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ABSTRACT

This paper presents a deep regression model to estimation of the weld bead parameters in welding tasks. It is an aggregate of deep
regression blocks where number of these blocks is proportional to the cardinality of the weld parameters. These blocks are trained
simultaneously and share an identical structure with four-hidden-layer Sigmoid activation functions and a linear transformation at
their outputs. Moreover, they incorporate a new meta-parameter, shared by all the hidden layers of a given block, to maintain the
quality of the gradients of their respective weight matrices. This allows the model to further reduce the deviation of its estimates
from the expected values of the weld parameters to significantly minimize its estimation error. The evaluation of the performance
of this approach in contrast to state-of-the-art techniques in the literature shows a significant improvement in estimating these
values for different welding processes. Furthermore, the proposed deep regression network is capable of retaining its performance
when presented with combined data of different welding techniques. This is a nontrivial result in attaining an scalable model
whose quality of estimation is independent of adopted welding techniques.
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1. INTRODUCTION

Welding is an indispensable part of virtually every industrial
process, from construction of buildings and complex struc-
tures to automotive and shipyard production lines. This
explains the existence of a wide range of welding tech-
niques from Gas Metal Arc Welding (GMAW)[1] and Sub-
merged Arc Welding (SAW)[2–4] to shielded metal-arc weld-
ing (SMAW),[5] Tungsten Insert Gas Welding (TIG),[6] and
Gas Tungsten Arc Welding (GTAW).[7]

A welding task, in its common form, comprises of a number
of input control signals. Some examples include the voltage,
the current, the torch traveling speed, the wire feed rate, and

the arc gap. Cook[8] uses the term Indirect Weld Parameters
(IWP) to refer to these input control signals. Furthermore,
Nunes[9] shows that IWP directly influence the geometrical
description of the welding pool i.e., its Direct Weld Parame-
ters (DWP).[8] The depth of penetration, the width of weld
beads, and the transverse cross-sectional areas are some of
the examples of these parameters. A thorough investigation
of the relationship between DWP and IWP is presented by
Chandel and Bala.[10]

Research pertaining to welding processes is broadly catego-
rized into two domain of studies, namely the estimation of
the weld parameters and their sensitivity analysis. The latter
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refers to the study of the effect of the changes of IWP on the
final weld quality. Whereas, the estimation problem attempts
to predict the weld parameters, given the IWP. This article
focuses on the estimation problem.

Rosenthal[11] presents an early static model based on the heat
flow where the welding contour is expressed as a function
of electrode velocity, heat input, and the material properties.
In addition, many researchers apply sophisticated mathe-
matical models to capture this relationship. Some examples
include factorial design,[12–14] linear regression,[1, 15] multiple
regression analysis,[16] response surface methodology,[17, 18]

Taguchi method,[19, 20] and the combination of genetic algo-
rithm and artificial neural network.[21]

In particular, application of the artificial neural network
(ANN) in estimation of the weld bead parameters bring
a remarkable progress in recent years. These models are
successfully deployed in investigation of the modeling, the
process control, and the estimation of the quality of the weld
beads.[22] Anderson et al.[7] use ANN to model the arc
welding process. Their model achieves satisfactory results
on its prediction accuracy as compared to the conventional
control systems. Tang et al.[23] apply back-propagation and
counter-propagation to analyze the relationship between IWP
and the geometry of the weld bead in TIG welding. Polte et
al.[24] consider the application of the self-organizing maps
(SOM) in monitoring and quality evaluation of the GMAW
welding. Nagesh and Datta[5] apply back-propagation on
modeling and estimation of the weld bead parameters in
SMAW. Benyounisa and Olabi[25] present a comprehensive
survey on optimization approaches to estimation of direct
weld parameters.

One challenging aspect of this estimation problem is the
dependency of DWP on the same input control signals or
IWP. For instance, the same set of values of voltage, current,
and torch traveling speed (i.e., IWP) produces the different
values that pertain to the depth of penetration and the width
of weld beads (i.e., DWP). Therefore, it is of no value to com-
bine these parameters in a single output vector to estimate
their values. This is mainly due to the pseudo-redundancy
caused by the overlapping values of input feature vectors for
different output data. This is particularly problematic when
applying backpropagation[26] due to the vanishing gradients
exhibited by the activation functions in neural networks.[27]

