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Abstract 
Swine Influenza Inspired Optimization (SIIO) is a search algorithm proposed for optimal solution. The authors followed 
the SIR (susceptible - infectious-recovered) virus spread model of Swine Influenza to develop the new evolutionary 
algorithm named as SIIO. SIR model is used to frame optimization algorithm following the spread and control 
phenomenon of the swine flu virus in the human population. The fitness based classes viz. susceptible (S), infectious (I) 
and recovered (R) of the individuals are made and treatment is used for the affected individuals by imitating the health 
information from the best fitness individual. The proposed algorithm shows improved performance on multi-dimensional 
unimodal and multimodal standard numerical benchmark functions than the compared optimization algorithms. The 
performance of the SIIO algorithm is better in terms of speed of convergence and quality of solutions. The SIIO is also 
applied for the Gaussian noise removal with Blind Source Separation (BSS) based on Independent Component Analysis 
(ICA). 
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1 Introduction 
Recent stochastic optimizers that have drawn the attentions include Genetic Algorithm, Differential Evolution, 
Evolutionary Programming etc. [1-4] where in a population of the solutions is utilized in the search process. These 
algorithms are capable of exploring and exploiting the promising regions in the search space but take relatively longer  
time [3]. This paper addresses two issues; one is the development of a new optimization technique Swine Influenza Inspired 
Optimization (SIIO) using the SIR model of influenza. Second is the application of this algorithm in Blind Source 
Separation (BSS) using Independent Component Analysis (ICA) for Gaussian noise removal from biomedical signal i.e. 
Electrocardiogram (ECG). The proposed algorithm is having capability to converge on multimodal functions having 
higher dimensions. The independent component analysis based blind source separation requires its demixing matrix 
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optimization hence, the proposed algorithm is applied for the said optimization process for noise removal. The paper is 
organized as follows. In section 2, the proposed SIIO is presented.  Section 3 gives the detail about the validation of the 
SIIO with standard numerical benchmark functions. Section 4 discusses about the ICA. Section 5 discusses the application 
of the proposed algorithm for ICA function maximization, while section 6 concludes the paper. 

2 Swine influenza inspired optimization (SIIO) 
Swine flu spreads just as the other seasonal flu [5-9]. It spreads from person to person via close contact and touch, or through 
respiratory droplets carrying the virus or from person to environmental surfaces by cough and sneeze. Wherever a person 
with swine flu touches the surfaces, infectious body fluid having effectiveness within specific duration remains on the 
surfaces and then gets transferred to the other persons. The swine flu is having the speed in spread of infection and 
instating capacity also. 

Early in the 20th century Kermack and McKendrick [10] developed the first mathematical based model describing an 
influenza epidemic [6]. Since then various mathematical models have been proposed to limit the spreading of flu [5-9, 11, 12]. 
Virtual experiments have been carried out using simulation for worldwide outbreaks of influenza epidemic on a computer. 
The basic model is known as the Susceptible-Infectious-Recovered (SIR) model [10] and is shown in Figure 1. In this, the 
initial population is divided into the classes: Susceptible (S), Infectious (I), and Recovered (R). A susceptible class of 
swine influenza-A (H1N1) virus infection is of person having acute febrile respiratory illness with onset within 7 days of 
close contact with a person who is a confirmed case of swine influenza A (H1N1). Case of swine influenza A (H1N1) virus 
infection is confirmed with medical laboratory confirmation test. Depending on the test of confirmation of infection, 
individuals proceed from class S i.e. Susceptible to class I i.e. Infectious [10]. After the proper treatment with recommended 
medicinal dose, the recovered individual moves to class R i.e. Recovered, at that stage the individual acquires immunity to 
future infection. The infectious individual from class I transmits influenza to each susceptible individual in the class S. The 
researchers extended SIR model to represent and/or predict the spatial dynamics of an influenza epidemic. Rvachev [11] 
devised the first spatio-temporal model of influenza in the 1960s. This model was devised to understand the temporal and 
spatial synchrony of influenza epidemics [11]. Later the researchers modified the basic SIR model by including seasonality, 
vaccination, treatment etc. [6]. The SIR model extended with incorporation of vaccination and treatment [6] is shown in 
Figure 2. The individuals from class S can be vaccinated and infectious individuals from class I are treated with antiviral 
drugs. During the treatment phase, they are transferred into the class T [6]. Individuals from class S who are vaccinated are 
taken into class V and they are considered immune. After the treatment, individuals from class T go to class R due to 
recovery [6]. 

