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Abstract 

This paper optimally solves the portfolio selection problem that consists of multi assets in a continuous time period 

to achieve the optimal trade-off between multi-objectives. In this paper, the Stochastic Goal Mixed Integer 

programming of Stoyan (2009) is extended. The empirical contributions of this research presented on extending the 

SGMIP model by adding information as a new factor that selects the portfolio elements. The information element 

used as a portfolio managing characteristics to see whether it is applicable for different problems. The data was 

collected on a daily basis for all the parameters of the individual stock. Brownian motion formula was used to predict 

the stock price in the future time period. SP framework used to capture numerous sources of uncertainty and to 

formulate the portfolio problem. The main challenge of this model is that it contains additional real-world objective 

and multi types of financial assets, which form a Mixed Integer Programming (MIP). This large-scale problem 

solved using Optimising Programming Language (OPL) and decomposition algorithm to improve the memory 

allocation and CPU time. A fascinating result was obtained from the portfolio algorithm design. The ESGMIP 

portfolio outperforms the Index portfolio return. Under uncertain environment, the availability of information 

rationalized the diversity when the dynamic portfolio invested in one financial instrument (stocks), and tend to be 

diversifiable when invested in more than one financial instrument (stock and bond). This work presents a novel 

extended SGMIP model to reach an optimal solution.  

Keywords: Portfolio Selection (PS), SMIP, SGMIP 

1. Introduction 

Modern Portfolio Theory has emerged many different models sought to provide some assistant in decision making 

environment. Each model is a simplification or simulation of reality (Pástor, 2000). By capturing the real world 

features, models become more complex, therefore many attempts provided as a simplification. Researchers 

approached portfolio selection differently; some of them approach mean-variance of Markowitz (1952) focusing on 

the trade-off between risk and return neglecting other essential factors. Therefore, all models aimed to maximize the 

return attached with specified level of risk assuming that it will satisfy the investors’ interests. The wide applications 

of the models were neither desirable nor important (Azmi and Tamiz, 2010). Accordingly, the portfolio selection 

problem gets enlarged and remains unsolved, even after extending to involve other factors such as liquidity, 

cardinality constraint, transaction cost, short sale and etc., which encourage the researchers to apply either other risk 

measures or simplify the mathematical models. 

The problem of portfolio selection is in the scarce of resources. It is not just which stocks to own, but how to 

distribute the investor’s wealth amongst stocks (Ravipati, 2012). In Finance, portfolio selection is famous as a 

leading problem; giving that the future return of an asset is unknown when investment decision made therefore, the 

decision making is under uncertainty: one can evaluate the today decision just in future time once the assets return is 

revealed (Roman and Mirta, 2008). Stochastic approach is a common technique in portfolio decision-making to 

create a model for random uncertainty conditions in the financial markets. It deals with the uncertainties in a flexible 

way and incorporates real-world constraints easily (Yano, 2014). 
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Optimising the dynamic portfolio depends significantly on the variation of stock price. At the same time, it is 

difficult to rely on it in estimating the variation and volatility parameters for future periods (Frey, Gabih & 

Wunderlich, 2013). In this situation, it is necessary to use the sequence action model under uncertainty introduced by 

Valian (2009). These actions were measured based on estimated drift using Browian motion (Al-Halaseh, 2016). 

Considering the uncertainty in stock price, the portfolio parameters measured as stochastic variables.  

Acknowledging the above mentioned facts, the most recent method, which is the Stochastic Goal Mixed Integer 

Programming model, has been applied to Toronto Stock Exchange (TSX) in 2009. Until today, it is the most proper 

and effective model due to its compatibility of including a number of financial instruments with real-world 

application (Al-Halaseh, 2016). It considers multi-factors, multi-periods, different risk measures without affecting 

time which facilitates the mission of decision makers. However, Stoyan (2009) acknowledged that the algorithm was 

pushed to its limits with regards to the number of variables and solvability. In line with this, additional constraints 

and scenarios would present an even larger problem for algorithm design and solvability. Thus, the study 

recommended expanding the size of the problem by adding constraints and scenarios. It would mean that the 

algorithm would also have to be tailored to facilitate such additions. It should also be applied to different markets to 

verify the results. Therefore, there is a need to extend the existing SGMIP in order to capture more factors that would 

make it more effective in selecting an optimal portfolio. 

Based on the literature review, it is observed that there are relevant factors that can be used to optimize dynamic 

portfolio. One of which is the quality of information that flows into the market. The fluctuation faced by the ASE 

index is contributed by the nature of the investors (individual investors) of ASE who focus on speculation rather than 

on the usual investment objectives to make capital gains, and the weak role of the institutional investors, which open 

the way for rumours to grow (Al-Emam, 2010). Therefore, there is a need to fill the gap by extending the SGMIP 

model with the inclusion of the information factor to see whether the DP selection can be effectively optimised. 