In addition, the weak correlation among DWP (please refer
to Figure 3) does not allow the inference of the value of one
(e.g., depth of penetration) from the other (e.g., width). More-
over, the IWP are inherently low-dimensional feature vectors
with voltage, current, and torch traveling speed among the
most common values. This limits the ability of estimation

models to establish a well-generalized mapping of different
DWP onto the same set of IWP values. Although some mod-
els attempt to compensate for such shortcomings through
introduction of polynomial features, such polynomial de-
grees do not necessarily guarantee a better estimation of
DWP values.[14, 28]

Another challenging aspect of this problem is due to the
wide range of application-specific welding techniques (e.g.,
GMAW, SAW, TIG, etc. Please visit https://en.wikiped
ia.org/wiki/List_of_welding_processes for com-
prehensive list of welding techniques). More specifically,
such a diversity results in development of estimation tech-
niques that solely model a particular welding domain. It is
apparent that formulation of an scalable model to address the
estimation of the welding parameters and regardless of the
adopted welding techniques is highly desirable.

This article addresses these issues through introduction of a
deep regression model. Its contributions are:

(1) It resolves the issue of the vanishing gradients in
backpropagaton through introduction of a new meta-
parameter, referred to as reinforced gradient coeffi-
cient, to enable this model to maintain the quality of
its computed gradients. This approach is comparable
to Gulcehre et al.[27] Whereas, they apply an additive
noise to the input or output layers, the multiplicative
nature of reinforced gradient coefficient which is di-
rectly applied to the calculated gradients magnifies the
exponent of the activation function in next iteration,
thereby sharpening its transition. In addition, this arti-
cle presents a deep neural regression model as opposed
to a deep neural classifier in their study.

(2) It shows a high scalability on combination of the
datasets of different welding techniques. In particular,
the change in its estimation error due to combination
of data of different welding techniques is statistically
insignificant. This is a non-trivial result that challenges
the general belief in this field of research. However,
this result is, by no means, a definitive solution but
an early attempt to formulation of one such scalable
model.

It is worth noting that the effect of low-dimensionality of
IWP is tamed via readjusting the number of neurons of the
hidden layers of the respective blocks of this model at run-
time and in consecutive training epochs. This enables the
model to better capture the interrelation between individual
elements of the input feature vectors (i.e., IWP), thereby
eliminating the needs for further polynomial features.[14, 18]

Additionally, the comparative study of present model in con-
trast to state-of-the-art techniques in the literature shows a
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significant improvement in estimation of direct weld parame-
ters.

The remainder of this article is organized as follows. Section
3 explains the overall architecture of the deep regression
model along with its formulation. Results of performance of
deep regression network are presented in Section 3. Section
4 elaborates on scalability of this model on combined data of
different welding techniques. Conclusion and some insights
on future direction of this research are presented in Section
5.

2. NEURAL ARCHITECTURE
The neural architecture of proposed model is an aggregate
of several independent, four-hidden-layer regression blocks
as depicted in Figure 1. Number of these blocks is propor-
tional to cardinality of DWP. For instance, it is a two-block
regression model if DWP are depth of penetration and width
of weld beads. These blocks are trained simultaneously and
share an identical structure in which the neurons of every pre-
ceding layer are fully connected to those of the succeeding
layer as shown in Figure 2.

Figure 1. Overall structure of proposed deep regression
model. Each rectangular block represents an independent
four-hidden-layer structure whose set of meta-parameters is
independent of the other blocks. Furthermore, each block
learns to estimate the value of a unique direct weld
parameter such as depth of penetration or width of weld
beads. However, they all utilize the same set of IWP (i.e.,
input control signals) during their training.

Figure 2. Block-level deep regression structure. Each block has its own four-hidden-layer regression (represented by
H(l,n) = {h(l,n)

1 , . . . , h
(l,n)
k }, l = 1, . . . 4) to estimate its designated direct weld parameter Y (i). In this figure, n is the

total number of blocks (i.e., cardinality of DWP) and k indicates the number of neurons in a given layer. The weight
matrices Θ(i,n), i = 1, . . . , 5 are unique to their respective blocks. Each block utilizes its own independent set of
meta-parameters. IWP form the input features to the entire model.

The first three hidden layers of these blocks utilize Sigmoid
activation function to produce their respective intermediate
outputs. As a result, the output of these layers are bounded
within [0, 1] interval. On the other hand, their last hidden
layers employ linear transformation to generate their corre-
sponding final estimates, thereby enabling each block to act
as an independent deep non-linear regression model. Initially,
each layer is assigned with two neural computation units.
During the training, the model modifies the size of these hid-

den layers if such an update results in further improvement of
the estimated values of the direct weld parameter of a given
block.

