend model, 
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Figure 9. Replication of low price EBITDA ratio decile (36M) using 110 assets 

 

4.2.3.2 Value Strategy 2: Dividend Yield 

Similar to the fundamental ratio of chapter 4.2.3.1, we analyze a dividend yield strategy next. For every asset, we 
determine monthly the last paid dividend (reported in the balance sheet on a quarterly basis) and divide this number 
by the current share price. The corresponding scales in this experiment are 10 and -10 and the resulting performance 
chart is depicted in Figure 10. 

 

Figure 10. Replication of higher dividend yield decile (36M) using 110 assets 
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LOW PRICE EBITDA RATIO

REPLICATION (58 / -128 / -39 / TREND DRIFT)

Figure 9: Similar to the factors above, we are able to determine a trend-based strategy with high 

precision. The corresponding scales are 58 / -128 / -39 and are partly negative. The corresponding 

characteristics are 0.00047533 (drift original factor) vs. drift 0.00045154 of the replication. Volatility 

estimates are 0.0122131 vs. 0.01312103 (replication). Risk-adjusted return shares similar 

characteristics (0.03892007 vs. 0.03441356). The maximal drawdown is -57.93% vs. -56.37%. 

Concerning the regression, the alpha value is 0.00007578, beta is 0.88487438, and the R2 value is 
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4.2.3.3 Value Strategy 3: Low Book-to-Market Ratio 

For value-based strategies, we now turn to the book-to-market ratio. This is a classical factor that is perceived as a 
risk factor and has been added to the 3-factor model of Fama and French (1992). In contrast to the value-driven 
strategies above, we find two negative scales (-93 and -97), as depicted in Figure 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Replication of low price book ration decile using 110 assets 

 

4.2.4 Size 

In the 3-factor model of Fama and French (1992), the size factor as well as the value factor are established as 

risk-based factors. A possible implementation of the size factor is equally weighting the portfolio on a monthly basis 

using 1,100 assets. Assets are ranked based on the last visible trend drift at scales (127 and -110) using Z-scoring. 

Figure 12 shows how this weighting can be replicated by a fraction of 10% of all assets: 
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Figure 12. Replication of size effect using 110 assets 

 

Please note that Alquist, Israel and Moskowitz (2018) argued that the size factor ‗[…] may not have existed in the 

first place.‘ (p. 1) Therefore, we separate that effect from the other analyzed factors. 

4.2.5 Discussion 

It is worth mentioning that the scales found are neither stable nor persistent. Because we assume strong 

non-stationarity of asset returns, any modifications of the measurement (e.g., the portfolio size, the time interval 

investigated) lead to different results. However, the described model enables a transfer of factor anomalies into the 

wavelet domain. Almost every factor 𝑇𝑖  has an approximation with a linear transfer function 𝐿𝑖 (having  𝑖
2 ≥

90% for every factor 𝑖) with 

𝐿𝑖: 𝑇𝑖 → 𝐹𝑖                                          (12) 

Therefore, we can discuss characteristics in the wavelet domain (using the trend factor 𝑇𝑖  and the associated (sub-) 

optimal scales). Using the inverse of 𝐿𝑖, we are able to relate back to the original factor 𝐹𝑖 . Table 1 summarizes the 

results and shows that under high statistical certainty, these transfer functions cannot be rejected. However, by 

focusing on the portfolio distance 𝐷(𝛤, 𝛤′, 𝑆, 𝑡), these replicated factors are almost identical when compared to the 

original factors (Note 5): 

 

Table 1. Overview factor replication with trend based ranking 

Characteristics High 

Momentum 

(6M) 

High 

Momentum 

(12M) 

Low 

Volatility 

(36M) 

Low 

Price-EBITDA  

High 

Dividend 

Yield 

Low 

Price-Book 

Ratio 

Size 

Drift 0.0005 0.0006 0.0002 0.0005 0.0003 0.0004 0.0004 

Volatility 0.0117 0.0119 0.0071 0.0131 0.0114 0.0139 0.0117 

Risk-Adjusted 0.0435 0.0469 0.0335 0.0344 0.0277 0.0309 0.0320 
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EQUALLY WEIGHTED (SIZE)