 

Figure 1. Basic Susceptible-Infectious-Recovered model of disease transmission 

The SIIO is a new family of the optimization techniques, which is based on the extended SIR model. It shows optimization 
through vaccination and treatment based on probability. As mechanism of spreading the infection among the population is 
probabilistic, the mechanism of the control of the epidemic is also probabilistic. This concept is utilized to frame an 
optimization algorithm with spread and control of the swine flu virus in the population because every transition in the 
classes is probabilistic. These transitions are considered as optimization operations or happen in optimization steps. In 
these transitions or state change of individuals, the best individual can be used as reference. This is the fitness value that is 
taken as reference to decide the tag of the class for individuals and individual having this value is used for spreading health 
among the individuals. Other individuals try to enhance their health by imitating the health information like preventive 
care practiced, medicinal information etc. of the best individual. The individuals having best health are preserved during 
the process of optimization. In this mechanism ill individual tries to drag the population towards the viral spread i.e. poor 
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fitness whereas healthier ones towards better health or optimum value during optimization process. Based on this logic, the 
SIIO is devised as follows. 

 

Figure 2. Extended Susceptible-Infectious-Recovered Model 

2.1 Key terms and definitions 
Population: Group of Individuals 

Individual: Member of the population 

Susceptible Individual (S): Member of population assumed as Susceptible and is in class S based on the fitness value 
obtained by test. 

Infectious Individual (I): Individual infectious by swine flu virus and is in class I based on the fitness value obtained by 
test. 

Recovered Individual(R): The individual having best health among the population based on the fitness value obtained by 
test. The immune property is realized by preserving individual during the process of optimization. 

Days: It indicates state of each individual during various days. This counts to be equal to number of variables in the 
optimization. So the state of each individual is the dimension in the process of optimization. 

When all the states of an individual are best, having optimum or near optimum fitness value then the solution is called the 
optimized or converged. 

Pandemic-health (PH): Best fitness value among the entire individuals found up to current generation. 

Swine Flu Test: It is test to check the health of the individuals which gives the values of fitness. These fitness values are 
used to classify the individuals. 

Dose: Antiviral drugs given to individuals based on the current-health, pandemic-health and history of the dose. 

2.2 Model of SIIO 
The optimization model SIIO is presented in Figure 3. It does the optimization through treatment processes based on 
probability. Initially all individual except those having best fitness values due to vaccination are assumed as susceptible 
because one infectious individual in population may lead the total population towards suspected state. Then all the 
individuals undergo the swine flu test, which is nothing but declaring the current health (fitness) of individuals.   

The individuals are now tagged with the status class R for recovered or healthy, class S for suspectible and class I for 
infectious with the help of appropriate optimization conditions based on fitness. The infectious individuals make all other 
susceptible to illness by viral spread. In this case, the preventive mechanisms like treatment, quarantine etc. are used. The 
recovered or healthy individual is taken as the reference individual for the others in the process of optimization and 
treatment process is not operated on such individual. The suspectible and infectious individuals are quarantined as per 
equation (1). Quarantine is based on probability and threshold given in equation (2).  
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(  1) ( )  (1.5  - 0.25)P t P t rand+ = × ×                           (1) 

(2) 0.05 ( (2) (1))DT CF CF CF= − × −                                 (2) 

P(t+1) is new individual value calculated by changing the current value P(t). DT is dynamic threshold and CF is current 
fitness or current health of individual. CF(1) is current best individual health and CF(2) is next better fitness. The 
suspected individuals are treated by changing the current value based on probability. The treatment is given to individuals 
in population with varying amount of antiviral drugs. The dose of antiviral drugs is dependent on current health, pandemic 
health and changes adaptively based on the difference in the current individual value and best individual value. As the 
health of individual varies, dose quantity also changes as given in equation (3) and individual treatment is done by 
equation (4).  