Moreover, there is a need to expand the application of the extended model to other markets especially in ASE since 

no attempt has been made in ASE to find out the most effective model in optimizing the dynamic portfolio selection. 

Thus, this creates a motive to the researcher to make a significant addition to portfolio optimization, facilitating the 

investors in selecting their optimal portfolio, satisfy their investment goals, and at the same time, investigate the 

applicability of the new model in markets such as ASE.   

Moreover, Stochastic Goal Mixed-Integer Programming helps to answer the questions that have emerged in recent 

year, such as “How to optimally allocate and arrange the investor’s available resources at each period during a time 

horizon in an uncertain environment?”, “To what extent are the investors able to take an optimal decision to 

minimize portfolio risks that are subjected to satisfying the other objectives of minimizing cardinality constraint, 

transaction cost, and amount of each security in order to maximise diversity, liquidity, accuracy of available 

information and portfolio return?”,  “How can real-world dynamic (multi-period) portfolio selection be efficiently 

solved by using SGMIP with samples from ASE?”. These questions, along with many others, need to be answered in 

a developing market context as the original model used fewer constraints and has been applied to a small market 

such as TSX when tested from the context of the developed market. Therefore, the study will attempt to apply the 

extended SGMIP on a portfolio that includes all listed companies and bonds in ASE during the period from January 

2010 to December 2014. 

Due to the present economic condition of Jordan, historical price movements, investment trends, and stock-bond 

relationship, this research studies pure stock portfolio and stock-bond portfolio selection. Additionally, the 

uncertainty linked with the current financial market is captured in a fundamental SMIP approach with recourse. 

Previous studies (Ibrahim, 2008; Stoyan, 2009; Stoyan & Kwon, 2010, 2011) documented that long-term investment 

is one of the best financial strategies to maximise expected returns. Therefore this study has attempted to develop a 

long-term portfolio strategy, while considering both pure stock and stock-bond investment to capture the risk taker 

and risk adverse perspective respectively. Such portfolios are difficult to construct and are computationally 

demanding. This study faced a trade-off between trying to capture numerous realistic portfolio elements and solving 

the optimality problem. Issues such as the number of time-stages, type of portfolio elements, number of portfolio 

elements, and abundant uncertainties involved in developing long term financial strategies require greater 

consideration. Consequently, this research has been conducted to achieve its objectives by answering the research 

questions.   

The remaining parts of this paper are organized as follows. Section two discusses the ESGMIP model, while section 

three discusses model implementation; Section four revealed the results of ESGMIP model; Section five displayed 

the portfolio discussion and further studies. 
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2. The ESGMIP Model 

Two types of decision variables related to the assets are included in the portfolio, which are stocks and bonds. 

Thereafter, the portfolio elements and the ESGMIP will be formulated in specific. The critical portfolio elements the 

study model will consider are as per the following: 

1. Minimise the portfolio risk 

2. Hold a small number of investment 

3. Minimise transaction cost 

4. Maximise liquidity 

5. Maximise the quality (accuracy) of information. 

6. Maximise the portfolio return 

7. Achieve diversity by minimising unsystematic risk 

8. Stay within a tolerance of market performance measure 

The explanation for including the portfolio elements (2), (3), (4) and (5) is to avoid facing the liquidity issue 

especially this study is investing in the long-term portfolio and may some stocks or bonds have a small number of 

issuing shares. Consequently, this study managing dynamic portfolio for that rebalancing is very essential for it, 

thusly, transaction cost, liquidity; the number of assets and availability of information are in favour of events. 

Besides, the number of assets is incorporated into all portfolio designs and has a great practical value which is 

considered as a necessity by the portfolio manager (Stoyan, 2009; He & Qu, 2014). In this way, these components 

shape a multi-objective SMIP. Then again, the GP approach is utilized to fulfil these objectives. Additionally, every 

one of these components are captured in the portfolio selection model will be characterized utilizing the two 

specified portfolios. 

2.1 The Portfolio Selection Formulation 

In this section, the elements considered within the portfolio model are presented so as to get the final ESGMIP 

portfolio design. Multi-period PSP is investigated with a set of real-world constraints under uncertainty condition. 

After assessing the model of Stoyan (2009) in the ASE, it appears that this model needs to be expanded in order to 

include most of the conditions facing ASE which imposed adding an extra constraint, i.e. information availability 

and the amount of individual asset. Obtaining the portfolio problem requires defining the portfolio elements that 

consist of transaction cost, liquidity, diversity by minimizing the unsystematic risk, risk and return and their vectors 

referred to stocks and bonds.  Including these elements to the portfolio of this study is because they suit the 

long-term strategy and the stock-bond investment. The variables of the model define as,   , is the fraction of the 

portfolio invested in security i that is purchased in the first-stage (t=0).    
  is the fraction of the portfolio invested in 

security i that is purchased in the second-stage (t>0).    
  is the unit price of security i at time t = 0,1,…,m under 

