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Abstract 
The catfish particle swarm optimization (CatfishPSO) algorithm is a novel swarm intelligence optimization technique. 
This algorithm was inspired by the interactive behavior of sardines and catfish. The observed catfish effect is applied to 
improve the performance of particle swarm optimization (PSO). In this paper, we propose fuzzy CatfishPSO 
(F-CatfishPSO), which uses fuzzy to dynamically change the inertia weight of CatfishPSO. Ten benchmark functions with 
10, 20, and 30 different dimensions were selected as the test functions. Statistical analysis of the experimental results 
indicates that F-CatfishPSO outperformed PSO, F-PSO and CatfishPSO. 
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1 Introduction 
Particle swarm optimization (PSO) is motivated by natural evolution and simulates the social behavior of organisms to 
describe an automatically evolving system. The PSO algorithm is a stochastic, population-based evolutionary computer 
algorithm developed by Kennedy and Eberhart in 1995 [1]. Over the past decade, PSO has been successfully employed to 
many application areas, and generally obtains better results in a faster and cheaper way than other methods [2]. 

A most important consideration in PSO is to effectively balance the global and local search abilities of the swarm since the 
balance between global and local search throughout the process is critical to the success of PSO [3]. PSO shows promising 
performance on nonlinear function optimization and has thus received much attention [4]. However, the local search ability 
of PSO is rather poor [5] and often results in premature convergence, especially under circumstances where PSO is applied 
to complex multi-peak search problems [6]. For this reason, a strategic parameter, the well-known inertia weight factor, was 
introduced by Shi and Eberhart [7] in an effort to strike a better balance between global exploration and local exploitation. 
The inertia weight factor was introduced into the velocity update equation of the original PSO. A large inertia weight with 
a value greater than 1.0 facilitates global exploration, while a small inertia weight with a value smaller than 1.0 facilitates 
local exploitation. An initially large inertia weight value that progressively decreases throughout the process allows 
particles to move around a broader search space and to move on to more promising regions of the search space. The 
original authors suggested using an inertia weight that linearly decreases from 0.9 to 0.4. The addition of the inertia weight 
greatly improved the performance of PSO [8]. 
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After the inertia weight parameter was proposed, numerous methods have been proposed that focus on the modification of 
the inertia weight during the search process in order to improve the performance of PSO. Jiao et al. proposed dynamic 
inertia weight PSO, which uses a dynamic inertia weight that decreases based on iterative generations [9]. Yang et al. 
introduced a modified particle swarm optimization algorithm with dynamic adaptation, in which a modified velocity 
update formula with a dynamically changing inertia weight based on the run and evolution state for each particle is  
used [10]. An adaptive inertia weight factor (AIWF) was introduced by Liu et al. to efficiently balance the exploration and 
exploitation abilities [11]. Chuanwen and Bompard adopted an inertia weight parameter generated by chaotic map [12]. Shi 
and Eberhart used a fuzzy adaptive inertia weight, which improved the performance over PSO with a linearly decreasing 
inertia weight [3].  

The fuzzy approach does not act blindly because fuzzy logic includes operations for interference by a user, namely 
user-defined rules governing the target control system. Such systems can be tailored to various problems [13]. The main 
source of fuzziness is the imprecision involved in defining and using symbols as a property of language. In most existing 
applications, the fuzzy rules encode expert reasoning into a program to make a decision or control the system [14]. Fuzzy 
systems are more suitable for complex system problems, and have been successfully applied in an increasing number of 
application areas. 

In this paper, we propose fuzzy adaptive CatfishPSO (F-CatfishPSO), in which fuzzy systems are applied to adapt the 
inertia weight and thus improve the performance of the CatfishPSO algorithm. In CatfishPSO, the catfish effect introduces 
a competition function into a group of individuals. The introduced catfish particles improve the solution quality of  
PSO [15]. A fuzzy adaptive inertia weight for the CatfishPSO was introduced in our study to improve the search behavior 
and to prevent entrapment of particles in a locally optimal solution. The proposed method was then applied to ten 
benchmark functions from the literature. Experimental results and statistical analysis show that the performance of 
F-CatfishPSO is superior to PSO, F-PSO and CatfishPSO. 

