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Abstract 

This paper uses a large variety of different models and examines the predictive performance of these exchange rate 

models by applying parametric and non-parametric techniques. For forecasting, we will choose that predictor with 

the smallest root mean square forecast error (RMSE). The results show that the better models are in equations (3), 

(10), (17), and (18), although none gives a perfect forecast. At the end, error correction versions of the models will 

be fit so that plausible long-run elasticities can be imposed on the fundamental variables of each model. 
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1. Introduction 

Most economic time series alternate periods of relative volatility and tranquility and thus do not display a constant 

mean. A brief examination of exchange rates, among other time series data, suggests that these rates do not have a 

constant mean and variance in its stochastic variable(s) either, and can therefore be classified as heteroscedastic. For 

such series exhibiting volatility, the unconditional variance may be constant while the variance is sometimes quite 

large in relative terms. The trends displayed by some variables may contain either stochastic or deterministic 

components, which makes a great deal of difference in our analysis as to how a time series is estimated and 

forecasted. 

A graph drawn of the different exchange rates shows their fluctuation over time. Formal testing naturally follows in 

order to prove any initial impressions as correct. The first pattern shows that these series are not stationary because 

the sample means do not appear as constant and there is a strong appearance of heteroscedasticity. Overall, it is 

difficult to maintain the proposition that these series have a time-invariant mean, as they do not contain a clear trend 

and the dollar-to-deutsche mark exchange rate shows no particular tendency of either increasing or decreasing. The 

dollar seems to go through sustained periods of appreciation and then depreciation without a tendency of reversion to 

a long-run mean. In fact, this kind of "random walk" behavior is typical of non-stationary series. 

Any shock to the series displays a high degree of persistence although the volatility of these series is not constant 

over time. (Such series are called conditionally heteroscedastic if the unconditional or long-run variance is constant 

but there are periods in which the variance is relatively high.) Some exchange rates series share co-movements with 

series in other currencies. For example, large shocks to the U.S. appear to be timed similarly to those in the U.K. and 

Canada. That said, the presence of such co-movements should not be too surprising, however, as we can reasonably 

expect that the underlying economic forces affecting the American economy would also affect the international 

economy.  

The empirical data in our series demonstrate the aforementioned tranquil and volatile periods of a majority of time 

series, thereby making any assumption of a constant variance, i.e., homoscedasticity, inappropriate. Our situation is 

in contrast with those conventional econometric models that assume the existence of a constant variance in its 

disturbance term. As an asset holder denominated in one currency, one might want to forecast the exchange rate and 
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its conditional variance over the asset’s holding period. The unconditional, or long-run forecast, variance would not 

be critical if one were planning to purchase it at time period t and then sell it at t+1. Taylor (1995) and Kallianiotis 

(1995) provide a recent literature review on exchange rate economics; Chinn and Meese (1995) examine the 

performance of four structural exchange rate models. 

This paper is organized as follows. Different linear time series models and trends are presented in section 2. 

Multi-equation time series models are discussed in section 3. The tables of empirical results are given in section 4 

and section 5 contains the summary of our findings. 

2. Some Time-Series Models 

In this section, we introduced stochastic processes and discussed the use of their properties in foreign exchange 

forecasting. Our objective is to develop models that explain the movement of the time series    using both its own 

previous values and a weighted sum of lagged and current random disturbances without recourse to the regression 

model’s explanatory variables. 

The Moving Average (MA) Model 

In the moving average process of order q, each observation    is generated by a weighted average of random 

disturbances going back q periods. We denote this process as MA(q) and its equation is 

    =     +      -          -          - . . .  -                              (1) 

where the parameters   ,  . . .,     could be either positive or negative. 

The moving average process of order 1, MA(1) is: 

    =     +      -                                                 (2) 

Mixed Autoregressive – Moving Average (ARMA) Model 

Many stationary random processes cannot be modeled as merely autoregressive because they actually contain qualities 

of these two processes (autoregressive and moving average) simultaneously. The logical extension of the models 

presented in the last two sections is the mixed autoregressive-moving average process of order (p,q) and we represent it 

by 

    =          +  . . .  +          +     +      -          -  . . .  -                       (3) 

and its mean is either 

   =       +  . . .  +       +                                      (4) 

or 

   =      /  ( 1  -       -  . . .  -    ).                                    (5) 

The ARMA (1,1) is: 

    =          +     +      -                                            (6) 

Homogeneous Nonstationary Processes: ARIMA Model 

The exchange rate time series are not stationary. Therefore, the characteristics of the underlying stochastic process 

change over time. We say that    is homogeneous nonstationary of order d if 

    =                                                  (7) 

is a stationary series. Here, ∆ denotes differencing, i.e., 

∆    =      -      ,        =  ∆    -  ∆                                    (8) 

and so forth. 