     ( ( ) - (1))Dose c Dose rand P t P= × + ×                                          (3) 

(   1) ( )  DoseP t P t+ = +                                       (4) 

P(t) is current individual value and P(1) is best individual value. P(t+1) is new individual value calculated by changing the 
current value P(t). 

The SIIO performs optimization in four steps as given below. These steps are continued for all generations. 

 

Figure 3. Model Of SIIO 

 

2.2.1 Steps in SIIO 
Step 1- Evaluate health of all individuals: The health of individual is calculated by fitness function.  

Step 2- Classify individuals into S, I and R: Individuals are tagged with class S, class I and class R. The best current health 
individuals are considered as recovered and are in class R. When individuals are arranged according to health, better half 
of the individuals are considered as suspected individuals and are in class S and other half as infectious individuals and in 
class I.  

Step 3- Quarantine of individual: The Individuals in class S and class I are isolated and they are not a part of the population 
during outbreak period. This is realized by changing the state of the individual randomly with the small value of 
probability of quarantine. 

Step 4- Treatment of Individual by dose: The amount of antiviral drug depends on current health, pandemic health and 
history of the dose. The dose is to change the health or fitness of individual as per probability of treatment. 
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2.2.2 Pseudo Code of SIIO 
Initialize parameters: G, IN, D, Pq, Pt, Dose, P (D x IN) 
for i=1:G 
for j = 1 : IN 
CF (j) =Evaluate Fitness Function 
end 
Update P and PH 
Sort individual in order of ascending health 

))1()2((05.0)2( CFCFCFDT −×−=   
for k=1: IN 
if k==1 
tag individual as best health (R) 
elseif  k<IN/2          
tag individual as sucpected (S) 
else  
tag individual as infectious (I) 
end 

if (CF(k)-DT)>0 & rand<Pq& P(k) ⊂S,I 
for l=1:D 
P(l,k)=P(1:k) x (1.5 x rand-0.25) 
end 
end 

if rand <Pt& P(k) ⊂S 
Dose=c x Dose + rand x (P(k)-P(1)) 
P(k)=P(k) + Dose 
end 
end 
end 

where G is number of generations, IN  is size of population, D is dimension of population, Pq is probability of quarantine, 
Pt is probability of treatment, Dose is amount of dose for treatment, P (D x IN) is population of size D by IN and CF is 
current fitness. 

2.3 Optimization by SIIO 
The population is real coded for the algorithm, and it is obtained by generation process. The generation process generates 
the uniformly distributed random population in the specified range for functions shown in Table 1. Table 1 gives the 
details of the standard numerical benchmark functions, where D is the dimension of the function, S is the range of the 
function and fmin is the minimum value of the function [4]. The fitness of the population is determined and the current best 
individual is found out for the best health (elite) preservation.  

In the SIIO algorithm, fitness is calculated and the state of each individual is decided as class S, class I, or class R and they 
are tagged accordingly. Then, according to the threshold and state of the individual, the individuals undergo quarantine 
and treatment processes as per quarantine probability and treatment probability respectively. In quarantine as well as the 
treatment processes, the current best individual in class R among the population is taken as the reference. The dose used for 
treatment is calculated depending on three parameters viz. current best individual, individual for which dose is being 
calculated and previous dose for the same individual. Then the dose is applied to the individual for recovery. The best 
individual is found out in all iterations during the optimization process. The SIIO is probability based and 
population-based algorithm hence, the possibility of avoiding local minima is higher. It strengthens the algorithm for 
convergence of both unimodal and multimodal functions, which are given in the Table 1. The performance of the 
algorithm is checked with 13 standard benchmark functions as given in Table 1. The proposed algorithm is proved on 
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unimodal and multimodal standard benchmark functions and the performance is noted by determining accuracy, 
convergence speed and success rate. 

