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Abstract 

Focusing that consumers’ are apt to buy superior brand when they are accustomed or bored to use current brand, new 

analysis method is introduced.  

Before buying data and after buying data is stated using liner model. When above stated events occur, transition 

matrix becomes upper triangular matrix. In this paper, equation using transition matrix stated by the Block Matrix is 

expanded to the third order lag and the method is newly re-built. These are confirmed by numerical examples. S-step 

forecasting model is also introduced.  

This approach makes it possible to identify brand position in the market and it can be utilized for building useful and 

effective marketing plan.  
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1. Introduction 

It is often observed that consumers select upper class brand when they buy next time after they are bored to use 

current brand. 

Suppose that former buying data and current buying data are gathered. Also suppose that upper brand is located 

upper in the variable array. Then transition matrix becomes upper triangular matrix under the supposition that former 

buying variables are set input and current buying variables are set output. If the top brand were selected from lower 

brand skipping intermediate brands, corresponding part in upper triangular matrix would be 0. These are verified in 

numerical examples with simple models. 

If transition matrix is identified, s-step forecasting can be executed. Generalized forecasting matrix components’ 

equations are introduced. Unless planners for products notice its brand position whether it is upper or lower than 

other products, matrix structure makes it possible to identify those by calculating consumers’ activities for brand 

selection. Thus, this proposed approach makes it effective to execute marketing plan and/or establish new brand.  

Quantitative analysis concerning brand selection has been executed by Yamanaka (Yamanaka,H., 1982), Takahashi et 

al. (Takahashi,Y., T.Takahashi, 2002). Yamanaka(Yamanaka,H., 1982) examined purchasing process by Markov 

Transition Probability with the input of advertising expense. Takahashi et al. (Takahashi,Y., T.Takahashi, 2002) made 

analysis by the Brand Selection Probability model using logistics distribution. 

In Takeyasu et al. (2008, 2011), matrix structure was analyzed for the case brand selection was executed toward 

upper class. In this paper, equation using transition matrix stated by the Block matrix is extended to the third order 

lag and the method is newly re-built. Such research as this cannot be found as long as searched. 

Hereinafter, matrix structure is clarified for the selection of brand in section 2. Block matrix structure is analyzed 

when brands are handled in group and s -step forecasting is formulated in section 3. Expansion of the model to the 

third order lag is executed in section 4. Numerical calculation is executed in section 5. Application of this method is 

extended in section 6. 
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2. Brand Selection and its Matrix Structure 

(1) Upper shift of Brand selection 

Now, suppose that x  is the most upper class brand, y  is the second upper class brand, and z  is the lowest class 

brand.  

Consumer’s behavior of selecting brand might be yz  , xy  , xz   etc. zx   might be few. 

Suppose that x  is current buying variable, and bx  is previous buying variable. Shift to x  is executed from bx ,

by , or bz . 

Therefore, x  is stated in the following equation. 
ija represents transition probability from j -th to i -th brand.  

bbb zayaxax 131211   

Similarly, 

bb zayay 2322   

and 

bzaz 33  

These are re-written as follows. 
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then, X  is represented as follows.  

     bAXX                                                    (2) 

Here, 
3333 ,, RXRARX b  

 

A  is an upper triangular matrix. 

To examine this, generating following data, which are all consisted by the data in which transition is made from 

lower brand to upper brand, 
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parameter can be estimated using least square method. 

Suppose 

           
iii
εAXX b                         (5) 
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where                     
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Â  which is an estimated value of A  is obtained as follows. 
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In the data group which are all consisted by the data in which transition is made from lower brand to upper brand, 

estimated value Â  should be upper triangular matrix. 

If following data which shift to lower brand are added only a few in equation (3) and (4), 
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Â  would contain minute items in the lower part triangle. 

 

(2) Sorting brand ranking by re-arranging row 

In a general data, variables may not be in order as zyx ,, . In that case, large and small value lie scattered in Â . 

But re-arranging this, we can set in order by shifting row. The large value parts are gathered in upper triangular 

matrix, and the small value parts are gathered in lower triangular matrix.  

                   (8) 

 

(3) Matrix structure under the case skipping intermediate class brand is skipped 

It is often observed that some consumers select the most upper class brand from the most lower class brand and skip 

selecting the intermediate class brand. 

 We suppose zyxwv ,,,,  brands (suppose they are laid from upper position to lower position as 

zyxwv  ). 