scenario l = 1,2,… L , i = 1,2,…n .Where      , and    
    , note that the security price is known at t = 0 and 

there is only one scenario in the first stage.    
  is the fraction of the portfolio invested in bond j to purchase at time t 

under scenario l, hence    
         

  is the price of bond j at time t under scenario l.    
   is the bond return at 

maturity.  ̂ is the initial wealth of the portfolio. In order to define the portfolio elements, this paper begin by 

maximising the return of the portfolio as in the following equation:    
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Where pl denotes the probability of a scenario realisation, where ∑      
    and pl > 0.  The model aims to 

maintain the minimum level of portfolio managing fees, which entails minimising transaction costs and therefore 

minimising the number of transactions between time periods. Thus, defining transaction cost ẅt
il to be the following: 

                                                 ̅  
  |    

      
   | i= 1,2,…,n; t=2,…,T; l = 1,…,L                        (2) 

for t=1   

 ̅  
  |    

    |  i=1,2,…,n; l=1,…,L                               (3) 

Where  ̅  
  

 = 0,  ̅  
 

 equals the fraction of a security that traded between two periods. The previous equation will be 

minimised in objective function in order to maintain the portfolio cost to a minimum. The second objective is to 
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maximise sector diversity and minimise the portfolio risk. The risk (unsystematic risk) will be reduced by 

diversifying the portfolio throughout the market sectors (sector diversified). Therefore, diversification is a guarantee 

for poor sector development which can be a result of a number of securities. To include the sector exposure element, 

the variable Q(i, s) determine the security i to which sector is belonged; Hence, Q(i, s) = 1, if security i belonged to 

sector s ,otherwise = 0, where S represents the total of sectors, Q(i, s)   B. To give the portfolio the proper sector 

diversification, let’s consider    
  is the fraction of the portfolio, which will be as follows 

∑   
  

                                                       

f s
t    [0, 1], knowing that f s

0 is a first stage parameter, and f s
t  is a second stage parameter when t> 0. The equation 

(5) forms the sector exposure element. 
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 Where     
 is a sector penalty variable that compatibles to the fraction of the portfolio   

  that invested in sector s. 

Sector penalty variable assists the model to find other fraction of the portfolio if the feasible solution cannot be found 

with the current used variable. The above constraint can be used for variable    by replacing the variable    
 .      

To limit the number of divers securities and bonds utilised as a part of the portfolio, assume    
  is quantity of 

securities i invested in the portfolio at time t under scenario l , gt
il    B ,where there is one scenario in the first stage 

l= 1 for    
 , as follows:  

1, if security i is used in the portfolio at time t 

gt
il = under scenario l (i.e. if xi, yt

i  > 0);                       (6) 

0, otherwise 

Therefore considering Gt as the upper limit of the quantity of stocks to hold in the portfolio and in order to achieve 

the goal of limiting number (quantity) of security to hold the cardinality constraint will be:  

∑    
  

        ; t= 0,…, T, l= 1,…,L.                             (7) 

To ensure managing the portfolio to invest with sufficient funds, let’s   ̂ represents the initial wealth of the 

portfolio. Thusly, the constraints of balancing the portfolio are as follows: 
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Where,   is the relative cost of a security transaction. Thus, (10)-(11) ensures that all portfolio wealth is being 

invested at each time period, including dividends. Additionally, upper bounds are added to security and bond 

decision variables to further force diversity, where di and  ̃  are the maximum fractions of the portfolio to be 

invested in security i or bond j; respectively. Next, this paper introduces the various portfolio goals the model will 

account for by adding the GP approach to the problem.  

2.2 The ESGMIP Model Design 

The previous section displays some elements included in the portfolio. This segment displays the rest of the 

components as targets objectives or goals which are risk, return and liquidity. These objectives tackled in particular 

portfolio problems to acquire the optimal value then constraint them as goal constraints. Any deviation from the 

optimal value will penalize in the objective function. Showing the performance measure as the primary portfolio 

objective is to guarantee that the portfolio can't beat the acquired optimal value. To do as such, suppose Rt
l is a 

maximum benchmark the investment not permitted to beat at time t under scenario l. The estimation of Rt
l is acquired 

after calculating the index return. The performance constraint is as per the following:  
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Where   
  ≥ 0 is a relaxation component that fulfills the GP model,   

   R, and l= 1 for   
 . As revealed in 

equations (10), the performance of the securities is only constrained which allows the portfolio to invest in bond 

when the investment in securities is not favorable. The second portfolio objective is to minimize the portfolio risk 

measured with beta. The value of optimal beta β* is calculated by using first stage variables as the accompanying 

subproblem: 
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Where 0<   <1 and    the initial portion of portfolio invested in security. Accordingly,    ∑   
 
       

   , 
where    

    is the optimal value resulted from solving the model (11) – (15). The equation (12) exhibited in the 

subproblem model to bound the quantity of security names in the portfolio as cardinality constraint. Since the 

calculation of   are in view of recorded price movement it gives the best perceived risk in the first time period t=0. 