Each of these deep regression block is trained using feed-
forward with back-propagation. In addition, they incorporate
a new meta-parameter, referred to as reinforced gradient co-
efficient, in calculation of the gradients of their respective
weight matrices. In essence, a reinforced gradient coeffi-
cient is a multiplicative factor that fine-tunes the value of the
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learning rate during the training to maintain stronger gradi-
ents. This enables the model to further reduce the deviation
of its estimated DWP from their expected values, thereby
significantly minimizing its estimation error.

Let X denote the set of feature vectors (i.e., IWP) to this
model. Furthermore, let Y (k) be the set of direct weld param-
eter in training data that corresponds to the kth regression
block. In addition, let H(l,k), l = 1, . . . , 4, represent the
lth hidden layer of the kth block of this architecture. More-
over, let Θ(i,k), i = 1, . . . , 5, be the weight matrix of the
ith layer of the kth block that connect every neural unit of
the preceding layer to those of its successor. This includes
the connection between the input layer X to H(1,k) and
the hidden layer H(4,k) to the output layer Y (k) at the kth

block. There are three steps involved in formulation of the
deep regression architecture, namely minimization of the
cost function, feed-forward computation, and weight updates
through back-propagation. These steps are explained in the
following subsections.

2.1 Cost function
During the training process, we are interested in weight ma-
trices that minimize the discrepancy between the estimated
values of DWP in contrast to their actual values in training
data. Moreover, it is important to prevent the training pro-
cess from overfitting on training data. This increases the
accuracy of the model in predicting the new DWP that do
not come from the training set, thereby enabling it to scale
well in novel scenarios. Furthermore, it is crucial to take into
account the real-valued output of the last hidden layers of the
independent regression blocks of this architecture. Therefore,
the cost function of each block is formulated as a regularized
sum of the squared error of its output to its corresponding
direct weld parameter in training data:

J (k) = 1
2m × [(Y (k) − Y ′(k))2+

λ(k)
L−1∑
l=1

p(l,k)∑
i=1

q(l,k)∑
j=1

(Θ(l,k)
ji )2]

(1)

where Y ′(k) is the estimated values of the direct weld pa-
rameter that are calculated by the kth block. m is the total
number of training data and k reflects the cardinality of the
DWP. The second term in equation (1) is the regularization
term that incorporates the sum of the squared of the weight
matrices of all the layers in the kth block. This helps prevent
the deep regression model of a given block from overfitting
on its corresponding direct weld parameter in training data.
λ(k) is the regularization factor that corresponds to the inde-
pendent set of meta-parameters of the kth block. L, p(l,k),

and q(l,k) refer to the total number of hidden layers along
with the row and the column dimensions of the weight matrix
of the kth block at its lth layer, respectively.

2.2 Feed-forward
Values that are generated at the hidden layers are:

z(l,k) = (H(l−1,k))T ×Θ(l,k) (2)

H(l,k) = 1
1 + e−z(l,k) , l = 1, . . . , 4 (3)

with H(0,k) = X for all values of k in equation (2). These
values correspond to the application of the Sigmoid transfor-
mation on the input as we move forward through layers of
the networks of regression blocks and towards their respec-
tive output layers. It is worth noting that an extra column
with all whose entries equals to 1 are added to the input and
the hidden layers to count for the bias term. This is why
the bias term is not explicitly included in equation (2). This
also explains the starting indices of the last two summation
operations from 1 in equation (1). The final outputs of these
blocks are the linear transformation of their calculated values
at the last hidden layer of their corresponding network i.e.,
H(4,k):

Y ′(k) = (H(4,k))T ×Θ(5,k) (4)

where Θ(5,k) is the weight matrix that transforms the calcu-
lated values of the hidden layers of the kth block onto its
final estimates.

2.3 Back-propagation and weights update
Equation (4) shows the final estimates of the values of the
DWP by deep regression architecture. The discrepancies be-
tween these generated outputs and the actual DWP in training
data are:

δ(Y (k)) = Y (k) − Y ′(k), k = 1, . . . n (5)

These values are used to update Θ(5,k):

∆(5,k) =
[
(δ(Y (k)))T ×H(4,k)

]
× γ(k) (6)

Θ(5,k) = Θ(5,k)+ 1
m

(α(k)×∆(5,k)+λ(k)
p(5,k)∑
i=1

q(5,k)∑
j=1

Θ(5,k)
ji )