Table 1. Standard Numerical Benchmark functions used for experimental study [4] 

Function  (F) NFFE  S fmin 

 
150000 [-100,100]D 0 

 
200000 [-10,10]D 0 

 
500000 [-100,100]D 0 

 500000 [-100,100]D 0 

 
500000 [-30,30]D 0 

 
150000 [-100,100]D 0 

 
300000 [-1.28,1.28]D 0 

 
300000 [-500,500]D 0 

 
300000 [-5.12,5.12]D 0 

( ) ( )1exp20
1

2cos
1

exp
1

21
2.0exp2010 ++

=
−

=
−−= 















 d

i ix
d

d

i ix
d

f π  150000 [-32,32]D 0 

 
300000 [-600,600]D 0 

 

150000 [-50,50]D 0 

 

150000 [-50,50]D 0 

3 Validation of SIIO on standard benchmark functions 

3.1 Parameter setting and experimentation 
For the proposed SIIO, a population of 100 individuals of real-valued representation is used. In the SIIO algorithm, the 
quarantine and treatment probabilities are taken as 0.3 and 0.8 respectively. Best individual value and its health are 
preserved as current_best_individual and current_best_health respectively. Number of fitness function evaluations 


=

=
d

i ixf
1

2
1


=

∏
=

+=
d

i

d

i ixixf
1 1

||||2


=


=

=
d

i

i

j jxf
1 1

2)(3

}1|,|{
i

max
4

diixf ≤≤=

]2)1(2)21

1 1(100[5 −+−
−

= += ixix
d

i ixf


=

+=
d

i ixf
1

2|])5.0([|6

)1,0[
1

4
7 random

d

i iixf +
=

=


=

−×=
d

i ixixDf
1

))sin((9829.4188

)10)2cos(102

1
(9 +−

=
= ixix

d

i
f π


=

∏
=

+−=
d

i

d

i i

ix
ixf

1 1
1)cos(2

4000

1
11
















−−

≤≤−

−

=++=
=

+


−

=
−+++−+=

aixmaixk

aixa

aixmaixk

mkaixuixiywhere
d

i ixu

d

i
nyiyiyy

d
f





,)(

,0

,)(

),,,().1(
4

1
1)4,100,10,

1
(

1

1

2)1()]1(2sin101[2)1()1(2sin1012 ππ
π
















−−−

≤≤−

−

=
=

+


−

=
+−+++−+=

aixmaixk

aixa

aixmaixk

mkaixuwhere
d

i ixu

d

i dxnxixixxf





,)(

,0

,)(

),,,()4,100,5,
1

(

1

1
)]2(2sin1[2)1()]13(2sin1[2)1()13(2sin1.013 πππ



www.sciedu.ca/air                                                                                              Artificial Intelligence Research, September 2012, Vol. 1, No.1 

ISSN 1927-6974   E-ISSN 1927-6982 24

(NFFE) as shown in Table 1 is considered as one of the stopping criterion. Once the error in fitness value falls below 10-8, 
the algorithm is considered to be reached its global optimum successfully and is used as its early terminating criterion. 

Table 2. Comparison of the experimental results of algorithms used 

F 
GA-BLX-α 

SIIO vs 

GA-BL
X- α 

GA-SBX 
SIIO vs 

GA-SBX 
PSO 

SIIO vs 

PSO 
BFO 

SIIO vs 

BFO 
SIIO 

Mean (StdDev) p-value Mean (StdDev) p-value Mean (StdDev) p-value Mean (StdDev) p-value Mean (StdDev) 

F1 3.14E+2(1.48E+2) 1.60E-10 9.35E+2(2.40E+2) 3.36E-16 8.72E-7(3.33E-6) 0.20 4.47E+3(1.21E+3) 1.19E-15 1.82E-9(2.14E-9) 