The optimal value of risk    
  of the security s at time t>0 is computed utilizing SP to facilitate future uncertainty of 

the market Then, the accompanying constraint is added to the model 
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For time t > 0 uncertainty must add to the optimal risk value by including scenarios. Thus, for time t > 0, the optimal 

security risk becomes   
  and when associated with single stock it becomes    

  as shown: 

                                               ∑   
     

 

 

   

   
    

                                                                      

Penalty variables   ,   
  are minimized in the objective function. The third element, the liquidity exists in all 

financial investment, where common stocks are the most liquid. Liquidity cost is computed by the distinction 

between the purchasing cost paid by a rush purchaser and cost got by an exigent seller. Ranges in bid-ask spread 

determine the liquidity cost since brokerage firm commissions do not vary with the period of time taken to complete 

an exchange (Parra et al., 2001). 

               
        

   
                                 (18) 

As the financial specialist prefers to allocate his fund in highly liquid instruments, the liquidity solves for the optimal 

value   
  under each scenario, as same as the equations (11) - (15). In this way, the inequation (19) will be 

incorporated as a constraint in the main model of the problem, 
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where  ̧      is a penalty variable that is minimised in the objective function and accompanied by a penalty 

parameter. Finally, information will be considered as a last element in the portfolio selection model. Depending on 

the estimation conducted from historical data, the drift can be predicted using Brownian motion as mentioned earlier 

according to Valian (2009) and the work of Osborne (1962, 1972). Drift can be predicted using the equation in 

Figure 4.2. It is used in making decisions to be ensured that the decision is accurate by maximising the quality of 

available information. For this purpose, symbol (d or μt
i) represents the drift, Πi represents the quality of information 

about security i at time t=0, and Πt
il represents the quality of information about security i at time t ≥ 1, under scenario 

l. wd, wσ are the weight of drift and volatility respectively. The object is to maximise the value of Πi and Π
t
il, the 

following two equations used to fulfil this object.  

Πi = (wd 1/di + wσ 1/σi), t=0                             (20) 

Πt
il = (wd 1/dil

t + wσ 1/σil
t), t≥ 1                           (21) 

As the investor desires to maximise the value of Πi,  the information will be solved to the optimal value Π
* for the 

two stages, and  includes it as a constraint in the main model, where     is a penalty variable that is minimised in 

the objective function and accompanied by a penalty parameter, as follows: 
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(Stoyan, 2011) 

Equations          revealed the initial investment amount constraints for first and second period. In           
the passive strategy used to constraint the performance of portfolio will not exceed market portfolio, when t=0, t > 1. 

At the same time, the performance of stock is only constrained which permitted the portfolio to invest in bond when 

the investment in stock is unfavorable. The equation (29) and (30) set up the first and second stage sector constraint, 

respectively. Equations (31) and (32) set for upper bound on the stock to hold, Gt in first and second stage.  ̃   is 

the upper bound on the bond to hold as shown in (33) and (34). In equation (43)-(46), C is a large constant to limit xi , 

yi,   
 ,    

  as binary decision variables, In the next sections the model implementation is discussed. 

3. Model Implementation 

A specific model is designed for solving the ESGMIP model presented in (24)-(64). A decomposition algorithm used 

to facilitate finding the solution. The basis on which the algorithm operates depends on adding penalty variables, 

especially for the most difficult constraint, which is the name to hold constraint and relaxed it in the objective 

function by adding penalty parameter. The algorithm decomposes the problem into stock and bond subproblems, and 

then goes through sector decomposition. The subproblems are solved individually and the resulted values used in the 

master problem (24) to (64) to check for optimality, (see Figure 1). The model either reaches the optimality or needs 

adjusting the initialization.  
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The robustness of the designed algorithm refers to the model decomposition into subproblems. The relaxation added 

to the difficult constraint - cardinality constraint, Gt - is being the other strength of the algorithm, which is one of the 

concentrates in this study. The cash balancing constraint Bt, the parameter that defines the upper bound on the 

number of securities to hold in the portfolio Gt, and the portfolio benchmark Rt, were distributed between the market 

sectors then collected in the master problem by setting 

                                                                       
    

    
                                                                                               

                                                                      
    

    
                                                                                               

                                                                       
    

    
                                                                                               

The solutions of the subproblems are directed to the master problem as an initial solution. The master problem in its 

turn assesses the optimality of the solution by checking if the portfolio goals fall within the benchmark criteria (66) 

to (67) and hold the same constraints. Then, either acknowledge (accept) the optimal solution or need adjustments by 

expanding the parameters related with the variables that fall beneath the criteria and resolves. Due to generating the 

initial solution by decomposition, the ESGMIP solves quickly. 