(7)

where m is the total number of training data and k = 1, . . . , n
reflects the total number of blocks (i.e., cardinality of DWP).
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p(5,k) and q(5,k) refer to the dimensions of the weight matrix
of the output layer of kth block. Equation (6) is the gradient
of this output layer and γ(k) is the reinforced gradient coeffi-
cient of the kth block. In essence, γ(k) is a standard normal
multiplicative factor (i.e., µ+σ2×γ(k), µ = 0, σ2 = 1) that
is learned during the training to maintain stronger gradients.
This allows the deep regression model to further reduce its
deviation from the expected DWP to significantly minimize
its estimation error. Furthermore, α(k) and λ(k) are the learn-
ing rate and the regularization factor of the corresponding
independent set of meta-parameters of kth block, respec-
tively. Similarly, the updates of the weight matrices Θ(4,k),
Θ(3,k), and Θ(2,k) are:

δ(i,k) = (Θ(i,k))T × δ(i+1,k) ×H(i,k) ×
[
1−H(i,k)

]
,

k = 1, . . . , n
(8)

∆(i−1,k) = ((δ(i,k))T ×H(i−1,k))× γ(k) (9)

Θ(i−1,k) = Θ(i−1,k) + 1
m

(α(k) ×∆(i−1,k)

+ λ(k)
p(i−1,k)∑
i=1

q(i−1,k)∑
j=1

Θ(i−1,k)
ji )

(10)

where (H(i,k) × (1−H(i,k))) in equation (8) is the gradient
of the Sigmoid activation function of the kth block at its ith

hidden layer. The weight update for Θ(1,k) closely follows
equations (8-10) except that H(i−1,k) is replaced by X in
equation (9):

δ(2,k) = (Θ(2,k))T×δ(3,k)×
[
H(2,k) × (1−H(2,k))

]
(11)

∆(1,k) =
[
(δ(2,k))T ×X

]
× γ(k) (12)

Θ(1,k) = Θ(1,k)+ 1
m

(α(k)×∆(1,k)+λ(k)
p(1,k)∑
i=1

q(1,k)∑
j=1

Θ(1,k)
ji )

(13)

Training process starts with feed-forward calculation of the
estimated outputs of the blocks. This is followed by the
updates of their respective weight matrices through back-
propagation. Next, it calculates the cost functions of these
blocks using their latest outputs and their corresponding up-

dated weight matrices. This procedure continues until a given
number of iterations for a specific training epoch is met.

3. CASE STUDY
The performance of the deep regression model is compared
in contrast to a number of selected studies from the literature
namely, Anderson et al.,[7] Chandrasekhar and Vasudevan,[21]

and Karaoglu and Secgin.[4] These articles form a reliable
representatives of the trends of research in this field over the
past two and a half decades. More specifically, Anderson et
al.[7] is the seminal paper that introduces the application of
multi-layer neural networks in estimation of the direct weld
parameters. Furthermore, Karaoglu and Secgin[4] apply a
curvilinear approach to estimation of DWP. Moreover, Chan-
drasekhar and Vasudevan[21] propose a combination of single
hidden layer neural network and genetic algorithm for this
purpose.

Figure 3. Regression fit for depth of penetration and width
of weld beads in Anderson et al.[2] dataset of size 42. The
Pearson, Spearman, and Kendall correlation ratios for this
dataset are -0.24, -0.31 -0.17, respectively, indicating a weak
inverse proportionality of the values of depth of penetration
and width of weld beads. Furthermore, their P-values are
0.12, 0.05 and 0.09, rejecting the null hypothesis of presence
of correlation between these parameters (with a very weak
exception for Spearman) between these DWP.

Additionally, the welding data of these studies are publicly
available through their respective articles. They pertain
to three main welding techniques, namely arc welding,[7]

submerged arc welding,[4] and A-TIG weldings on 304LN
and 316LN stainless steel.[21] Throughout this Section, the
following abbreviations are used to refer to each of these
datasets:

(1) D1: Anderson et al.[7] dataset of size 42 on arc weld-
ing process.

(2) D2: Karaoglu and Secgin[4] dataset of size 28 on sub-
merge arc welding process.
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(3) D31 and D32: Chandrasekhar and Vasudevan[21]

datasets of sizes 120 each for A-TIG welding on
304LN and 316LN stainless steel, respectively.

Figure 3 shows the regression fit to the depth of penetra-
tion and width of weld beads in D1. Their Pearson correla-
tion ratio along with its P-value is {−0.24, 0.12}. Further-
more, those of Spearman and Kendall for these DWP are
{−0.31, 0.05} and {−0.17, 0.09}, respectively. These corre-
lation ratios show a weak inverse proportionality between the
values of these DWP. Furthermore, their P-values reject the
null hypothesis of presence of any correlation between these
DWP, with a very weak exception for Spearman P-value.
This is in accordance with the claim in Section 1 of this
article. Moreover, this trend of absence or weak correlation
between DWP is exhibited by data in D2, D31, and D32.