If we have a series   , we can get back to    by summing    d times in total, written as: 

    = ∑   
 
                                                 (9) 

We can model    as an ARMA process after we have differenced the series    and produced the stationary series   . 

If    =      and is also an ARMA(p,q) process, then    is called an integrated autoregressive-moving average 

process of order (p,d,q), or ARIMA (p,d,q). 

The equation for the ARIMA (p,d,q) process using the backward shift operator is: 

          =     +                                               (10) 
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with       =  1  -       -     
   -  . . .  -     

                            (11) 

with       =  1  -       -     
   -  . . .  -     

                              (12) 

where      is the autoregressive operator and      is the moving average operator. 

The mean of    =      is given by 

    =     /  (1  -      -  . . .  -    )                               (13) 

The Monetary Model of Exchange Rate Determination 

The monetary model presented here is a descendant of those by Bilson (1978) and Kallianiotis (1985, 1988). It starts 

with the conventional money demand functions of domestic and foreign economies and, through purchasing power 

parity (PPP), calculates the spot exchange rate as either 

                                                                           (14) 

or 

                  +      
   +        +      

   +         +                        (15) 

where s is the spot exchange rate (the domestic currency per unit of foreign currency), m is the money supply, y is the 

country’s real income proxied by its industrial production, i is the nominal (short-term) interest rate, fp is the forward 

premium, and an asterisk denotes a foreign variable. 

Combining Regression Analysis with a Time-Series Model: 

Transfer Function Models 

Suppose that we would like to forecast the variable    using a regression model that we can presume to include all 

those independent variables which could explain   ’s movements but which are collinear themselves. Let us suppose 

that the best regression model contains the following independent variables as an extended monetary model of the one 

discussed above: 

                  
            

            
            

    

         
              

              
     +                                  (16) 

This equation has an implicit additive error term (  ) that accounts for any unexplained variances in   . In other words, 

this error term accounts for the portion of   ’s variance that remains unexplained by the presence of any other 

independent variables. The equation can be estimated, and an    < 1 will be the result; such equation can then be used 

to forecast   . One source of forecast error would come from the additive noise term whose future values cannot be 

predicted. 

By subtracting the estimated values of    from its actual values, we can calculate a residual series    which represents 

unexplained movements in   , i.e., pure noise in the process. One useful application of time-series analysis is the 

construction of an ARIMA model for the regression’s residual series    and the subsequent substitution of this model 

for the implicit error term in the original regression equation. When using the equation to forecast   , we could also 

forecast the error term    using this ARIMA model which, in turn, provides some information as to what future values 

of    could likely be and also helps explain the regression equation’s previously unexplained variance. The combined 

regression-time series model is 

    =      +       +                                              (17) 

where    represents the independent variables and    is a normally distributed error term which may have a different 

variance from   . This model is likely to provide a significantly better forecast compared to either regression equation 

(16) or a time-series model alone since it includes a structural/economic explanation of   ’s variance parts that can be 

explained structurally and a time-series explanation for those parts of this variance that cannot be explained 

structurally. 

Equation (17) is referred to as a MARMA (multivariate autoregressive-moving average) or transfer function model, 

which simply relates a dependent variable to lagged values of itself, current and lagged values of one or more 

independent variables, and an error term which is partially explained by a time-series model. The technique of transfer 

function modeling uses tests of partial and total autocorrelation functions for the independent variables    as well as 

the dependent variable    to try to specify the lag polynomials. The structural part of the model is derived through 

mixing the monetary approach theory with other econometric models while the model’s time-series portion is 

calculated through the structural model’s residuals. This combination of a time-series model of the error term with 
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regression analysis is particularly powerful in its forecasting ability such that in some cases it provides the best of both 

worlds. 

3. Multiequation Time-Series Models 

One of the most fertile areas of time-series research today concerns multiequation models. Many economic systems 

exhibit feedback from other variables but it is not always known if the time path of a series designated to be the 

independent variable has been unaffected by the time path of the dependent variable. However, there is a type of 

analysis that treats all variables symmetrically without making any reference to issues of dependence, and this is 

Vector Autoregression (VAR) analysis. 

