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Abstract 
The fast developing CT technologies have complicated the protocol optimization process. Since there are increasing 
numbers of free parameters that can be adjusted, it is imperative to know exactly how these parameters affect the image 
quality. This paper examines the effect of varying dose level, tube voltage, reconstruction methods and the AEC function 
on the CT image quality across different sizes. A size varying phantom, consisting of five cylindrical tiers, was used. To 
assess the image quality, task transfer function (TTF), noise power spectra (NPS), contrast, and detectability index was 
computed and compared across sizes. It was found that from small to large size, detectability increased more as the dose 
increased. When the CTDIvol increased from 0.7 to 22.6 mGy, the detectability for the smallest size section increased by 
four fold but increased by eight fold for the largest section. Low tube voltage exhibited superior detectability and contrast 
for all sections, especially for the small size sections, where detectability doubled for the smallest section when tube 
voltage decreased from 120 kV to 80 kV. TTF curves showed considerable dependence on size, but more pronounced 
dependence on reconstruction techniques. In conclusion, small size phantoms were affected very differently from large 
size phantoms by dose levels, reconstruction methods, and tube voltage selection. Low tube voltage and iterative 
reconstruction technique can deliver superior image quality for small patients. Due to beam hardening and substantially 
increased noise at low tube voltage for large patients, high tube voltage is still recommended for large patients to retain 
image quality. 
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1 Introduction 
In the past few decades, commercial computed tomography has developed from a single slice head scan taking 2.5 hours, 

to multi-detector high resolution scans that can depict the anatomy of a beating heart. It has truly revolutionized the 

medical field. An estimated 62 million CT scans per year were conducted in the United States in 2006, of which 6.5% were 

done on children [1]. It is well understood that children have more radiosensitive tissues and organs, and longer life span for 

cancerous tumor to develop. Many efforts have been jointly contributed from medical physicists, radiologists, and 

technologists to raise awareness in pediatric imaging [2]. One remarkable effort was the founding of the Image Gently 
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Campaign, which promotes the justification for and optimization of pediatric CT imaging. To optimize pediatric CT 

protocols, a comprehensive understanding of the effect of patient size on image quality is desirable.  

New CT systems usually come with many advanced applications to help to reduce radiation, such as different tube voltage 

selection and iterative reconstructions. Individually, each has been studied intensively before leading to the clinical 

application [3-10]. Lower tube voltage can provide better contrast because iodine preferentially absorbs much more photons 

at low tube voltage, but at lower tube voltage, images can be undesirably noisy [8-11]. Iterative reconstructions have been 

proven to reduce radiation dose notably, but can also alter the noise texture and obscure potential lesions of interest against 

a “waxy appearance” [5, 7, 11, 12]. To optimize protocols, these tradeoffs should be carefully and conjunctively considered. 

Inspired by this, our study focused on how size affects image quality with different imaging parameters using a second 

generation dual source CT scanner (SOMATOM Definition Flash, Siemens Healthcare). Some studies have reported the 

image quality from this new CT [5, 11, 13]. However, these studies focused on one particular technique, such as varying tube 

voltage, varying mAs, or comparing reconstruction methods. The purpose of this investigation is to comprehensively 

study the inherent image quality of a state of the art CT scanner using a size varying phantom. 

2 Methods 

2.1 The phantom and data collection 
A size varying phantom was used (Mercury Phantom 3.0) [14]. This phantom consists of five cylindrical tiers, diameters 

12 cm, 18 cm, 23 cm, 30 cm, 37 cm, with tapered connecting pieces. There are two sections within each tier, one with 

inserts and one without inserts, meant for characterization of the spatial resolution and noise properties respectively. The 

background material is polyethylene; the inserts are made from five different materials, including iodine concentration 

(8.5 mgI/cc), polystyrene, bone equivalent, water equivalent, and air. All inserts are located at the same radial distance 

(5 cm) to the transaxial center except for the smallest section where the inserts are closer to the center (3.3 cm). 

The phantom was imaged on a second generation dual source CT scanner (SOMATOM Definition Flash, Siemens 

Healthcare). There are two X-ray tubes and detectors on this scanner. Both sources are enabled during applications 

including cardiac modes, high-pitch modes, and dual energy modes. In our experiments, only one tube and the larger 

detector was used. The collected images can be categorized into three data groups. The first group was with 120 kV and six 

dose levels. The CTDIvol values were 0.7, 1.4, 2.8, 5.7, 11.5, 22.6 mGy. The raw data was reconstructed both with FBP 

and SAFIRE 3, 4, 5. The second group was imaged at four different tube voltage levels (80, 100, 120, 140 kV), with 

matched CTDIvol of approximately 2.8 mGy. The third group used the tube current modulation (CareDose 4D, Siemens 

Healthcare) at three dose levels with 120 kV, where average CTDIvol was matched to be 1.4, 2.6, 5.7 mGy. Other image 

parameters are shown in Table 1.  