REPLICATION (127 / -110 / TREND DRIFT )

Figure 12: This experiment uses one approach to establish the size factor by using monthly equally 
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Return 

Maximum Loss -56.49 % -53.46 % -43.04 % -56.37 % -59.39 % -67.89 % -62.85 % 

Trend Ranking Drift Drift Inverse 

Volatility 

Drift Drift Drift Drift 

Scale 1 23 41 89 58 10 -93 127 

Scale 2    -128 -10 -97 -110 

Scale 3    -39    

Alpha 0.0071 % 0.0005 % 0.0014 % 0.0076 % -0.0053 % -0.0011 % 0.0050 % 

Beta 90.95 % 91.70 % 97.09 % 88.49 % 96.54 % 96.84 % 85.66 % 

R2 96.39 % 96.21 % 97.73 % 90.37 % 88.81 % 93.10 % 94.93 % 

Portfolio 

Distance 

0.61 % 0.67 % 0.79 % 3.26 % 2.59 % 2.82 % — 

 

The results of our analysis show very clearly that momentum and value are strongly anti-correlated. Based on three 

arguments value can be seen as a strategy that has an anti-momentum parametrization: 

1. Economically, the value effect is based on allocating assets when they are ‗cheap‘, i.e., when stock prices 

are under pressure.  

2. Furthermore the value effect (according to the trend model) is investing in negative scaled-down trends, it 

can clearly be seen as a risk-driven approach.  

3. Third, the momentum crash discussed in Daniel and Moskowitz (2016) for long-short momentum factor 

portfolios is based on the short side of the portfolio and can be seen as a response to a value market, which 

we will address in the following sections. 

The developed transfer functions 𝐿𝑖 make clear that for this market and for this time interval under high statistical 

certainty (expressed by high  𝑖
2 values), we can discuss phenomena from the wavelet space and refer back. The 

portfolio distance is in accordance with this view and reveals that the results are not an artifact of in-sample 

optimization. 

5. Trend-Based Return Model for Asset Returns 

Having now transferred the factors into the wavelet space, we need to address the question of whether this can be 

viewed as adequate for modeling asset returns. Because we have an explicit trend model and a return-based view, we 

certainly should not apply a risk-based equilibrium model to test the descriptive power. For the following, we assume 

that the given factors 𝐹𝑖, (𝑖 = 1, . . . , 𝑛) are regressed via 

  (𝑡) =    
𝑖 1

𝑛

 𝑖   (𝑡)                                   (13) 

to the market return  𝑀. 

5.1 Beta in a Return-Based View 

To compare directly to the capital asset pricing model, we define  𝐶 𝑃 ,  
𝛥  as the coefficient of the following 

regression: 

 𝑠 (𝑡) =    𝐶 𝑃 ,  
𝛥   (𝑡)                                  (14) 

In this model, we measure the sensitivity of a stock return    (𝑡) given the market return  𝑀(𝑡). 
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Let us assume that we built this factor like the other factors above, i.e., we sort every month according to the 

individual  𝐶 𝑃 ,  
𝛥  and take the 10% decile. The resulting factor  𝐶 𝑃 

𝛥  is dependent on 𝛥𝑡. 

To determine the ratio of explained market returns, we will use the explanatory power 𝐸𝑃 defined by 

𝐸𝑃:= 1 −
𝛼

𝐸(𝑅𝑀)
 . (15)Assume that we take the momentum time periods used for the momentum factors above and 

analyze  𝐶 𝑃 
6  and  𝐶 𝑃 

12  representing beta estimates over 6 months and 12 months, respectively. We run now the 

return-based regression from above and find that  𝐶 𝑃 
6  and  𝐶 𝑃 

12  are indeed good descriptions for this model, as 

summarized in Table 2. 