3.1 Training setup
Eighty percent of data of each of these datasets are reserved
for training purpose. The remaining 20% is used for test-
ing. The values that fall in train and test data are selected at
random. Moreover, the current, the voltage, and the torch
travelling speed are used as input features (i.e., IWP) for
estimating the depth of penetration and the width of weld
beads as direct weld parameters (i.e., DWP). These choices
of input and output parameters make the comparative analy-
sis of the performance of the proposed deep regression model
in contrast to the above literature plausible.

The training process comprises of a number of training
phases with varying iterations. More specifically, 1,000
through 12,000 iterations are adopted where each setting
of the number of iterations corresponds to a different train-
ing phase. This helps optimize the meta-parameters of each
of the deep regression blocks, thereby achieving better esti-
mates of DWP. These meta-parameters include the learning
rate α, the reinforced gradient coefficient γ, the regulariza-
tion factor λ, and the number of neural units at the hidden
layers of these blocks.

It is also worth noting that lack of cross validation set due to
insufficient data is an important issue. However, this short-
coming is compensated by adapting the following strategy:
Given a dataset, the training starts on a randomly selected
80% of available data, optimizing the meta-parameters that
correspond to respective DWP blocks of the network. Next,
these learned parameters are used in training and estimation
in 100 independent episodes with randomly initialized weight
matrices of layers at the commencement of each episode. Fi-
nally, the averages of these RMSEs and PEs are calculated as
the final performance result of the deep regression network.
Although this is not a highly desirable substitute for valida-

tion set, the convergence of these averaged RMSEs/PEs over
the randomly initialized weight matrices in these episodes is
an indicative of stability of this architecture.

Table 1. Best set of meta-parameters for depth of
penetration regression block

 

 

Dataset 
No. 
Neurons 

Deg α γ λ Iters 

D1 4 0 40.0 0.9 0 1,000
D2 4 0 0.009 1,000 0.001 7,000
D31 2 0 0.003 3,500 0 7,000
D32 8 0 0.009 3,500 0.001 9,000

 

Table 2. Best set of meta-parameters for width of weld
beads regression block

 

 

Dataset 
No. 
Neurons 

Deg α γ λ Iters 

D1 2 0 0.01 2,500 0 9,000
D2 3 0 0.009 1,000 0.001 7,000
D31 3 0 0.009 1,000 0 7,000
D32 2 0 0.009 3,500 0.001 7,000

 

Table 1 and Table 2 show the final values of the best meta-
parameters for depth of penetration and width of weld beads
blocks of deep regression network. These tables reveal the
overall simplicity of the architecture of the proposed deep
regression model. More specifically, the cumulative num-
ber of neural units of the two blocks of this model (selected
from the range {2, . . . , 100}) does not exceed 5 neurons on
average i.e., 20 in total (with mean and standard deviation
of (4.5, 2.516) and (2.5, 0.577) for depth of penetration and
width of weld beads). Furthermore, the most populated block
corresponds to the depth of penetration on D32 with 32 neu-
rons in each case. It is interesting to note that the best results
reported by Anderson et al.[7] on multi-layer neural networks
correspond to a 2 × 18 networks (i.e., 36 neurons in total).
Moreover, this model does not require any polynomial fea-
tures (examined in the range {0, . . . , 6}), as indicated by the
zeros in “Deg” entries of these tables. This significantly
reduces the amount of time spent on training the model. Ad-
ditionally, the regularization parameters of these blocks are
considerably small, with most of whose entries zeros. This
indicates that the proposed deep regression network is not
susceptible to bias on training data. In other words, it does
not suffer from overfitting in general.

Moreover, these tables reveal the inverse proportionality of
the values of the learning rate α and the reinforced gradient
coefficient γ. This implies that in all these cases the read-
justment of the gradients of the weight matrices results in
better compensation for the variance that is exhibited by the
input feature matrix (i.e., IWP), thereby inducing a smaller
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value of α while updating the weight matrices in equation
(7), equation (10), and equation (13). However, the variation
in number of iterations during the training (with mean and
standard deviation of (6,000, 3,464.1) and (7,500, 1,000)
for depth of penetration and width of weld beads) does not
exhibit any particular pattern or correspondence with the size
of given datasets and/or the DWP. As a result, any conclusion
on the effect of the size of the dataset or type of direct weld
parameter on training process is not warranted. However, it
takes longer, on average, to converge on width of weld beads
as compared to depth of penetration.