2 Method 

2.1 Particle swarm optimization (PSO) 
In original PSO [1], each particle is analogous to an individual “fish” in a school of fish. It is a population-based 
optimization technique, where a population is called a swarm. A swarm consists of N particles moving around a 
D-dimensional search space. The position of the ith particle can be represented by xi = (xi1, xi2, …, xiD). The velocity for the 
ith particle can be written as vi = (vi1, vi2, …, viD). The positions and velocities of the particles are confined within [Xmin, 
Xmax]

D and [Vmin, Vmax]
D, respectively. Particles coexist and evolve simultaneously based on knowledge shared with 

neighboring particles; they make use of their own memory and knowledge gained by the swarm as a whole to find the best 
solution. The best previously visited position of the ith particle is noted as its individual best position pi = (pi1, pi2, …, piD), 
a value called pbesti. The best value of the all individual pbesti values is denoted the global best position g = (g1, g2, …, gD) 
and called gbest. The PSO process is initialized with a population of random particles, and the algorithm then executes a 
search for optimal solutions by continuously updating generations. At each generation, the position and velocity of the ith 
particle are updated by pbesti and gbest in the swarm. The update equations can be formulated as: 
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where r1 and r2 are random numbers between (0, 1), and c1 and c2 are acceleration constants that control how far a particle 

moves in a single generation. Velocities 
new
idv  and 

old
idv  are denote the velocities of the new and old particle, respectively. 

old
idx  is the current particle position, and 

new
idx  is the new, updated particle position. The inertia weight w controls the 

impact of the previous velocity of a particle on its current one [7]. In general, the inertia weight decreases linearly from 0.9 
to 0.4 throughout the search process to effectively balance the global and local search abilities of the swarm [8]. The 
equation can be written as: 
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In Eq. (3), wmax is 0.9, wmin is 0.4 and Iterationmax is the maximum number of allowed iterations. The pseudo-code of the 
PSO process is shown below. 

01: begin 
02:  Randomly initialize particles swarm 
03:  while (number of iterations, or the stopping criterion is not met) 
04:    Evaluate fitness of particle swarm 
05:    for n = 1 to number of particles 
06:      Find pbest 
07:      Find gbest 
08:      for d = 1 to number of dimension of particle 
09:        update the position of particles by Eq. (1) and Eq. (2) 
10:      next d 
11:    next n 
12:    update the inertia weight value by Eq. (3) 
13:  next generation until stopping criterion 
14: end 

Figure 1. PSO pseudo-code 

2.2 Fuzzy particle swarm optimization (F-PSO) 
Unlike the above-mentioned PSO [8], the inertia weight in F-PSO does not linearly decrease from 0.9 to 0.4 throughout the 
search process but is dynamically adapted by a fuzzy system. Three fuzzy variables are adopted [3], i.e., the current best 
performance evaluation (CBPE) and the current inertia weight (Weight) are selected as two input variables to the fuzzy 
system; the change of the inertia weight (Weight-change) is the output variable. Each fuzzy variable has three fuzzy sets, 
namely High, Medium and Low, which correspond to the membership functions Right-triangle, Triangle and 
Left-triangle, respectively. These membership functions are: 
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Triangle membership function 
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Right_Triangle membership function 
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In the membership functions, x1 and x2 are critical parameters which determine the shape and location of the functions. The 
graph of each membership function is drawn from x1=0.2 to x1=0.8. Although other membership functions, e.g., Gaussian 
and Sigmoid functions, can also be employed in fuzzy system, the membership functions used here are useful for a variety 
of problems and can be easily implemented in microcontrollers and microprocessors [3]. CBPE has been proven to be an 
excellent measure for the performance of the best candidate solution in PSO [3]. However, since different problems have a 
different range of performance measurement values, CBPE has to be converted into a normalized format so that it can be 
applied to a wide range of optimization problems in fuzzy systems design [3]. For minimization problems, the normalized 
CBPE (NCBPE) can be formulated as: 