Vector Autoregression (VAR) Analysis 

When a variable is not exogenous -- as happens with    here -- a natural extension of the transfer function analysis (see 

Enders, 1995, pp. 277-290) is the treatment of each variable symmetrically. In the two-variable case of the spot and 

forward exchange rate, we can let the time path of {  } be affected by both current and past realizations of the {  } 

sequence and also let the time path of the {  } sequence be affected by current and past realizations of the {  } 

sequence. 

A Vector Autoregression is a system of equations that makes each endogenous variable a function of its own past and 

of the past of all other endogenous variables in the system. A VAR has proven successful in forecasting systems of 

interrelated time-series variables. We are actually using here a slight generalization of a simple VAR by admitting the 

possibility of exogenous variables that could help determine the endogenous variables: the simplest exogenous 

variables can be a time trend, for instance. 

Our methodology involves estimating spot and forward exchange rates in a VAR framework with a time trend 

component as 

                                                                                                                               (18) 

                                                     

where     and     are constants,     = the polynomials in the lag operator L, and t = time trend. 

4. Empirical Evidence 

We present an analysis of summarized empirical evidence of several different models of foreign currency forecasting. 

The data are monthly from March 1973 through and including December 1994 and come from Main Economic 

Indicators of the OECD and International Financial Statistics of the IMF for the Federal Republic of Germany. The 

exchange rate is defined as the U.S. dollar per German deutsche mark (with direct quotations for the U.S.), the 

lowercase letters denote the natural logarithm of the variables, and an asterisk denotes the corresponding variable for 

Germany. 

The first model is a linear time-series, namely, the moving average (MA) model in equation (1), and its results are 

shown in Table 1. The ARMA (mixed autoregressive-moving average) model in equation 3 and the ARIMA 

(homogeneous nonstationary) process in equation 10 follow for Tables 2 and 3 respectively. All of these results are 

poor, however; we can deduce that time-series models cannot be used to forecast any exchange rates that follow such 

high volatility. 

The monetary model of exchange rate determination follows in Table 4, using equations 14 and 15, but the estimated 

results do not inspire much confidence, either, chiefly because some of the explanatory variables are significant at the 

10%+ threshold and most of the variables have the anticipated signs. Subject to certain econometric issues, the D-W 

(Durbin-Watson) display a serial correlation of the error term (i.e., small) while the sum of the squares of the residuals 

are large. These factors, combined with the low explanatory power associated with the   , show that this monetary 

model of balance of payments theory is unsupported by our data. 

We next use a transfer function model in equation 17 with Table 5, namely, a combining regression analysis along with 

a time-series model, and we received more encouraging results. This MARMA (multivariate autoregressive-moving 

average) model is particularly powerful in foreign exchange forecasting because it combines the time-series model 

with the fundamental approach of an economic theory’s regression analysis.  

The VAR (vector autoregression) model, a multiequation time-series model, follows in equation 18 / Table 6. The best 

models that can be used in foreign exchange forecasting based on these tables’ empirical data are the ARMA, ARIMA, 

MARMA, and VAR models for equations 3, 10, 17, and 18, respectively.  
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Table 1. The Moving Average (MA) Model, eq. (1): 

    =     +      -          -          - . . .  -        

  3 873    

(.003) 

   1 180    

(.059) 

   1 229    

(.054) 

    947    

(.043) 

    797    

(.057) 

    521    

(.037) 

      358    

(.039) 

    245    

(.025) 

    163    

(.023) 

    093    

(.013) 

     048    

(.010) 

     019    

(.004) 

     005    

(.002) 

   .950 

D-W 1.434 

SSR .519 

F 386.98 

RMSE .0450 

Notes:    = the spot exchange rate,    = ln(  ), t = time, D-W = the Durbin-Watson statistic, SSR = sum of squares 
residuals, RMSE = root mean square error, data from March 1973 through June 1994,     = significant at the 1% level, 
   = significant at the 5% level,   = significant at the 10% level. 

 

Table 2. Mixed Autoregressive-Moving Average (ARMA) Model, eq. (3): 

    =  𝜙       +  . . .  +  𝜙𝑝   𝑝  +  𝛿  +      -          -  . . .  -         

𝛿 3 979    

(.099) 

𝜙    917 

(.324) 

𝜙  -.124 

(.412) 

𝜙  .182 

(.164) 
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   .115 

(.329) 

    272  

(.150) 

      040 

(.122) 

   .971 

D-W 1.997 

SSR .306 

F 1,376.48 

RMSE .0346 

Notes: See the previous tables. 