Table 3. RMSE and PE results - deep regression model
(DRM) vs. D1

 

 

  
Penetration   Width

RMSE PE  RMSE PE 

DRM 0.081 mm 5.57% 0.093 mm 2.37%

D1 — 19.58% — 5.68%

 

3.2 Results
Tables 3-6 show the results of the performance of the deep
regression model (DRM in these tables) on the test data in
comparison with results reported in D1, D2, D31, and D32,
respectively. Root Mean Squared Error (RMSE) and the
percentage of Prediction Error (PE) are reported as measures
of accuracy of estimated values. PE is calculated as:

PE = |Y
(k) − Y ′(k)|
Y (k) × 100 (14)

where Y (k) and Y ′(k) are the actual and estimated direct
weld parameter of the kth block and |.| gives the absolute
value of its argument. RMSE and PE are chosen to allow the
comparative analysis of these results with respect to the se-
lected literature. More specifically, Anderson et al.[7] report
on PE. Whereas, Karaoglu and Secgin[4] and Chandrasekhar
and Vasudevan[21] provide RMSE as a measure of accuracy
of their models.

Table 4. RMSE and PE results - deep regression model
(DRM) vs. D2

 

 

  
Penetration   Width

RMSE PE  RMSE PE 

DRM 0.031 mm 1.01% 0.022 mm 0.62%

D2 0.292 mm — 0.353 mm — 

 

A comparison between the PE values in Table 3 reveals that
the standard deviation of the differences between these values
is above one standard deviation (9.91 and 2.34, respectively).
As a result, the reduction of the percentage of the prediction
error by the proposed model on this dataset is significant.
Additionally, the RMSE values that are calculated by DRM

are considerably small (in the scale of millimeter). How-
ever, their significance cannot be confirmed since the RMSE
values of the multi-layer network in[7] are not reported.

Table 5. RMSE and PE results - deep regression model
(DRM) vs. D31

 

 

  
Penetration   Width

RMSE PE  RMSE PE 

DRM 0.113 mm 4.26% 0.054 mm 1.84%

D31 0.148 mm — 0.205 mm — 

 

Table 6. RMSE and PE results - deep regression model
(DRM) vs. D32

 

 

  
Penetration   Width

RMSE PE  RMSE PE 

DRM 0.043 mm 2.03% 0.056 mm 1.96%

D32 0.124 mm — 0.156 mm — 

 

We notice the same trend of improvement on the entries
of Tables 4-6. More specifically, Table 4 shows 9.42 and
16.05 times improvements on the RMSE values of the pro-
posed deep regression model on these DWP, as compared
to D2. Moreover, the PE values reported in this table are
significantly small. Similarly, Table 5 and Table 6 report the
improvements of the RMSE values that range between 1.31
to 3.80 times, compared to results obtained in D31 and D32,
respectively. Although the reported improvements in Table
5 are considerably smaller, they present the direct results
of the performance of the proposed deep regression model
and without application of any post optimization processing
(e.g., genetic algorithm, as reported by Chandrasekhar and
Vasudevan[21]).

4. SCALABILITY ON COMBINED DATA OF
DIFFERENT WELDING TECHNIQUES

This section elaborates on performance of the proposed deeep
regression network on combination of D1 through D32 (re-
ferred to as Dall) to show its scalability on different welding
techniques. Same ratio of 80% and 20% are used for train
and test data. Moreover, same precedure for training and
averaging described in Section 3.1 are followed onDall. Test
data is selected at random once all datasets are combined.
Furthermore, the result of performance of the proposed deep
regression model (DRM) is reported in contrast to normal
equation regression (NER),[15] multiple curvilinear regres-
sion (MCR),[4, 29] and support vector regression (SVR).[30, 31]

The NER, using the pseudoinverse matrix of input feature
vectors is:[32]

Θ = (XTX)−1XTY (15)
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where X,Y, and Θ are the IWP, DWP, and the weight matrix
corresponding to all direct weld parameters, respectively. It
is apparent that Θ is of m × ‖DWP‖ dimension with m
and ‖DWP‖ being the size of train data and the cardinality
of direct weld parameters. In addition, Python scikit-learn
package is used for modeling MCR and SVR.[33]

Table 7. Best set of meta-parameters for depth of
penetration for normal equation regression (NER), multiple
curvilinear regression (MCR), and support vector regression
(SVR) on Dall

 

 