 

Table 2. Beta in a return based view 

Characteristics  𝐶 𝑃 
6   𝐶 𝑃 

12   𝐶 𝑃 
6  and  𝐶 𝑃 

12  

Alpha 0.00003599 0.00005978 0.00005844 

Regression Coefficient (1) 0.4798 0.4882 0.0253 

Regression Coefficient (2)   0.4628 

Market Drift 0.00018188 0.00018188 0.00018188 

R2 0.7938 0.7938 0.7938 

Explanatory Power 80.21 % 67.13% 67.87% 

 

Table 2 shows that  𝐶 𝑃 
6  is the better explanatory variable when compared to  𝐶 𝑃 

12 , although the  
𝛽𝐶𝐴𝑃𝑀
6𝑀
2  is as 

good as  
𝛽𝐶𝐴𝑃𝑀
  𝑀
2 . Under the period of 12 months, the explanatory power 𝐸𝑃 decreases. Now we can combine both 

in a multiple regression, and we find exactly the opposite:  𝐶 𝑃 
12  is the dominating factor since  𝐶 𝑃 

6  is close to 

zero. 

However, all three regressions exhibit high  2 values, and we use this value as a reference point for the next 

experiment. 

5.2 Return-Based Factor Review 

We now run several regressions, where we compare our classes of risk and return factors (as categorized in Table 3) 

and combine them. This combination is extended by the size factor. We finally use the mean reversion approach of 

Berghorn and Otto (2018) (Note 6) to see how this effect might influence the explanatory power. The results are 

depicted in Table 3:  
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Table 3. Return based factor view 

Characteristics Return 

Factors 

Risk 

Factors 

Risk and Return Factors Risk and 

Return Factors 

+ Size 

Risk and Return 

Factors + Mean 

Reversion 

Alpha -0.000057 -0.000021 -0.000028 0.000018 -0.000129 

RC (Proxy 06M 

Momentum) 
0.291565  0.131644 0.133518 -0.092979 

RC (Proxy 12M 

Momentum) 
0.185786  0.330695 0.171688 0.034133 

RC (Proxy 36M 

Low Volatility) 
0.385599  0.546087 0.472085 -0.708042 

RC (Proxy Low 

Price Book R.) 
 0.094356 0.203669 0.012454 -0.127234 

RC (Proxy Low 

Price EBITDA R.) 
 0.562778 0.218202 0.204968 0.039341 

RC (Dividend 

Yield) 
 -0.106093 -0.522721 -0.561572 -2.180498 

RC (Proxy Size)    0.463302  

RC (Mean 

Reversion ) 
    1.950011 

Market Drift 0.000182 0.000182 0.000182 0.000182 0.000182 

R2 0.7022 0.6848 0.8469 0.8667 0.8469 

Explanatory Power 131.12 % 111.36 % 115.44 % 89.85 % 170.74 % 

 

The results show that the return-based strategies (momentum and low volatility combined with the value strategies 

considered in this work) are highly competitive with the capital asset pricing model, as the value  2 are similar 

compared to the capital asset pricing model. 

Furthermore, we see that return-based strategies outperform such that the remaining α is negative and the value of 

EP exceeds 100%. The same is true for value strategies and for the combination. If we now consider the size effect, 

then we would obtain a EP describing 90% of the market returns. However, if we model mean reversion according to 

Berghorn and Otto (2018), then the EP value exceeds even 170%. 

Please note that we explicitly do not analyze whether or not individual regression coefficients are statistically 

significant. The effects modeled here are discussed in the literature. The only claim that we derive is that these 

well-documented anomalies are complete in a sense that a good linear model can be found when trying to explain 

market returns. Consequently, we see estimates over markets and time periods as 

𝐸(  )𝛥 =   𝐸( 𝔽𝛥 
 −   )𝛥 − 𝐸( 𝔽𝛥 

− −   )𝛥                       (16) 

where 𝐸(  )𝛥  denotes the estimate for the market return,   a component that one does not model, and one will 

find a set of factors 𝔽𝛥 
+  over some period 𝛥𝑡 that generate excess returns 𝐸( 𝔽𝛥 

 −   )𝛥 > 0 and find factors 
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𝔽𝛥 
  that generate underperformance 𝐸( 𝔽𝛥 

− −   )𝛥 < 0 for a given period 𝛥𝑡. Essentially, this is a return-based 

equilibrium model reflecting non-stationarity and views market data as being superimposed by strategies 𝔽𝛥 
+  and 

𝔽𝛥 
 . 