Table 1. Data acquisition parameters  

Items  

Reconstruction FOV 40 cm 

Reconstruction method FBP, SAFIRE 3, 4, 5 

Slice thickness 0.625 mm 

CTDIvol 0.7, 1.4, 2.8, 5.7, 11.5, 22.6 mGy 
Tube current modulation setting Reference mAs with CTDIvol of approximately 1.4, 2.8, 5.7 mGy 

Pitch 1 

Rotation time 1 s 
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2.2 Image analysis 
Several image quality metrics were employed, including task transfer function (TTF) for spatial resolution [15], NPS 
for noise performance, contrast, as well as a detectability index which incorporates the resolution, contrast and noise 
properties into a single metric. The calculation of each one is detailed in the following. 

The TTF and contrast were computed using the iodine concentration rod insert. A small rectangular ROI was drawn 
around the insert, then the weighted center (the center of mass) was found. The distance from the pixels in the ROI to the 
center was calculated and plotted against the pixel value. This yields an edge spread function, which was differentiated to 
calculate the line spread function (LSF). After smoothing the LSF with a Hann window, the Fourier transform was 
performed to obtain the TTF of the iodine insert [15]. Contrast was simply calculated as the subtraction of the insert HU and 
background HU. 

The NPS was computed from the uniform section of each tier. A ring shaped ROI was used to exclude the middle assembly 
rod. The ROI sizes were chosen to be the same across all tiers for a fair comparison. Each ROI was first fitted into a second 
order polynomial fit, which was subtracted for the original ROI to obtain a noise map. Since the ROI was relatively small, 
the noise was assumed to be wide-sense stationary. Two dimensional autocovariance was estimated from the ROI, and the 
Fourier transform was performed to obtain a 2D NPS map. Assuming in-plane isotropy, the 1D NPS was computed by 
radially averaging the 2D NPS [11].  

While TTF, contrast, and NPS capture parts of image quality, a singular metric is used to incorporate all of them. The task 

specific non-prewhitening observer model was used to calculate a detectability index d’ [16]:  

∬ , ,∬ , , ,  

where nNPS is the normalized NPS, and Wtask is the task function. The task used in this study was a circular disk of 5 mm 
diameter. The contrast of the task was the contrast from the iodine insert.  

3 Results 
Figure 1 shows the image quality on different dose levels and reconstruction methods. All the detectability index 
measurements were performed on the iodine inserts. As expected, the detectability index was proportional to the dose level 
for all sizes. This is intuitively simple to understand–the more radiation, the less noise and the easier to detect an object. 
For the noise, Figure 1e plots the noise power spectra from the 23 cm section of the phantom, which clearly illustrated how 
noise magnitude increases as the dose level decreases. Figure 1a to 1d shows that iterative reconstruction had better 
detectability compared to FBP, and iterative strength five (SAFIRE 5) had the highest detectability. NPS from these 
different reconstruction methods also demonstrated that SAFIRE 5 had the least noise (see Figure 1e to 1h). While the 
magnitude of NPS informs the variance of image pixels, the shape of NPS informs the texture of an image. Normalized to 
the area under the NPS curve, nNPS was used to compare the difference of texture appearance at different dose levels 
(see Figure 1i to 1l). FBP based nNPS overlapped across all dose levels, which is expected because FBP is a linear 
reconstruction technique and thus the noise texture is expected to be independent of dose levels. The non-linear 
reconstruction techniques exhibited different noise texture response at low dose levels, especially for the SAFIRE 5 where 
nNPS for 0.7 mGy considerably shifted towards low frequencies. From the small to large section, detectability increased 
more as the dose increased. When the CTDIvol increased from 0.7 to 22.6 mGy, the detectability for the smallest size 
increased by four fold but increased by 8 fold for the largest section. This held true for the iterative reconstruction as well. 
The detectability was improved even more for the large size section. 
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Figure 2 shows the image quality size dependence on tube voltages. Since the results from IR were very similar to those for 
FBP, only FBP results are shown here. The data display a strong dependence of tube voltage on image quality–low tube 
voltage exhibited superior detectability and contrast for all sizes. For contrast, the lines from different tube voltages were 
almost parallel across sizes with an inverse proportional relationship between contrast and tube voltage. For detectability, 
tube voltage had a very large impact on the small section, but little impact on large size; detectability doubled for the 
12 cm section, while remaining nearly unchanged for the 37 cm section. Contrast apparently did not contribute to this 
discrepancy among sizes since it increased for all sizes as noted before. The noise performance is tabulated in Table 2 
across all sizes for the four tube voltages. Variances were similar for the same section at small sizes for the four tube 
voltages, but were considerably different for the large section 37 cm, with variance at 80 kV about 2.5 times that of 140 kV. 
The average frequency of NPS remained around 0.355 1/mm for all size and tube voltages besides the 37 cm section, 
where the frequency was considerably smaller compared to other sections.  