Next, this study considered the systematic risk associated with individual security in the sample portfolio to achieve 

the objective function of minimizing the portfolio risk. The beta-coefficient,   is a measure of the systematic risk 

according to the financial literature (Al-Tamimi, 2010). It is the volatility of the individual security return over the 

time period compared to the movements of the market benchmark (Chan, 1992). Considering systematic risk, the (15) 

and (16) constraint is added. The optimal    value, which is also solved in a separate subproblem described in 

equations (11)-(15).  

 

 

Figure 1. Chart Flow of ESGMIP decomposition 

 

4. The Results of ESGMIP 

This paper presents the results of solving the two-stage mathematical model which are analysed using the appropriate 

estimation procedures. All listed and continuously traded companies in the ASE and its distribution across market 

sectors are used in the stochastic model to achieve the objectives of this study. The stochastic model includes 100 

securities traded in the ASE from the beginning of January 2010 to the end of December 2014. Also, it includes all 

issued bonds over the same time period, which amount to be two Zero-Coupon rate bonds. The daily characteristics 

of all listed and continuously traded securities are compared with the market portfolio ASE100 for comparison and 

clarification purposes. The ASE consists of three general sectors which are financial, industrial and service. 

Considering all these issues, the ESGMIP contained over 518 decision variables and 791 constraints. The SGMIP 

problem is solved using the previously mentioned algorithm with IBM ILOG CPLEX software version 12.7, on Intel 

® core, 2.53 GHz i3 CPU. The decomposition of the algorithm improved the memory allocation and CPU timeThe 

results of the ESGMIP are presented after implementing the decomposition based on the market sectors to pure 

stocks portfolio as well as stock and bond portfolio. 
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4.1 Results of Pure Stocks ESGMIP Portfolio 

The results of the ESGMIP portfolio using the CPLEX Ver. 12.7 are compared to the ESGMIP algorithm designed in 

Section 3. The comparison is based on the solution quality and the solution CPU time of the two portfolios. When 

running the CPLEX with either pure stock portfolio or stock and bond portfolio, the CPU time exceeded 21:22:45:15 

hours and could not solve the model. Therefore, the designed algorithm is implemented and applied to the pure stocks 

ESGMIP portfolio. The ESGMIP portfolio outperforms the index portfolio in total return. This indicates that managing 

the drifts of each stock in the portfolio helps the algorithm model select the optimal portfolio according to the portfolio 

manager’s preferences. 

4.1.1 Computational Results 

After implementing the algorithm, the second stage of the equations is applied to the pure stocks portfolio. The 

ESGMIP algorithm decomposed portfolio reached the optimal solution and achieved the objective function within 

00:00:16:05 seconds. The CPLEX runs for 0:7, 4:18 and 11:80 seconds for the financial, services and industrials 

sectors respectively. The best time achieved by bank sector is 00:00:00:07 seconds. The worst time was 00:00:11:80 

seconds when running the industrial sector algorithm. At the first stage, the ESGMIP portfolio outperforms the index 

portfolio in total return, where ESGMIP return is 72.7% comparing with 17% of Index return, as shown in Table 1. For 

the second stage which comprises of three scenarios best Lb, stable LI and worst Lw. The return distributed between 

scenarios as follows; 31.8% for the best, 30.6% for the stable, and 29.2% for the worst. The two-stage ESGMIP pure 

stock portfolio outperforms the Index portfolio. The ESGMIP dynamic portfolio did better than the previous study of 

Alhalaseh (2018) which used SGMIP without considering the information variable by 136.8% in total return. This 

indicates that managing the drifts of each stock in the portfolio helps the algorithm model select the optimal portfolio 

according to the portfolio manager’s preferences. 

4.1.2 Financial Results 

The financial results of the ESGMIP pure stock dynamic portfolio were acquired by comparing the performance of the 

ESGMIP portfolio to the performance of the market index. In the first stage, the daily return of the ESGMIP pure stock 

portfolio is distributed between the market sectors i.e., financial, services and industrials. The performance of the 

portfolio for each sector exhibited 14.5%, 66.8% and -7.9 %, respectively. The return of ESGMIP pure stock 

portfolio exceeds the market portfolio by 327.6% as shown in Table 1. Figure 2 revealed the superiority of the 

extended portfolio performance than the Index portfolio in daily return. 

 

Table 1. Performance of ESGMIP pure stock portfolio/ stage one  

 Financial Sector Service Sector Industrial Sector Portfolio 

ESGMIP pure Portfolio 0.145 0.66 -0.079 0.727 

Index Portfolio 0.019 0.033 0.008 0.17 

 

 

Figure 2. The daily return of the portfolio after information and the Index 
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In the second stage, the three scenarios are best, stable, and worst. In the worst scenario the ESGMIP portfolio return is 

aggressively fluctuates compare to the index. The ESGMIP portfolio achieved 29.2% total return which is greater than 

the total return of the index portfolio. This result may refer to the beta value of the ESGMIP portfolio. The high value 

of the beta seems to be the reason behind the high return, in line with the direct relationship between risk and return. 