This view does not contradict the work of Carhart (1997), who found that the average portfolio manager does not 

outperform the market. It states only that the strategies as a whole balance out, i.e., there can be a huge in-balance of 

𝔽𝛥 
+  and 𝔽𝛥 

  (Note 5). 

How should we model stock markets? Is an asset‘s  𝐶 𝑃 ,  
𝛥  - risk factor that is driving returns or are these the 

trends we used as a model that lead to high  𝐶 𝑃 ,  
𝛥  values? 

Let us assume that for a specific asset 𝑆, we had information innovations 𝐼1, . . . , 𝐼𝑛  at discrete times 1, . . . , 𝑛. If 

investors react fast on the occurrence of 𝐼𝑖 , then locally, we would assume 𝐸(  −    𝐼1, . . . , 𝐼𝑖)𝛥 =
˜
0 for small 

𝛥𝑡. Investors would not be able to estimate when further innovations 𝐼𝑗>𝑖 occur or how often they will occur in 

future. This information is exclusive to 𝑆 and is insider information. However, in hindsight, it is possible to measure 

trends. Let us assume that all investor reactions were positive and that every event leads to excess returns compared 

to the market. We are then able to clearly identify trends. At the same time, we would also see high  𝐶 𝑃 ,  
𝛥  values 

for this asset 𝑆𝑘. 

5.3 Investor Reactions 

In the final experiment, we ask whether different factors are ‗reacting‘ (in terms of excess return) to market 

conditions. Therefore, we assume the following classes of investors:  

 Value Investor: Value investors see an opportunity if market conditions led to ‗cheap‘ assets. We will model 

this phenomenon using moving averages on the market prices 𝑆𝑚. We investigate a value strategy if 

𝑀𝑉𝐴200(𝑆𝑚(𝑡)) > 𝑆𝑚(𝑡) and 𝑀𝑉𝐴20(𝑆𝑚(𝑡)) < 𝑆𝑚(𝑡), i.e., if the market is in a downturn on a broad 

scale and corrects on a smaller scale (measured by using moving averages on 200 and 20 business days, 

respectively). The factor used in the model is the proxy of Price to EBITDA in the wavelet domain. 

 Defensive Investor: Defensive investors pursue a low-volatility strategy. As such, we use the constraint that 

in downturn periods 𝑀𝑉𝐴200(𝑆𝑚(𝑡)) > 𝑆𝑚(𝑡)  and 𝑀𝑉𝐴20(𝑆𝑚(𝑡)) > 𝑆𝑚(𝑡) , we use exclusively the 

‗safest‘ factor, i.e., low volatility represented by the wavelet trend-based approach. 

 Momentum Investor: Momentum investors believe that there are trends in markets and therefore pursue a 

momentum strategy. We choose the proxy in the wavelet domain to represent 6-month momentum. 

We now differentiate various market conditions and analyze factors on the basis of the performance of the last month 

as follows: 

 Upward Market: If 𝑀𝑉𝐴200(𝑆𝑚(𝑡)) < 𝑆𝑚(𝑡) and 𝑀𝑉𝐴20(𝑆𝑚(𝑡)) < 𝑆𝑚(𝑡), we test low volatility and 

momentum and choose one of these two factors based on the performance of the last month. 

 Downward Market: If 𝑀𝑉𝐴200(𝑆𝑚(𝑡)) > 𝑆𝑚(𝑡)  and 𝑀𝑉𝐴20(𝑆𝑚(𝑡)) > 𝑆𝑚(𝑡) , we choose the low 

volatility factor. 