F2 7.14E+0(2.56E+0) 5.29E-13 7.95E+1(4.86E+1) 2.17E-08 2.77E-3(9.17E-3) 0.14 9.11E-1(2.13E-1) 4.28E-17 2.09E-9(1.38E-9) 

F3 7.30E+2(3.82E+2) 1.23E-09 8.09E+3(3.05E+3) 1.52E-12 9.11E-9(1.27E-9) 4.97E-15 3.05E+2(3.62E+2) 3.03E-4 1.89E-9(2.41E-9) 

F4 4.74E+0(1.18E+0) 1.65E-16 4.12E+0(1.45E+0) 3.82E-13 9.56E-9(5.11E-10) 1.72E-16 1.01E+1(5.21E+0) 8.98E-10 2.65E-9(2.03E-9) 

F5 5.04E+3(6.08E+3) 3.68E-4 6.90E+5(4.43E+5) 4.94E-08 1.26E+2(6.02E+2) 0.33 5.90E+1(1.25E+2) 0.056 8.79E+0(2.78E-1) 

F6 2.95E+2(1.46E+2) 4.20E-10 9.09E+2(3.63E+2) 5.35E-12 0.00E+0(0.00E+0) NA 6.56E+3(1.29E+3) 7.33E-19 0.00E+0(0.00E+0) 

F7 9.26E-1(4.27E-1) 9.91E-11 9.06E-1(3.20E-1) 3.83E-13 3.02E-4(1.82E-4) 1.72E-08 5.22E-1(1.76E-1) 1.50E-13 2.33E-9(2.50E-9) 

F8 1.13E+2(1.22E+2) 1.08E-4 3.09E+2(1.14E+2) 9.82E-13 7.11E+2(2.36E+2) 9.98E-14 1.47E+3(2.50E+2) 2.32E-20 2.61E-2(9.85E-2) 

F9 1.64E+1(4.41E+0) 9.08E-16 1.70E+1(3.76E+0) 1.07E-17 7.28E+0(6.54E+0) 1.01E-05 4.24E+1(9.88E+0) 3.51E-17 1.88E-9(2.49E-9) 

F10 4.20E+0(6.15E-1) 7.20E-22 3.53E+0(5.10E-1) 5.38E-22 3.63E-1(6.92E-1) 0.014 1.68E+1(9.90E-1) 2.58E-31 2.31E-9(1.87E-9) 

F11 2.78E+0(6.54E-1) 4.41E-17 5.94E+0(1.75E+0) 8.01E-15 1.15E-1(8.22E-2) 2.88E-07 5.60E+1(9.75E+0) 4.30E-20 1.89E-9(2.66E-9) 

F12 3.60E+1(1.10E+2) 0.120 1.56E+6(1.61E+6) 6.36E-05 8.29E-3(2.87E-2) 5.18E-08 1.13E+4(5.38E+4) 0.30 3.28E-1(2.20E-1) 

F13 1.72E+4(4.52E+3) 0.0685 5.40E+6(4.05E+6) 6.80E-07 2.19E-3(4.48E-3) 3.97E-24 1.94E+5(2.91E+5) 2.76E-3 7.63E-1(9.26E-2) 

All functions have 10 dimensional inputs. The 25 independent trails are taken for testing the consistency of the 
convergence of the algorithms. The algorithms used for comparison with the SIIO are Genetic Algorithms having BLX-α 
cross over (GA-BLX-α) and SBX crossover (GA-SBX), Particle Swarm Optimization (PSO) and Bacterial Foraging 
Optimization (BFO). For comparison GA-BLX-α, GA-SBX, PSO, BFO and SIIO are run with same parameters and their 
results are shown in Table 2. Where ‘‘Mean” is the mean best error values, ‘‘STD Dev” is the standard deviation, shown in 
parenthesis. Student’s t-test is performed for statistical testing of the obtained results and accordingly the P-values are 
reported. Here N.A. denotes ‘not applicable’. From Table 2 it is clearly seen that the proposed algorithm SIIO generates 
better results compared to all the competitor algorithms. This is true in a statistically significant way for functions tested in 
Table 1. The SIIO demonstrates the superiority in solving the standard benchmark test problems. Table 3 shows error 
values achieved by SIIO in 25 runs on 13 standard numerical benchmark functions used, depicting the behavior of the SIIO 
in detail. 