  In the above case, selection shifts would be  
zv   
yv   

Suppose they do not shift to wxy ,,  from z , to wx,  from y , and to w  from x , then Matrix structure 

would be as follows. 
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We confirm this by numerical example in section 4. 
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3. Block Matrix Structure in Brand Gourps and S-Step Forecasting  

Next, we examine the case in brand groups. Matrices are composed by Block Matrix. 

(1) Brand shift group － in the case of two groups 

 Suppose brand selection shifts from Corolla class to MarkⅡclass in car. In this case, it does not matter which 

company’s car they choose. Thus, selection of cars are executed in a group and brand shift is considered to be done 

from group to group. Suppose brand groups at time n  are as follows. 

X consists of p varieties of goods, and Y consists of q varieties of goods. 
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Here, 
p

RXn   ,2,1n ,  
q

RYn   ,2,1n ,  
ppRA11 ,  

qpRA12 ,  
qqRA22  

Make one more step of shift, then we obtain following equation.  
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Make one more step of shift again, then we obtain following equation. 
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Similarly, 
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Finally, we get generalized equation for s -step shift as follows. 
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If we replace snnnsn  ,  in equation (15), we can make s -step forecast. 

 

(2) Brand shift group － in the case of three groups 

Suppose brand selection is executed in the same group or to the upper group, and also suppose that brand position is 

zyx   ( x  is upper position). Then brand selection transition matrix would be expressed as   
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Where 
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Hereinafter, we shift steps as is done in previous section.  

In the general description, we state as   
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From definition, 

            AA
(1)                               (19) 

 

In the case 2s , we obtain 
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Next, in the case 3s , we obtain 
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In the case 4s , equations become wide-spread, so we express each Block Matrix as follows. 
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We get generalized equations for s -step shift as follows. 
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Expressing them in matrix, it follows. 

(24) 
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Generalizing them to m  groups, they are expressed as 
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4. Expansion to the Third Order Lag 

Expansion of the above stated Block Matrix model to the third order lag is executed in the following method. 

Here we take three groups case. 

Generating Eq.(16) and Eq.(18),we state the model as follows. Here we set P=3. 
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Where 
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Here, 
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If N amount of data exist, we can derive the following the equation similarly as Eq.(5), 
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Now, we expand Eq.(34) to the third order lag model as follows. 
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It we set 
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then 
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We further develop this equation as follows. 
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We set this as: 

 

 321 ,, PPPP    
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Then when all consist of the same level shifts or the upper level shifts (suppose 𝐗 > 𝐘 > 𝐙), 

𝑲4, 𝑲7, 𝑲8, 𝑳4, 𝑳7, 𝑳8, 𝑴2, 𝑴7, 𝑴8, 𝑵2, 𝑵3, 𝑵6, 𝑻2, 𝑻3, 𝑻6, 𝜷2, 𝜷3, 𝜷6, 𝑸4, 𝑸7, 𝑸8, 𝑹4, 𝑹7, 𝑹8, 𝑼4, 𝑼7, 𝑼8  

are all 0. 

As 

𝑵4 = 𝑵2
𝑇 ,     𝑵7 = 𝑵3

𝑇 ,  𝑵8 = 𝑵6
𝑇 ,   𝑺2 = 𝑸4

𝑇 , 𝑺3 = 𝑸7
𝑇 , 𝑺6 = 𝑸8

𝑇 

𝑻4 = 𝑻2
𝑇 ,   𝑻7 = 𝑻3

𝑇 ,    𝑻8 = 𝑻6
𝑇 ,   𝑽2 = 𝑹4

𝑇 , 𝑽3 = 𝑹7
𝑇 , 𝑽6 = 𝑹8

𝑇 

𝜷4 = 𝜷2
𝑇 ,      𝜷7 = 𝜷3

𝑇 ,    𝜷8 = 𝜷6
𝑇 ,     𝜶2 = 𝑼4

𝑇 , 𝜶3 = 𝑼7
𝑇 , 𝜶6 = 𝑼8

𝑇  

 

 

therefore they are all 0.  

𝑵1, 𝑵5, 𝑵9, 𝑻1, 𝑻5, 𝑻9, 𝜷1, 𝜷5, 𝜷9 become diagonal Matrices.  

Using a symbol “∗” as a diagonal matrix, P becomes as follows by using the relation stated above. 
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5. Numerical Example  

We consider the case that brand selection shifts to the same class or upper classes. As above-referenced, transition 

matrix must be an upper triangular matrix. 