 Correcting Market: If 𝑀𝑉𝐴200(𝑆𝑚(𝑡)) > 𝑆𝑚(𝑡) and 𝑀𝑉𝐴20(𝑆𝑚(𝑡)) < 𝑆𝑚(𝑡), we test momentum vs. 

value and choose the factor that had the best performance over the previous month. 

This model is a very harsh simplification. However, when tested against other strategies, it is an effective one, as 

shown in Table 4 and Figure 13:  
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Figure 13. Comparison of strategies ―Timing‖ factors 

 

Table 4. Comparison factor timing strategies (10% Decile) 

Characteristics Factor Strategy 

Portfolio w/ 

Three Factors 

Factor Strategy 

Portfolio w/ Six 

Factors 

Factor Timing 

using Market 

Condition 

(Three Factors) 

Factor Regression 

using Six Factors 

Multi Factor 

Approach 

using 

Z-Scoring of 

Factors (Six 

Factors) 

Value Weighted 

Index (%) 

213.26 % 213.26 % 213.26 % 213.26 % 213.26 % 

Value Weighted 

Index (% p.a.) 

7.91 % 7.91 % 7.91 % 7.91 % 7.91 % 

Return Factor 

Strategy (%) 

643.84 % 839.07 % 844.48 % 496.86 % 482.89 % 

Return Factor 

Strategy (% p.a.) 

14.32 % 16.11 % 16.16 % 12.66 % 12.48 % 

Excess Return (%) 430.58 % 625.82 % 631.22 % 283.61 % 269.63 % 

Excess Return (% 

p.a.) 

6.41 % 8.20 % 8.24 % 4.74 % 4.56 % 
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Date 

Comparison of Strategies "Timing" Factors  

Market Cumulative Return

Factor Momentum Portfolio w/ Three Factors Cumulative Return

Factor Momentum Portfolio w/ Six Factors Cumulative Return

Factor Timing using Market Condition (Three Factors) Cumulative Return

Factor Regression using Six Factors Cumulative Return

Multi Factor Approach using Z-Scoring of Factors
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Volatility Value 

Weighted (% p.a.) 

15.18 % 15.18 % 15.18 % 15.18 % 15.18 % 

Volatility Factor 

Strategy (% p.a.) 

17.45 % 18.59 % 17.47 % 19.85 % 19.84 % 

Drift Value 

Weighted (%) 

0.0292 % 0.0292 % 0.0292 % 0.0292 % 0.0292 % 

Drift Factor 

Strategy (%) 

0.0513 % 0.0573 % 0.0574 % 0.0457 % 0.0451 % 

Volatility Value 

Weighted (%) 

0.9395 % 0.9395 % 0.9395 % 0.9395 % 0.9395 % 

Volatility Factor 

Strategy (%) 

1.0799 % 1.1507 % 1.0815 % 1.2288 % 1.2279 % 

Risk Adjusted 

Return Value 

Weighted  

0.0311 0.0311 0.0311 0.0311 0.0311 

Risk Adjusted 

Return Factor 

Strategy  

0.0475 0.0498 0.0531 0.0372 0.0367 

Maximal 

Drawdown Value 

Weighted (%) 

-54.92 % -54.92 % -54.92 % -54.92 % -54.92 % 

Maximal 

Drawdown Factor 

Strategy (%) 

-51.10 % -47.93 % -52.04 % -53.44 % -53.52 % 

Alpha 0.0252 % 0.0299 % 0.0316 % 0.0218 % 0.0212 % 

Beta 0.8932 0.9365 0.8827 0.8188 0.8183 

Std.Dev. Alpha 0.0109 % 0.0119 % 0.0111 % 0.0153 % 0.0153 % 

Std.Dev. Beta 0.011567 0.012622 0.011816 0.016309 0.016297 

t-statistics Alpha 2.3201 2.5219 2.8486 1.4202 1.3826 

t-statistics Beta 77.23 74.20 74.70 50.21 50.21 

Error Regression 0.0068 0.0074 0.0069 0.0096 0.0096 

Correlation Returns 

(%) 