Table 3. Error Values Achieved by SIIO on Standard Benchmark Functions F1-F13 

F F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 

1st (Best) 3.90E-11 5.76E-10 1.66E-11 4.29E-10 8.10 E+0 0.00E+0 2.08E-15 -2.23E-4 3.49E-11 1.71E-10 3.30E-11 8.93E-2 6.02E-1 

7th 1.78E-10 1.04E-09 1.80E-10 1.14E-09 8.77 E+0 0.00E+0 4.74E-10 -1.32E-2 3.87E-10 7.86E-10 3.82E-10 1.76E-1 7.01E-1 

13th 

(Median) 
1.51E-09 1.75E-09 8.26E-10 1.91E-09 8.95 E+0 0.00E+0 1.19E-09 4.71E-2 7.28E-10 1.88E-09 6.23E-10 2.43E-1 7.22E-1 

19th 2.25E-09 2.69E-09 2.22E-09 3.44E-09 8.97 E+0 0.00E+0 3.79E-09 7.66E-2 2.39E-09 3.32E-09 1.69E-09 5.96E-1 8.00E-1 

25th 

(Worst) 
8.00E-09 6.34E-09 8.81E-09 7.66E-09 8.98 E+0 0.00E+0 7.80E-09 2.77E-1 8.34E-09 8.52E-09 9.57E-09 7.39E-1 8.99E-1 

Mean 1.82E-09 2.09E-09 1.89E-09 2.65E-09 8.79E+0 0.00E+0 2.33E-09 2.62E-2 1.88E-09 2.31E-09 1.89E-09 3.29E-1 7.63E-1 

Std.Dev. 2.14E-09 1.38E-09 2.41E-09 2.03E-09 2.78E-1 0.00E+0 2.50E-09 9.86E-2 2.49E-09 1.87E-09 2.66E-09 2.20E-1 9.26E-2 

3.2 Discussion 

The algorithm is tested on standard benchmark functions having unimodal, multimodal properties with noise and 
discontinuity. F1-F5 are functions having unimodal property. Function F6 is step function, which has one minimum and is  
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Figure 4. Fitness Error versus number of function evaluation calls of test functions averaged over 25 runs (a) F1, (b) F2, 
(c) F3, (d) F7, (e) F9, (f) F10, (g) F11 and (h) F12. 
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a discontinuous function. Function F7 is a noisy quartic function comprising of random [0, 1) which is a uniformly 

distributed random variable in [0, 1). Functions F8 - F13 are multimodal functions in which the number of local minima 

increases exponentially with the problem dimension [4]. They are the most difficult class of problems for many 

optimization algorithms [4]. For unimodal functions, the convergence rates are more interesting than the final results of 

optimization. For unimodal functions, there are other methods like gradient based which are specifically designed to 

optimize these. In case of multimodal functions, the final results are important since they reflect an algorithm’s ability of 

escaping from poor local optima and locating a good near-global optimum. The SIIO converged successfully in most of 

the functions viz. F1-F4 (unimodal), F6-F7 and F9-F11 (multimodal). In case of other functions also it has shown good 

performance. Convergence graphs shows the convergence rate as well as final results as seen in Figure 4a-h. 