Comparing ESGMIP portfolio performance with SGMIP portfolio performance the difference was negligible. The 

value of the upper bound of the name-to-hold, G was 24. The model manages one exchange for each year to rebalance 

the portfolio weights, as mentioned before. 

Interestingly, the results from the portfolio algorithm designed in the first stage found almost no difference in the 

performance between the SGMIP (general portfolio and single scenario) and index portfolio, as discussed above. An 

improvement in the portfolio return is achieved after adding the information (drift) objective. The portfolio gain in 

the second stage appeared to be connected to the algorithm design (speed up) and uncertainty condition. Figure 2 

reveals the results of the second stage between the worst scenario of the SGMIP portfolio performance and the index 

portfolio. In the second stage, the worst scenario takes place in July 2010 where the index portfolio overtakes the 

SGMIP portfolio by 0.03, as illustrated in Figure 3. These results can be enhanced for some months if the best scenario 

is taken, which is presented in Figure 4. 

 

 

Figure 3. Worst case SGMIP portfolio compare with index- second stage 

 

 

Figure 4. Best and worst case comparison- second stage 

 

4.2 Results of Stocks and Bonds ESGMIP Portfolio 

This subsection includes the bonds sample to the dynamic pure stocks portfolio and applies the decomposition 

algorithm. The performance of the resulted portfolio is displayed in the first and second stages as a dynamic portfolio. 
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4.2.1 Computational Results 

For SGMIP stock and bond portfolio, the first stage contains stocks only. The performance of the sample stock and 

bond portfolio that includes all the objectives and decomposed by sectors equals 31.8%. The performance of the 

sample ESGMIP stock and bond portfolio is greater than the performance of the Index ASE portfolio. This portfolio 

consists of 15 name-to-hold stocks and does not invest in bonds. It consists of six stocks from the financial sector, five 

stocks from the service sector, and four stocks from the industrial sector.  

The second stage was added to ESGMIP stock and bond portfolio to obtain the stock and bond dynamic portfolio. The 

CPLEX runs to solve ESGMIP stock and bond portfolio. It lasts for 00:97 seconds. These CPU times are less than the 

best case of Stoyan (2009). The difference between best case CPU time of Stoyan (2009) and CPU time of this model 

is 2:09:77:02 seconds in the first portfolio and 2:09:92:10 seconds for the second portfolio. 

As mentioned before, the three scenarios are lb, lI, and lw. The portfolios of the best lb and stable lI scenario invest in 

stocks and bonds, while the worst lw invests in bonds only. The best scenario invests in seven name-to-hold securities 

and two different bonds. The stable scenario invests in eight name-to-hold securities and two different bonds. 

4.2.2 Financial Results 

The financial results for this study are obtained by comparing the performance of the ESGMIP algorithm pure stock 

portfolio and stock and bond portfolio with the performance of the index portfolio. After calculating the return of the 

two dynamic portfolios, the result shows that the performance of algorithm ESGMIP portfolio of pure stocks 72.7% 

outperforms the ESGMIP portfolio of stocks and bonds by 1.3% times and the index in the first stage as it contains pure 

stocks. Comparing these results of the extended portfolios ESGMIP with Alhalaseh (2018) SGMIP, the results 

indicated that the performance of the first stage ESGMIP portfolio outperform the performance of the ESGMIP 

portfolio by 3.6%. 

When investigating the second stage, the lb scenario achieved 10.6% total return from investing in security and 5.091% 

and 5.174% from bonds (see Table 2). The lI portfolio achieved -12.2% total return from investing in security and 

5.091% and 5.174% from the bonds. The algorithm ESGMIP portfolio of pure stocks outperforms the ESGMIP 

portfolio of stocks and bonds after decomposition in the best, stable and worst scenarios. The ESGMIP portfolio in the 

best scenario outperforms SGMIP portfolio in Alhalaseh (2018) by 333.04%. In the stable and worst scenarios the 

difference was negligible. The ESGMIP pure stock and stock-bond portfolio are greater than the ASE100 portfolio in 

total return. 

 

Table 2. Performance of the ESGMIP portfolios 

Portfolio 

Type 

Stage1 Stage 2 

LB LI LW 

Pure Stock Port. 72.7% 31.8% 30.6% 29.2% 

Stock-Bond Port. 31.8% 10.6% (12.2)% --- 

Bonds average return  5.13% 5.13% 5.13% 

 

The SGMIP stock and bond portfolio performance of best and stable scenarios is 15.7% and -7.07% (bond return 

5.13% added). This is a logical consequence of the decline in return when the investment conditions become uncertain. 

The best scenario remained higher than the index portfolio (see Table 5.8). A fascinating result is in the worst scenario 

where the portfolio invested the entire allocated amount in bonds only. This fascinating result satisfied the objective of 

the SGMIP model in investing in mixed stocks and bonds portfolio. The objective is to allow the portfolio to abandon 

risky assets to safe investments in bond. 