Suppose following events occur. 
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Vector (
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) in these cases are expressed as follows. We show some of them as an example. 

 

                            𝑋𝑡−2                         𝑋𝑡−1                   𝑋𝑡 

 































































































































































































































0

0

1

0

0

0

0

0

0

,

0

0

1

0

0

0

0

0

0

,

0

0

1

0

0

0

0

0

0

1

1

1

2

2

2

t

t

t

t

t

t

t

t

t

Z

Y

X

Z

Y

X

Z

Y

X

 



http://bmr.sciedupress.com Business and Management Research Vol. 5, No. 4; 2016 

Published by Sciedu Press                        44                         ISSN 1927-6001   E-ISSN 1927-601X 

 































































































































































































































0

1

0

0

0

0

0

0

0

,

0

1

0

0

0

0

0

0

0

,

0

0

1

0

0

0

0

0

0

1

1

1

2

2

2

t

t

t

t

t

t

t

t

t

Z

Y

X

Z

Y

X

Z

Y

X

 

 

 































































































































































































































1

0

0

0

0

0

0

0

0

,

0

1

0

0

0

0

0

0

0

,

0

1

0

0

0

0

0

0

0

1

1

1

2

2

2

t

t

t

t

t

t

t

t

t

Z

Y

X

Z

Y

X

Z

Y

X

 

 

 































































































































































































































1

0

0

0

0

0

0

0

0

,

1

0

0

0

0

0

0

0

0

,

1

0

0

0

0

0

0

0

0

1

1

1

2

2

2

t

t

t

t

t

t

t

t

t

Z

Y

X

Z

Y

X

Z

Y

X

 

 



http://bmr.sciedupress.com Business and Management Research Vol. 5, No. 4; 2016 

Published by Sciedu Press                        45                         ISSN 1927-6001   E-ISSN 1927-601X 

 































































































































































































































0

1

0

0

0

0

0

0

0

,

0

1

0

0

0

0

0

0

0

,

0

1

0

0

0

0

0

0

0

1

1

1

2

2

2

t

t

t

t

t

t

t

t

t

Z

Y

X

Z

Y

X

Z

Y

X

 

Substituting these to equation (40), we obtain the following estimated Matrix.  
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The Block Matrices make upper triangular matrix as is supposed. We can confirm that 

𝑲4, 𝑲7, 𝑲8, 𝑳4, 𝑳7, 𝑳8, 𝑴2, 𝑴3, 𝑴4, 𝑴6, 𝑴7, 𝑴8, 𝑵4, 𝑵7, 𝑵8, 𝑸2, 𝑸3, 𝑸6, 𝑹2, 𝑹3, 𝑹4, 𝑹6, 𝑹7, 𝑹8  are all 

0. 𝑴1, 𝑴5, 𝑴9, 𝑹1, 𝑹5, 𝑹9 become diagonal Matrices as we have assumed. 

6. Application of this Method 

Consumers’ behavior may converge by repeating forecast with above method and total sales of all brands may be 

reduced. Therefore, the analysis results suggest when and what to put new brand into the market which contribute the 

expansion of the market. 

There may arise following case. Consumers and producers do not recognize brand position clearly. But analysis of 

consumers’ behavior let them know their brand position in the market. In such a case, strategic marketing guidance to 

select brand would be introduced. 

Setting in order the brand position of various goods and taking suitable marketing policy, enhancement of sales 

would be enabled. Setting higher ranked brand, consumption would be promoted.   

7. Conclusion 

Consumers often buy higher grade brand products as they are accustomed or bored to use current brand products 

they have. Focusing that consumers’ are apt to buy superior brand when they are accustomed or bored to use current 

brand, new analysis method is introduced. Before buying data and after buying data is stated using liner model. 

When above stated events occur, transition matrix becomes upper triangular matrix. 

In this paper, block matrix structure under brand groups was clarified when brand selection was executed toward 

higher grade brand. Equation using transition matrix stated by the Block Matrix was expanded to the third order lag 

and the method was newly re-built. In numerical example, matrix structure’s hypothesis was verified. This approach 

makes it possible to identify brand position in the market and it can be utilized for building useful and effective 

marketing plan.  

Such research as questionnaire investigation of consumers’ activity in automobile purchasing should be executed in 

the near future to verify obtained results. Various cases should be examined hereafter. 
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