The graphs show the number of fitness function evaluations on x-axis and error in the optimum value on the y-axis. For 

comparison the convergence characteristics of GA-BLX-α, GA-SBX, PSO, BFO and SIIO are plotted. As per the graphs, 

the GA-BLX-α and GA-SBX performs similar. BFO converges similar to GAs but performs worst in many cases than 

GAs. PSO is better than GAs and BFO. Proposed SIIO converges better than all algorithms. When SIIO and PSO are 

compared in case of F1 and F2, SIIO has better convergence properties than PSO. In cases of F3 and F4, SIIO as well as 

PSO converged successfully but behaved differently. For F5 also, SIIO is better than PSO and BFO. In case of F6, SIIO as 

well as PSO shows successful and similar results. For F7-F11, SIIO performed better than all other algorithms. For 

functions F12 and F13, PSO achieves better average error among all the competing algorithms. For initial generations, 

SIIO shows fast convergence speed and at the end PSO show less average error in fitness. The speed of convergence is 

determined in terms of number of fitness function evaluations used by each of the algorithms for convergence or attaining 

the same error value by the algorithms. The graphs having number of fitness function evaluations on x-axis and error on 

y-axis, indicate the speed of the algorithms. Proposed SIIO algorithm wins for 10 functions; tie with PSO for 1 function 

and remains second after PSO for 2 functions. PSO also does better and achieves overall second position among all 

considered algorithms. 

The configuration of computing machine is: Processor- Intel® Core™2Duo CPU, E8400 @ 3.00GHz 2.99GHz, Ram- 

1.94GB, Operating System- Microsoft Windows XP Professional Version 2002 Service Pack 2. The platform used for the 

simulation is MATLAB® 7. 

4 Independent component analysis (ICA) 
ICA is applied to many applications; one of these is blind source separation [13-21]. Blind source separation is an application 
that also can be solved using various theoretical approaches including ICA. ICA of a random vector x consists of finding a 
linear transformation y =Wx, so that the components yi, i from 1 to m are as independent as possible. This can be achieved 
by maximizing some function F(y1,y2,…,ym ) that measures independence. W is demixing matrix. The maximization is 
done with deterministic methods for single signal [19] or for multiple signals [16, 17]. But there are multiple local maxima and 
many of these may not be the desired global maximum [21]. Therefore, the heuristic algorithms are suitable for the 
maximization problem and are applied for it [13, 18, 20]. In this paper, the SIIO is applied for noise removal. 

For ICA, the assumptions are [14, 15] 

1) The number of observed linear mixtures m must be at least as large as the number of independent components n, 
i.e., m ≥ n. 

2) The source signals must be statistically independent of each other or in practice as independent as possible (it 

includes uncorrelatedness). By definition, statistical independence means the joint probability density function 

(pdf) of the output sources can be factorized to the product of the marginal pdfs of each source. 
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3) Each source signal must be stationary with zero mean. Only one source is allowed to have Gaussian distribution 

because a linear combination of Gaussian signals is Gaussian again making it impossible to separate them. 

4) The matrix A must be of full rank. 

Two categories of ICA algorithms exists viz. optimization of suitable objective function and neural implementation of 

ICA [14]. In the first type, source separation is obtained by optimizing an objective function which is a scalar measure of 

some distributional property of the output y. The general measures are entropy, mutual independence, divergence between 

joint distribution of y and given mode and higher order decorrelation. 

The ICA method when formulated as optimization of a suitable objective function, termed as the contrast function [14, 15]. 

The problem in optimization of contrast function is that, it is batch computation using the estimated higher order statistics 

of data or leads to complicated adaptive separation [14, 15]. It is often sufficient to use simple higher order statistics such as 

kurtosis, which is a fourth order cummulant with zero time lags [14, 15]. The kurtosis for the ith source signal s(i) is given by 

equation (5). 

( ) ( ){ } ( ){ }4 4 2 23Cum s i E s i E s i= −   
                                                

 (5) 

If s(i) is Gaussian, then its kurtosis is zero. Source signals that have negative kurtosis are called sub-Gaussian and have a 

probability distribution flatter than usual Gaussian distribution. Source signals having a positive kurtosis are called 

super-Gaussian and have a probability distribution with sharp peaks and longer tails than the standard Gaussian ones. A 

contrast function based on kurtosis is given by equation (6). 
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5 Application of SIIO for noise removal 
For N source signals s = {s1 (t), …. ,sN (t)}, linearly mixed by multiplying a mixing matrix A, produce N mixture signals x 

= {x1 (t), … , xN (t)} = A*s. In present case one channel ECG is considered mixed with Gaussian noise, so it gives N=2. 