This research evaluates the total risk, σ of the extended SGMIP model portfolios. The float Index of ASE011 is used 

as a benchmark to fulfil the evaluation and prove the results of this study financially. The monthly total risk of 

ESGMIP pure stock portfolio return, ESGMIP stock and bond portfolio return and index portfolio return are 0.026, 

0.0036 and 0.0013 respectively. Figure 5 portrays the monthly standard deviation of the portfolios which revealed 

that the market portfolio ASE011 has a lower total risk than the pure stock portfolio and the stock and bond portfolio. 
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Figure 5. Monthly standard deviation of the portfolios 

Furthermore, for the part of minimising the portfolio risk, the optimal value of beta from running the optimal beta β* 

subproblem equations 11 to 15 on CPLEX using Optimisation Programming Language (OPL) is 1.007. As such, 

Table 3 reveals that beta of the algorithm pure portfolio in the first stage decomposed by sector equal to 0.66, 0.39, 

and 0.70 respectively. The average beta of the three sectors is 0.58 (minimise the beta). The beta of the ESGMIP 

stock and bond portfolio in the first stage is 0.68 (minimise the beta). In the second stage, the algorithm of the pure 

portfolio invested in banking sector reveals differences between the three scenarios.  

 

Table 3. CPLEX output of weighted portfolio beta/ stage two 

Portfolio Sector First Stage 
Second Stage 

LB LI LW 

 

Pure Stock 

Financial 0.66 0.74 -0.17 -2.50 

Service 0.39 0.24 -0.80 -0.98 

Industrial 0.70 0.23 0.19 0.58 

Stocks and Bonds 0.682 0.559 -1.38 --- 

 

Considering the goal of limiting number of stocks to hold (the cardinality constraint) of the pure portfolio,  the beta 

of the banking sector is 0.74 in the best scenario. The beta takes the same direction of the market and minimise the 

beta value by 35%. In the worst scenario, the beta of the portfolio is against the market direction with the greatest 

value of beta -2.50. The beta of the service sector is far from the beta of the other two sectors over the three scenarios. 

The portfolio of the industrial sector was more defensive than the banking and service sectors. The beta of the 

industrial sector in the first stage is 0.70 less than the market’s beta. In the second stage, the portfolio becomes more 

defensive with beta 0.58 in the worst scenario. 

The SGMIP stock and bond portfolio attains a very interesting result where it invested with beta 0.560 in the best 

scenario, took more risk -1.38 in the normal scenario, and turned to invest completely in bonds when the investment 

environment became unfavourable. These results prove that the extended SGMIP model with new and larger 

practical managing constraints can select the dynamic portfolio practically and minimise the risk in the context of 

ASE. The features of the model can help the portfolio manager to select the optimal dynamic portfolio according to 

the investors’ preferences.  

Other two questions need to be answered to satisfy the research objectives. The first one is what is the liquidity value 

of the selected dynamic optimal portfolio? The answer is based on the results of the CPLEX solution of the ESGMIP 

model. The optimal value of liquidity ᴧ* was calculated in subproblem equations as mentioned equations 11 to 15. 

OPL programming language was used to write the program. CPLEX was then ran for the subproblem. The resulted 

optimal value ᴧ*was inserted in the ESGMIP main model displayed in equations 24 to 64 and minimises the liquidity 

penalty  ,  
  in the objective function equation 24. The ESGMIP stock and bond dynamic portfolio liquidity is equal 

to the optimal 3.8572, where the penalty was equal to zero. In the higher time period, the liquidity penalty increased 

to 0.4915, 0.4106, and 0.3933. The results indicated that the liquidity was affected by the uncertainty condition in the 
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higher time period. The portfolio become less liquid in time t since it invests in bonds. The trades in the bond market 

in the ASE are weak since the market opened for trade once monthly and the studied type of bond is of zero-coupon 

rate (Al-Tamimi, 2010). 

The investor pays fees and commission or transaction costs when securities are bought or sold between periods. The 

ESGMIP model was designed to hold long-term portfolios aiming to reduce the transaction cost. Equation 41 is used 

to constrain the number of the transactions between time periods. To answer the second question “What is the 

transaction cost that the investor will pay to get the selected dynamic portfolio?” This study refers to the results in 

the ESGMIP model for each portfolio. In the current time t0 there is no transaction cost. The cost will occur when 

rebalancing to a higher time period t1. Because of uncertainty, the ESGMIP model established three scenarios. In the 

stock and bond portfolio, if the situation is favourable lB the agent executed complete share selling of 13 

names-to-hold stock, partial selling of two names-to-hold stocks and buying five new names-to-hold stock 

transactions. Thus, the resulted transaction cost is 791.94 JD. When there is stability in the environment lI, the 