min

max min

CBPE CBPE
NCBPE

CBPE CBPE
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In Eq. (4), CBPEmax denotes the threshold that judges whether CBPE is an acceptable solution or not. For example, CBPE 
is not an acceptable solution if the solution is greater or equal to the CBPEmax. CBPEmin denotes the estimated minimum. In 
the whole fuzzy system, we use the OR operator, that is we take the maximum value as the membership value of the fuzzy 
set for adapting the inertia weight of PSO. Table 1 defines the fuzzy system for adapting the inertia weight of PSO. Figs. 
2-4 illustrate the membership function of three fuzzy variables NCBPE, Weight and Weight-change, respectively. 
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Figure 2. Membership function of variable NCBPE 

 

Figure 3. Membership function of variable Weight 

 

Figure 4. Membership function of variable Weight-change 
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Table 1. Definition of the fuzzy system for adapting the inertia weight of PSO. 

Membership function 
(Fuzzy set) 

NCBPE (input) Weight (input) Weight-change (output) 
x1 x2 x1 x2 x1 x2 

Left-triangle (Low, L) 0 0.06 0.2 0.6 -0.12 -0.02 
Triangle (Medium, M) 0.05 0.4 0.4 0.9 -0.04 0.04 
Right-triangle (High, H) 0.3 1 0.6 1.1 0 0.05 
Dynamic range (0, 1) (0.2, 1.1) (-0.12, 0.05) 

Nine rules in the fuzzy system 

L L M 
L M L 
L H L 
M L H 
M M M 
M H L 
H L H 
H M M 
H H L 

The pseudo-code of F-PSO is shown below. 

01: begin 
02:  Randomly initialize particles swarm and inertia weight 
03:  while (number of iterations, or the stopping criterion is not met) 
04:    Evaluate fitness of particle swarm 
05:    for n = 1 to number of particles 
06:      Find pbest 
07:      Find gbest 
08:      for d = 1 to number of dimension of particle 
09:        update the position of particles by Eq. (1) and Eq. (2) 
10:      next d 
11:    next n 
12:    update the inertia weight value by fuzzy system 
13:  next generation until stopping criterion 
14: end 

Figure 5. F-PSO pseudo-code 

2.3 Catfish particle swarm optimization (CatfishPSO) 
The underlying idea for the development of CatfishPSO was derived from the catfish effect observed when catfish are 
introduced into large holding tanks of sardines [15]. The catfish-sardine competition stimulates renewed movement 
amongst the sardines. Similarly, the introduced catfish particles stimulate a renewed search by the other sardine particles 
in CatfishPSO. In other words, the catfish particles can guide particles trapped in a local optimum on to a new region of the 
search space, and thus to potentially better particle solutions. The introduction of catfish particles in CatfishPSO is very 
simple and can be done without increasing the computational complexity of the process. Catfish particles overcome the 
inherent defects of PSO by initializing a new search over the entire search space from its extreme points. 

In CatfishPSO, a population is randomly initialized in a first step and particles are distributed over a D-dimensional search 
space. The position and velocity of each particle are updated by Eqs. (1)-(3). If the distance between gbest and the 
surrounding particles is small, each particle is considered a part of the cluster around gbest and will only move a very small 
distance in the next generation. To avoid this premature convergence, catfish particles are introduced and replace the 10% 
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of the original particles with the worst fitness values of the swarm. These catfish particles are essential for the success of a 
given optimization task. The pseudo-code of CatfishPSO is shown below. Further details on CatfishPSO mechanisms can 
be found in Chuang et al. [15]. 