Given the signal mixtures x, to recover a version y = W*x identical to the original sources s, optimization is done by 

finding a square unmixing matrix W. The main assumption used in ICA for solving this problem is that the source signals 

are as statistically independent as possible during the time of recordings.  

To evaluate the resulting independent components, backprojection is used to plot body surface projection maps (ECG) for 

each component. From the ICA algorithm, we obtain the unmixing matrix W. The signal mixing matrix is W−1, i.e., x = 

W−1*y. Let W−1 (:, i) denotes the ith column of W−1 , and y(i, :) denotes the ith row of y, then the back-projection of 

component i, zi is  zi = W−1 (:, i) * y(i, :). The column vector W−1 (:,i) represents the relative (signed) weight of the ith 

component in each body surface channel of ECG. The back-projection map of each component may be plotted for each 

subject, which is shown in the Figure 5. 
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Figure 5. ECG - Original, Contaminated by Gaussian noise of mean=0, σ=1 and Reconstructed 

The ECG which is contaminated by Gaussian noise with mean=0, standard deviation=1 and variance=1, is submitted for 
the processing of denoising with the help of SIIO with fitness function in equation (6). The inverse of optimized matrix W 
is used for backprojecting the signal from demixed version to remove noise from signal. Mean Square Error (MSE) is used 
to measure the difference between the original “clean” ECG and the reconstructed ECG. MSE is mainly due to the residual 
noise and also ECG distortion after filtering process. MSE is defined as in equation (7). 

( ) ( )( )
1 2

ˆ
0

L
x t x t

tMSE
L

−
−

==                                                          (7) 

The results are presented in the Table 4 which indicates the MSE between the original signal and reconstructed signal, 
achieved with noise removal by SIIO. The MSE is also given for the comparison between original signal and contaminated 
signal. MSEo-r is MSE between original and reconstructed ECG signal; MSEo-c is between original and contaminated 
signal by Gaussian noise. 

Table 4. Mean Square Error achieved by noise removal by SIIO 

 100  101 

NFFE 1120 2008  5011 10011 
MSEo-r 3.074 2.297  19.720 19.196 
MSEo-c 25.231 25.231  25.231 25.231 

The MSE between original and reconstructed ECG shows that the SIIO optimizes the demixing matrix for removal of 
noise as shown in Table 4. In the Figure 5 the original ECG, Contaminated ECG and Reconstructed ECG are shown for 
some interval. The ECG used is from MIT-BIH Arrhythmia Database [22, 23]. ECG is for 10 Sec, in Figure 5 it is shortened 
to 3500 samples for display. To convert from raw unit to the physical unit (mV), Base=0 is subtracted and then it is divided 
by Gain=143.062. 

6 Conclusion 
In this paper, a new optimizing algorithm named as Swine Influenza Inspired Optimization (SIIO) is developed. The 
mechanism of virus spreading (communicating), virus instating capacity and individual recovery by treatment deciding the 
fitness are used to build the algorithm. This information is utilized in the algorithm for individual learning by the method 
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of recovery of the individual with the treatment mechanism. The proposed SIIO performed robustly as compared to 
Genetic Algorithms, Particle Swarm Optimization and Bacterial Foraging Optimization in terms of high accuracy and 
speed of convergence. The algorithm is having convergence accuracy up to the error of 10-8 for most of the functions and 
shows better speed, success and consistency of the convergence. The speed of convergence is determined in terms of 
number of fitness function evaluations used by each of the algorithms for convergence or attaining the same error value by 
these algorithms. The graphs indicate the speed of the algorithms. The SIIO optimizes the parameters for efficient 
Gaussian noise removal from the ECG signal by Blind Source Separation (BSS) using Independent Component Analysis 
(ICA). 
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