77.72 % 76.47 % 76.68 % 62.61 % 62.61 % 

R2 0.60 0.58 0.59 0.39 0.39 

Tracking Error (%) 0.6869 % 0.7439 % 0.7029 % 0.9731 % 0.9726 % 

 



http://ijfr.sciedupress.com International Journal of Financial Research Vol. 12, No. 5; 2021 

Published by Sciedu Press                        124                          ISSN 1923-4023  E-ISSN 1923-4031 

As shown in Figure 13 and Table 4, the model of investor reactions is comparable to an approach using the 

momentum factor and a restricted set of six factors. If we regress the model of investor reactions onto the model 

using the momentum of six factors, we obtain an alpha of 1.999e-05 and a beta value of 9.626e-01. The R2 value is 

0.8186, and the p-value is less than 2.2e-16. Statistically, these values can be viewed as similar. 

6. Conclusions 

The results presented above are based on multi-scale approaches (similar to those of Mandelbrot (1963)) to see 

whether some important anomalies in finance theory can be understood from a different perspective. As such, we ran 

examples showing that the data used here exhibit strong ‗trending‘, which can be measured by the Hurst exponent, 

allowing us to look at the issue with a stationary model: the fractional Brownian motion. Under this model, one 

would relate to long-term memory. However, if we explicitly model trends using the wavelet transform and a linear 

trend model at different scales, we examine the issue using a non-stationary multi-scale view, which enables us to 

test whether stationary models, such as geometric and fractional Brownian motions, have shortcomings in modeling 

real-world data. We were able to find that trends in stock markets are longer (in terms of business days) and wilder in 

terms of their variation (in business days) compared to the previously mentioned stationary random processes. We 

studied the development of trends and concluded that markets certainly react quickly to new information on a 

day-to-day basis. However, there are situations in which one cannot anticipate available information because such 

anticipation requires forecasting methods that can establish an aggregated, homogenous investor view that can make 

long-term forecasts. In these situations, momentum is an approach to measure what is measurable. As such, and 

consistent with fractional Brownian motions, the deviations can become stronger if the scale widens. In fact, 

fractional Brownian motions imply inefficient markets on longer-term scales and enable momentum (according to 

Berghorn (2015) and Berghorn et. al. (2021)). 

Combined with previous research and establishing a linear transfer function with some minimal accuracy, we were 

able to analyze important factor anomalies (such as momentum, low volatility, and value) in a different mathematical 

space: the wavelet domain. Defining generalized scales (meaning also handling negative ones) in that domain, these 

factor anomalies have a multi-scale representation and can be seen as overlay-strategies, which strongly supports that 

markets should be seen as fractal, as first sketched by Mandelbrot (2001). As such, and by interpreting the scales 

found, momentum and low volatility should not have a risk-based view because they use positive trends, whereas 

value can be understood as a risk factor, systematically analyzing negative trends. 

Addressing non-stationarity, we can now build the argument that momentum and value (as opposite strategies) could 

be modeled for other markets. As addressed above, momentum can be seen as an approximation to the Haar wavelet 

transform, which in turn can be seen as an approximation of the best possible wavelet transform that we use in 

modeling data by trends. 

Using this explicit trend model, we invert the EMH and the risk-based view onto these anomalies (as expressed in 

the multi-factor models). Essentially, we take a return-based view and regress the trend-based factors onto market 

returns. The accuracy of that regression models has competing characteristics compared to the original capital asset 

pricing model, which leads to a view in which we assume that certain strategies of investors (as an aggregate) 

dominate market returns, which can be measured by the momentum factor. We give an example where this is utilized 

for the momentum, low volatility, and value factors and where we model investor reactions to market conditions. 

This view is consistent with proposed investor models used in Anderson and Noss (2013), who derive that markets 

could be seen that way and who propose a simplistic model of investor reactions to arriving new information. These 

models are essentially dynamical systems (see Peitgen, Jürgens and Saupe (1992)) that allow fundamentally chaotic 

behavior and fractal structures – the latter is measured by the Hurst exponent. 

These models and trend-based models (Berghorn and Otto (2017)) are first attempts to explain certain aspects 

(mathematically) of characteristics of asset returns. In summary, market returns can be viewed as having fractal 

characteristics and non-stationarity (trends), as expressed by this work. 