01: Begin 

02:  Randomly initialize particles swarm 

03:  while (number of iterations, or the stopping criterion is not met) 

04:    Evaluate fitness of particle swarm 

05:    for n = 1 to number of particles 

06:      Find pbest 

07:      Find gbest 

08:      for d = 1 to number of dimension of particle 

09:        Update the position of particles by Eq. (1) and Eq. (2) 

10:      next d 

11:    next n 

12:    if fitness of gbest is the same seven times then 

13:      Sort the particle swarm via fitness from best to worst 

14:      for n = number of nine-tenths of particles to number of particles 

15:        for d = 1 to number of dimension of particle 

16:          Randomly select extreme points at Max or Min of the search space 

17:          Reset the velocity to 0 

18:        next d 

19:      next n 

20:    end if 

21:    Update the inertia weight value by Eq. (3) 

22:  next generation until stopping criterion 

23: end 

Figure 6. CatfishPSO pseudo-code 

2.4 Fuzzy catfish particle swarm optimization (F-CatfishPSO) 
In F-CatfishPSO, a fuzzy system designed by experts [3] is implemented to dynamically adapt the inertia weight of the 
CatfishPSO [15]. The fuzzy system improves the performance of CatfishPSO significantly. The pseudo-code of 
F-CatfishPSO is shown below. 

01: Begin 

02:  Randomly initialize particles swarm and inertia weight 

03:  while (number of iterations, or the stopping criterion is not met) 

04:    Evaluate fitness of particle swarm 

05:    for n = 1 to number of particles 

06:      Find pbest 

07:      Find gbest 

08:      for d = 1 to number of dimension of particle 

09:        Update the position of particles by Eq. (1) and Eq. (2) 

10:      next d 

11:    next n 

12:    if fitness of gbest is the same seven times then 

13:      Sort the particle swarm via fitness from best to worst 

14:      for n = number of nine-tenths of particles to number of particles 

15:        for d = 1 to number of dimension of particle 
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16:          Randomly select extreme points at Max or Min of the search space 

17:          Reset the velocity to 0 

18:        next d 

19:      next n 

20:    end if 

21:    Update the inertia weight value by fuzzy system 

22:  next generation until stopping criterion 

23: end 

Figure 7. F-CatfishPSO pseudo-code 

3 Numerical simulation 

3.1 Benchmark functions 
In order to illustrate, compare, and analyze the effectiveness and performance of PSO, F-PSO, CatfishPSO, and 
F-CatfishPSO algorithms for optimization problems, ten representative benchmark functions were used to test the 
algorithms. These ten benchmark functions are shown below. 
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These ten benchmark functions can be grouped into unimodal (Sphere, Ellipsoid, Sum of difference power, Cigar, Ridge, 
Step and Rosenbrock) and multimodal functions (Rastrigrin, Griewark and Ackley). In multimodal functions the number 
of local minima increases exponentially with the problem dimension. 

3.2 Parameter settings 
In our experiments, three different dimension sizes (Dim.) were tested for each function, namely 10, 20 and 30 
dimensions, and the corresponding maximum number of generations (Gen.) was set to 1000, 1500 and 2000, respectively. 
In addition, four population sizes (Pop.) were used for each function with a different dimension, namely population sizes 
of 20, 40, 80 and 160, respectively. The same sets of parameters were assigned for PSO, F-PSO, CatfishPSO and 
F-CatfishPSO, i.e., c1=c2=2. For each experimental setting, we executed 50 independent runs for PSO, F-PSO, CatfishPSO 
and F-CatfishPSO. The parameter settings of the ten benchmark functions are summarized in Table 2. 