Table 2a. Variance (HU2) from the uniform regions for four tube voltages 

12 cm 18 cm 23 cm 30 cm 37 cm 

80 kV 177 675 1853 8076 35992 

100 kV 186 667 1709 7616 21178 

120 kV 196 675 1672 6723 15511 

140 kV 211 704 1709 6420 14627 

Table 2b. The average frequency (1/mm) of NPS for four tube voltages 

12 cm 18 cm 23 cm 30 cm 37 cm 

80 kV 0.354 0.355 0.355 0.350 0.320 

100 kV 0.354 0.354 0.356 0.354 0.319 

120 kV 0.353 0.354 0.354 0.354 0.318 

140 kV 0.353 0.355 0.354 0.356 0.323 

Another important contributing factor to detectability is the spatial resolution response from the system. In this study, TTF 
was used to quantify this characteristic. Table 3 shows the frequency at 50% on the TTF curves for different reconstruction 
techniques, sizes and tube voltages; as an example, Figure 3 shows the TTF curves for iodine inserts at 120 kV. A 
considerable dependence on phantom size, but a more pronounced dependence on reconstruction techniques, was 
observed. As expected, IR displayed better resolution mostly. For FBP, the frequency remained similar across different 
tube voltages for sizes ranging from 12 cm to 30 cm, while contrarily for IR, the frequency generally increased 
proportionally with tube voltage for these sizes. Results from the 37 cm section had very different trending, which is 
largely due to the beam hardening effect.  

Figure 4 shows the effect of AEC on the size varying phantom. This demonstrates another important usage of the Mercury 
Phantom, to assess the tube current modulation function of modern CT scanners. The average CTDIvol was purposefully 
matched to three dose levels. The detectability curves were flatter when AEC was applied, although not completely flat as 
might be anticipated for AEC based scans. This is a function of the specifics of the tube current modulation techniques 
applied. 

4 Discussion 
The fast developing CT technologies have complicated the protocol optimization process. Since there are growing variants 
that can be adjusted, it is imperative to know exactly how these parameters affect the image quality. This paper examines 
the effect of varying dose level, tube voltage, reconstruction methods and the AEC function for various sized phantoms on 
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There are several limitations to this study. First, when analyzing noise, only a uniform phantom was used. Solomon and 
Samei have shown uniform phantoms are not enough for assessing noise performance of iterative reconstruction given that 
no anatomy is perfectly uniform. Considering the frequency shift from iterative reconstruction, it would be worth 
exploring the noise performance using textured phantoms at various sizes. Second, this work used only two kernels 
from one vendor. It is understood that the kernel choice can have a notable effect on the TTF and noise, and thus the 
detectability index. It is not feasible to examine every single kernel available, but some representative kernels can be 
studied using similar methods, which can aid in the clinical optimization of protocols. However, the general findings from 
this paper, frequency shift in NPS and tradeoff between contrast and noise for tube voltage, are still applicable clinically.  

In conclusion, this work examined the image quality of a commercial CT scanner using a size varying phantom. The size 
dependence of image quality on dose levels, reconstruction methods, tube voltage, and AEC were studied. Small size 
phantoms were affected very differently from large size phantoms with dose levels, reconstruction methods, and tube 
voltage selection. In general, low tube voltage and SAFIRE can deliver superior image quality for small patients. Due to 
beam hardening and substantially increased noise at low tube voltage for large patients, high tube voltage is still 
recommended for large patients to retain image quality. The nonlinear iterative reconstruction shifted the noise power 
spectra towards low frequencies especially for the extreme low dose scans. The results from this study can be implemented 
to optimize clinical protocols for different size patients. 
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