 α γ Deg Kernel C Г Iters 

NER - - 3 - - - - 
MCR 0.3 0.09 3 - - - 7,000
SVR - - 3 poly 0.009 0.001 5,000

 

Table 8. Best set of meta-parameters for width of weld
beads for normal equation regression (NER), multiple
curvilinear regression (MCR), and support vector regression
(SVR) on Dall

 

 

 α γ Deg Kernel C Г Iters 

NER - - 2 - - - - 
MCR 0.3 0.09 2 - - - 4,000
SVR - - 0 rbf 300 0.03 1,000

 

Table 7 and Table 8 show the best set of meta-parameters
for NER, MCR, and SVR to calculate depth of penetration
and width of weld beads, respectively. Hyphenated entries of
these tables imply that the corresponding meta-parameters
are not used by the given technique. In these tables, "Deg"
refers to the number of additional polynomial degrees to
yield the best RMSEs of the DWP by a given model. It is se-
lected from the range {0, 1, . . . , 9}. Similarly, the kernel, C,
and Γ entries refer to the kernel function, the penalty param-
eter of the error term (equivalent to 1

α in logistic regression),
and the kernel coefficient that are associated with the SVR.
The best kernel function is selected from possible choices
of kernel for SVR in.[33] They are rbf, ploy, sigmoid and
linear kernels where rbf and poly stand for radial basis and
polynomial functions, respectively. The kernel coefficient Γ
is associated with the first three of these functions.

Table 9. Best sets of meta-parameters for depth of
penetration and width of weld beads blocks - deep
regression model on Dall

 

 

Dataset 
No. 
Neurons 

Deg α γ λ Iters 

Penetration 9 0 20 1,000 0.003 6,000
Width 7 0 7 1,500 0.003 4,000

 

The best sets of meta-parameters for DRM on Dall is shown
in Table 9. This table indicates that the polynomial degrees

of the model remains zero, as its comparison to Table 1 and
Table 2 suggests. However, there is an increase in the num-
ber of neural units in the hidden layers of its DWP blocks,
compared to their numbers, on average, in Table 1 and Table
2 (i.e., 4.5 and 2.5, respectively). Moreover, the inverse pro-
portionality of the values of learning rate α and reinforced
gradient coefficient γ is, comparably, more subtle in Table 9.
These observations imply a higher variation in input feature
vectors (i.e., IWP) to the model. Such changes on meta-
parameters are expected as Dall pertains to the combination
of IWP of different welding techniques. However, the regu-
larization λ retains its low value, indicating that DRM is less
susceptible to overfitting and bias on training data on Dall as
well. Furthermore, this observation holds true as we compare
DRM with MCR and SVR. This is evident in its smaller λ as
compared to C and λ in Table 7 and Table 8.

Table 10. RMSE and PE results - deep regression model
(DRM) vs. normal equation regression (NER), multiple
curvilinear regression (MCR), and support vector regression
(SVR) on Dall

 

 

  
Penetration   Width

RMSE PE  RMSE PE 

DRM 0.183 mm 3.86% 0.187 mm 2.58% 
NER 0.343 mm 6.88% 0.895 mm 11.20% 
MCR 0.322 mm 6.09% 0.873 mm 11.42% 
SVR 1.586 mm 31.81% 0.400 mm 8.02% 

 

Table 11. 95% Confidence interval and the Coefficient of
variation of RMSEs of width of weld beads - deep
regression model (DRM) vs. normal equation regression
(NER), multiple curvilinear regression (MCR), and support
vector regression (SVR) on Dall.

 

 

 Confidence interval Coefficient of variation (in %)

DRM (0.121, 0.245) 4.87 

NER (0.281, 0.405) 9.13 

MCR (0.260, 0.384) 8.57 

SVR (1.524, 1.648) 42.21 

 

Such adjustments on meta-parameters that are associated
with the updates of weight matrices have positive influence
on estimation of DWP as shown in Table 10. The RMSE
entries of this table indicate that DRM achieves 1.75 - 8.67
and 2.13 - 4.78 times improvements on estimation of the
depth of penetration and width of weld beads, as compared
to other models. Furthermore, an analysis of the PE val-
ues in Table 10 indicates that these values are not within
one standard deviation from each other (11.40 and 3.57 for
depth of penetration and width of weld beads, respectively).
Moreover, the non-overlapping confidence interval of DRM
with those of NER, MCR, and SVR in Table 11 and Table 12
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support the above observations. These analyses imply that
the improvements exhibited by the proposed deep regression
network is statistically significant. Table 11 and Table 12
provide the coefficient of variation of the RMSE values of
these models for comparison.