 

Table 3. Homogenous Nonstationary Process 

ARIMA Model, eq. (10):           =     +         

  .002 

(.002) 

      004 

(.270) 

   -.045 

(.288) 

   -.054 

(.190) 

    315  

(.167) 

   .052 

(.149) 

     297   

(.144) 

   .042 

(.279) 

   .139 

(.292) 

   .080 

(.205) 

     346  

(.187) 

   -.073 

 (.196) 

   .169 

(.206) 

   .052 

D-W 1.977 

SSR .296 

F 1.118 

RMSE .0340 

Notes: See the previous tables. German data = stationary, d = 1. 
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Table 4(i). The Monetary Model, eq. (14): 

                            
             

                
        

     2 320    

(.290) 

  1 055    

(.184) 

      .231 

(.141) 

  -.004 

(.004) 

   .317 

D-W .083 

SSR 7.132 

F 38.990 

RMSE .1669 

Notes: See the previous tables.    = ln of spot exchange rate, t = time,    = money supply,    = short-term interest 

rate, and asterisk denotes the foreign country.  

 

Table 4(ii). The Monetary Model, eq. (15): 

                  +      
   +        +      

   +        +      
  +     

   -3 342    

(.558) 

    1 154    

(.159) 

     -1 629    

(.174) 

   1 539    

(.190) 

    301    

(.119) 

   - 009  

(.005) 

    034    

(.004) 

   .630 

D-W .198 

SSR 3.860 

F 70.759 

RMSE .1228 

Notes: See the previous tables.    = ln of spot exchange rate, t = time,    = money supply,     = the forward 

premium,    = the real income proxied by industrial production, and asterisk denotes the foreign country. 
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Table 5. The Combined Model, eq. (17): 

    =      +       +               

c .317 

(.394) 

     050 

(.109) 

  
  -.047 

(.061) 

    .037 

(.074) 

  
  .049 

(.034) 

   -.003 

(.002) 

  
     0002 

(.002) 

   .142 

(.097) 

  
  -.250 

(.214) 

      929    

(.023) 

     346  

(.187) 

     .090 

(.068) 

     .029 

(.068) 

   .972 

D-W 1.999 

SSR .292 

F 703.931 

RMSE .1123 

Notes: See the previous tables. 

 

Table 6. The Vector Autoregression Model, eq. (18) 

Dep. Var.       

c 1.043   

(.472) 

.995   

(.471) 

       957 

(.728) 

.510 

(.730) 

     -1 234   

(.617) 

-1 304   

(.616) 

     .013 

(.724) 

.472 

(.723) 
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        1 221  

(.618) 

1 279   

(.617) 

 t     001   

(.0007) 

 001   

(.0007) 

    -.094 

(.077) 

-.087 

(.076) 

   - 006    

(.002) 

- 005   

(.002) 

  
  - 080 

(.050) 

-.077 

(.050) 

  
  .003 

(.001) 

.002 

(.001) 

   .973 .972 

D-W 1.986 2.004 

SSR .286 .285 

F 969.896 932.853 

RMSE .0334 .0034 

Notes: See the previous tables.    = the natural logarithm of the spot exchange rate,    = the natural logarithm of 

the forward exchange rate, t = time,    = the money supply,    = the short-term interest rate, and the asterisk in the 

dependent variable denotes the foreign currency. 

 

5. Summary 

This paper utilizes several different time-series trends and linear time-series as well as the balance of payments 

approach, the transfer function, and the vector autoregression model to examine the predictive performance of 

several exchange rate forecast models. For every such model, we calculate the root mean square forecast error 

(RMSE) as = √ (∑          
 
     )/n), where A = the actual value of the dependent variable, F = the forecast value, 

and n = the number of observations. The foreign exchange forecast model with the smallest RMSE is the best 

predictor that must be chosen to forecast the foreign exchange rate. 

The foreign exchange rate itself is the relative price of the currencies between any two countries. The fundamental 

factors most likely to determine a country’s relative currency value are significantly related to: the relative sizes and 

amounts of the money supply, real incomes, and prices; trade balance, budget deficit, and interest rate differentials; 

differences in inflation; and many other factors. Overall, the empirical evidence regarding this approach is not very 

satisfactory. The combination analysis (the MARMA model) is, relatively speaking, more satisfactory than the other 

approaches examined and shows that this particular model has better specification, but there is still room for 

improvement in the current modeling of foreign currency forecasts overall. Exchange rate movements may result 

from either artificial intervention by governments or a parametric change in the above determinants.  
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