Using regression analysis, we assume that this view is equivalent to the capital asset pricing model because it allows 

an alternative description of market returns. Under this assumption of non-stationary fractal markets, the following 

ramifications emerge: 

 Investors do not have accurate estimations of expected returns and covariances in the long term. This 

depends on when the parameters are estimated and on the time horizon used for measurement and 

projection. 

 Therefore, there is not a homogenous view in the long term, which is also supported by interpreting market 
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returns as different investor strategies that operate on different scales. 

 Consequently, the assumptions of Sharpe (1964) under this long-term view are not fulfilled, i.e. the arbitrage 

argument cannot be made because investors are different and measure different things, leading to different 

efficient frontiers. 

 However, short-term, the story is very different, which can be seen from the fractional Brownian motion 

model. Short-term trending effects are small and neglectable, and markets can be seen as efficient. The same 

effect emerges if one uses trends for the analysis. 

 From this perspective, one can derive that markets could be seen as ‗asymptotically efficient‘, inefficient on 

larger scales and approximately efficient on short scales. 

We began this work with an overview showing the complexity regarding the EMH. The results are consistent with 

the debate in academia. One can interpret effects very differently, e.g., Shiller‘s (1981) long-term view versus Fama‘s 

(1995) short-term view. Mathematically, scale matters to that discussion. Viewing effects from a multi-scale, fractal 

trend perspective, one can easily understand why that factor zoo is present. Under this view in highly competitive 

markets, investors will always seek strategies that outperform existing ones. What they find will depend on what is 

being measured and when. In an interview, Fama and Litterman (2012) expressed the following view: ‗Of all the 

potential embarrassments to market efficiency, momentum is the primary one.‘ (p. 18) and with respect to arguments 

made in behavioral finance: ‗If it’s irrational, it should go away, but it doesn’t seem to have gone away‘ (Fama and 

Litterman (2012), p. 18). This view is strongly related and consistent with the arbitrage argument and risk-based 

explanations of his previous work. Assuming feedback systems as argued in Anderson and Noss (2013), one can 

derive that fractal markets will imply factors that in turn feed investments into the market itself, which again enforces 

fractal structures. This circle argument would undermine the arbitrage argument for long scales and would not allow 

markets to converge to equilibrium for longer scales.  

We looked onto the issue from a certain perspective of signal theory using trends, which is in itself a simplification 

and approximation of market phenomena. Using regression analysis from statistics, we were able to simplify even 

further. These simplifications allowed us to view these market characteristics differently, especially from a 

return-based standpoint. As Mandelbrot and Hudson (2006) put it, ‗In economics, there can never be a ‘theory of 

everything.’ But I believe each attempt comes closer to a proper understanding of how markets behave.‘ (p. 198) 
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Notes 

Note 1. This approach is applied if two or more characteristics are measured. Z-scoring is normalizing the list of 

characteristics by subtracting the mean of that whole set of characteristics and then dividing that value by the 

standard deviation of that set. The final score has a zero mean and a standard deviation of one. 

Note 2. The principle states that the only function that is optimal in the time domain and the frequency domain is the 

Gaussian. This function is invariant under spectral analysis. 

Note 3. Please note in Figures 2 and 3 that the measurements for geometric and fractional Brownian motions are 

almost identical and overlap in the figures. 

Note 4. Technically, we eliminate all assets where the number of price records is less than 261  5, assuming 261 

stock market days on average per year. 

Note 5. Based on the scales found, we segment the factors in three classes, namely, —return-based factors|| having 

solely positive scales in their replication, —risk-based factors|| having negative scales, and the size effect. 

Note 6. Berghorn and Otto (2018) showed that the elimination of ―trends‖ evaluated by 6-month momentum 

strategies leads to mean reverting markets if one uses the Hurst exponent as a measure. 

Note 7. This notation is very similar to the notation of Ross (1976). However, the arbitrage pricing theory is a 

risk-based model. 
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