Table 12. 95% Confidence interval and the Coefficient of
variation of RMSEs of width of weld beads - deep
regression model (DRM) vs. normal equation regression
(NER), multiple curvilinear regression (MCR), and support
vector regression (SVR) on Dall

 

 

 Confidence interval Coefficient of variation (in %)

DRM (0.125, 0.249) 4.98 
NER (0.833, 0.957) 23.82 
MCR (0.811, 0.935) 23.23 
SVR (0.338, 0.462) 10.65 

 

Additionally, a comparison between the performance of
DRM on Dall in contrast to Chandrasekhar and Vasude-
van,[21] and Karaoglu and Secgin[4] in Tables 4-6 indicates
that the difference between these RMSE values are insignifi-
cant. More specifically, these RMSE values are within one
standard deviation of one another (0.064 and 0.076 for depth
of penetration and width of weld beads, respectively). Fur-
thermore, this observation is supported by the overlapping
confidence interval of DRM and the intervals associated with
these techniques in Table 13. In other words, the estimates
of DWP based on combined data of different welding tech-
niques is statistically as good as the results reported.[4, 21]

However, no conclusion on the difference of performance of
DRM on Dall and D1 can be drawn since Anderson et al.[7]

do not provide the RMSEs of their model on D1.

Table 13. 95% Confidence interval of the RMSEs of DWP -
deep regression model (DRM) on Dall vs. Chandrasekhar
and Vasudevan[21] and Karaoglu and Secgin[4] on D2, D31,
and D32

 

 

 Depth of penetration Width of weld beads

Dall (0.121, 0.245) (0.125, 0.249) 

D2 (0.230, 0.354) (0.246, 0.415) 

D31 (0.086, 0.211) (0.143, 0.267) 

D32 (0.062, 0.186) (0.094, 0.218) 

 

Table 14. 95% Confidence interval of the RMSEs of DWP -
deep regression model (DRM) performance on Dall, D1,
D2, D31, and D32

 

 

 Depth of penetration Width of weld beads

Dall (0.121, 0.245) (0.125, 0.249) 

D1 (0.019, 0.143) (0.031, 0.155) 

D2 (-0.031, 0.102) (-0.040, 0.084) 

D31 (0.051, 0.175) (-0.008, 0.120) 

D32 (-0.019, 0.110) (-0.006, 0.118) 

 

However, the quality of the calculated RMSE values of DRM
degrades when its performance on Dall is compared in con-
trast to its results on D1 through D32. More specifically, the
PE values for its depth of penetration regression block are
above one standard deviation from each other (it is 1.62).
Although, its corresponding PE values for the width of weld
beads regression block is within one standard deviation (i.e.,
0.65), the non-overlapping confidence interval of Dall with
most intervals associated with D1 through D32 in Table 14
indicates that the change in performance of DRM is signif-
icant (exceptions include D1 and depth of penetration for
D31).

5. CONCLUSION
This article presents a learning architecture based on an ag-
gregate of number of independent deep regression blocks
where number of these blocks is proportional to the cardi-
nality of the direct weld parameters (DWP). The proposed
deep regression network shows a significant improvement in
estimating these parameters as compared to state-of-the-art
techniques in the literature. Furthermore, it demonstrates its
ability to retain its performance when presented with com-
bined data of different welding techniques as compared to
results obtained by the selected articles. This is a nontriv-
ial result in attaining an scalable model whose quality of
estimation is independent of adopted welding techniques.

Although the adapted sets of meta-parameters of the DWP
blocks of this model indicates its ability to realize the high
variation of the input feature vectors (IWP), a comparison
between its performance on combined data of different weld-
ing techniques versus its results on separate datasets reveals
a significant decay in its performance. The future of this
research pertains to identification of the cause(s) of such a
degradation in its performance along with evaluation of the
potential solutions

In addition, the domain of welding techniques that are inves-
tigated in this study will be broaden to include more welding
data to evaluate the effect of the size of the training data on
the quality as well as scalability of this model.

Moreover, most welding tasks are multi-layer welding pro-
cesses whose structures consist of several layers of welds
as opposed to a single path welding. This results in every
preceding layer of welded material to affect the geometry of
the beads of the succeeding layer due to a number of factors
such as heat, their surface layout, and so on. Therefore, it is
crucial to analyze the performance of this model on data that
corresponds to such multi-layer welding operations to realize
the potential that the multi-block deep regression model can
offer to the solution concept of such multi-layer welding
operations.
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