portfolio agent will execute 13 stocks complete selling, one partial selling of name-to-hold stock, six buying new 

names to hold stock and hold one name-to-hold stock. This process costs the investor 611.27 JD. When the 

investment environment is unfavourable lw, the investor withdraws from the market by selling the entire portfolio of 

securities and investing the available amount in bonds. The investor will pay 585.83 JD to execute15 selling of 

name-to-hold stocks, in addition to 22.5 JD as a bond transaction cost. In the pure stock portfolio, when the investor 

faced favourable environment lB, he executes just two selling transactions. It will cost him/her 127.6 JD while hold 

the remaining 14 name-to-hold stocks. In lI, three selling transaction costs 156.5 JD, and in lw, also three selling 

transactions costs 191.3 JD, where the transaction Cost= Difference*0.0054). It is clear that the SGMIP model in its 

design succeeded in managing the transaction cost between time periods. This is discussed further in next section.  

5. Portfolio Discussion 

This study introduced a selection model for a complex portfolio and offered a solution method that solved the 

multi-objectives, multi- assets, and multi-stages problem under, the uncertain condition in the financial markets. 

Referring to the computational result sections, the stock-bond portfolio achieved incumbent optimal solution and the 

pure stock portfolio achieved optimal solution comparing with Stoyan (2009) and Stoyan and Kwon (2010, 2011). 

Also the ESGMIP algorithm model outperforms the SGMIP algorithm model of Stoyan and Kwon (2011) regarding 

CPU time to solve the portfolio problem by 4:95 seconds. This indicates that the ESGMIP algorithm efficiently 

solved the large-scale portfolio problem containing multi-objectives and captured financial uncertainty in the market. 

Regarding the financial results, including different decision variables and investing in the stock and bond investment 

allowed the portfolio to follow a long-strategy that outperforms the market portfolio of ASE. The good results in the 

portfolio return in all scenarios indicate the robustness of using the time average value based on daily return in 

predicting the assets price in the stochastic portfolio rather than the expected return used by the traditional models such 

as MV. Also, the results of pure stock portfolio show a return drop in the worst scenario compared to the other two 

scenarios while the portfolio achieved a higher beta. It is a sign that the volatility in the ASE refers to the behaviour or 

temperament of its investors rather than the reason behind this behaviour. The fascinating result of stock and bond 

portfolio occurred when the portfolio turned to use the entire investment amount in bond in the worst scenario. This 

result refers to the ESGMIP model design and the uncertainty conditions. As Topaloglou et al. (2008) demonstrated, 

the SP framework grants a flexible and effective decision support tool for portfolio management.  By comparing 

these results with Alhalaseh (2018), Stoyan and Kwon (2011), Stoyan (2009) and Konno and Kobayashi (1997), the 

contribution of adding additional managing characteristic (information) to the dynamic multi-objectives is attained. 

6. Implications 

The findings add to the knowledge an extending mathematical model ESGMIP and algorithm solution that effect the 

dynamic portfolio selection, providing empirical evidence in selecting and solving the portfolio problem as a real 

world problem. The materials presented in this research are considered a novelty development of knowledge in PSP 

as an important area in the financial engineering and investment. Tthe portfolio managers all over the world can use 

the goal sub-model to get the optimal values of their portfolio goals according to the context of their investment. 

They can use the method and the model to rebalance or evaluate their portfolio at least on a daily base to overcome 

the uncertainty accompanying the financial markets. 

7. Conclusion  

This research presents a mathematical approach to complex financial problems. Financially, the mathematical model 

contains various numbers of conflicting goals and manages many constraints. The contributions of this study 
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manifested in extending financial model by adding a new characteristic (information) that does not investigate as 

portfolio managing characteristic before, examine pure stock portfolio and stock-bond portfolio, a method to capture 

the uncertainty in the financial markets, and designing a special mathematical algorithm to solve the extended 

complex financial using daily data. A fascinating result is obtained from the portfolio algorithm design. An 

improvement in the portfolio return is achieved after adding the information (drift) objective. The information factor 

as portfolio characteristic was capable of improving the portfolio selection and headed the benchmark return.  

For further investigations, this study suggests enhancing the model. It can be adjusted to absorb other investment 

tools such as riskless or near riskless assets as an extension of the options for investors. Increasing the complexity of 

the model design by adding more constraints and scenarios will force the using of decomposition algorithm that may 

need to be tailored. One can extend the portfolio for multi-periods by rebalancing the portfolio monthly, quarterly, 

and semi-annually, or for periods that exceed one year. Also, one may examine the designed model’s outcomes 

statistically. Moreover, researchers could apply the model to other financial markets. The limitation that faced this 

research represented in unavailability of some data such as liquidity for each stock. where the study found it difficult 

to obtain the intraday data of the trades because such trades not registered by the market and its institution. In 

conclusion, these results prove that the extended model of the large-scale portfolio selection problem solved 

optimally and efficiently within the short time. 
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