Table 2. Parameter settings of the ten benchmark functions 

Function Modality Search Space 
Asymmetric 
Initialization 
Range 

Xmin Xmax CBPEmax Optimum 

01. Sphere Unimodal -100 xi 100  50 xi 100 -100 100 BI 0 

02. Ellipsoid Unimodal -100 xi 100  50 xi 100 -100 100 BI 0 

03. Sum of difference power  Unimodal -3 xi 3 1.5 xi 3.0 -3 3 BI 0 

04. Cigar Unimodal -100 xi 100  50 xi 100 -100 100 BI 0 

05. Ridge Unimodal -100 xi 100  50 xi 100 -100 100 BI 0 

06. Step Unimodal -100 xi 100  50 xi 100 -100 100 BI 0 

07. Rosenbrock Unimodal -100 xi 100   15 xi 30 -100 100 500 0 

08. Rastrigrin Multimodal -10 xi 10 2.56 xi 5.12 -10 10 70 0 

09. Griewark Multimodal -600 xi 600 300 xi 600 -600 600 0.15 0 

10. Ackley Multimodal -100 xi 100  50 xi 100 -100 100 BI 0 

Legend: BI: best initial fitness value 

3.3 Experimental results and discussion 
The performances of PSO [8], F-PSO [3], CatfishPSO [15], and F-CatfishPSO methods were compared by means of the best 
fitness and the standard deviation among ten benchmark functions for different population, dimension and generation 
values. We adopted a z-test on pairs of group results to validate the results as statistical different for the methods. The z-test 
gives a p-value which is compared to a constant called α to determine whether a difference between alternative method is 
statistically significant or not. In our case, we adopted a 90%-confidence interval for the z-test in all benchmark functions, 
that is, if the p-value of a method is p-value <α = 0.1, the method is significantly improved. The mean fitness values and 
standard deviations of PSO, F-PSO, CatfishPSO and F-CatfishPSO for the ten benchmark functions are listed in Tables 3 
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to 12. If any mean fitness values and standard deviations are<10-300, 0.000±0.000 is displayed in these Tables. The 
experimental results in Tables 3 to 12 are divided into three areas for analysis: 

3.3.1 F-PSO compared to PSO 
The results for PSO and F-PSO in tables 3-12 indicate that F-PSO outperformed PSO on all 10 test functions. However, 
statistical analysis of the results with a z-test at α = 0.1 revealed that F-PSO is only significantly superior to PSO in the 
Sphere, Ellipsoid, Sum of difference power, Cigar, Ridge and Step functions. 

3.3.2 CatfishPSO compared to PSO 
Tables 3 to 12 indicate that CatfishPSO also outperformed PSO on all 10 benchmark functions for each experimental 
setting tested. This result is supported by statistical analysis with a z-test at α = 0.1. It can be seen that CatfishPSO 
performed admirably for different population sizes and dimensions and can thus play an important role in reducing the 
computational cost of real-time online problems where time is critical. 

Table 3. Mean function value for Sphere function (Unimodal) 

Pop. Dim. Gen. Optimal PSO [8] F-PSO [3] CatfishPSO [15] F-CatfishPSO 

20 10 1000 0 2.98E-20±8.10E-20 1.86E-12±1.32E-11 0.000±0.000 0.000±0.000 

 20 1500 0 2.23E-11±1.09E-10 2.00E-05±9.35E-05 0.000±0.000 0.000±0.000 

 30 2000 0 600.00±2398.979 2.96E-02±1.02E-01 0.000±0.000 0.000±0.000 

        

40 10 1000 0 6.67E-25±1.54E-24 1.01E-83±6.47E-83 0.000±0.000 0.000±0.000 

 20 1500 0 5.83E-15±1.40E-14 4.12E-13±9.92E-12 0.000±0.000 0.000±0.000 

 30 2000 0 5.88E-11±9.83E-11 1.25E-08±8.83E-08 0.000±0.000 0.000±0.000 

        

80 10 1000 0 3.86E-28±1.29E-27 3.4E-100±1.61E-99 0.000±0.000 0.000±0.000 

 20 1500 0 2.55E-18±4.08E-08 8.87E-72±3.12E-71 0.000±0.000 0.000±0.000 

 30 2000 0 1.98E-13±4.67E-13 1.13E-57±4.31E-57 0.000±0.000 0.000±0.000 

        

160 10 1000 0 6.83E-32±2.18E-31 7.5E-116±4.7E-115 0.000±0.000 0.000±0.000 

 20 1500 0 2.66E-21±6.33E-21 1.72E-86±8.38E-86 0.000±0.000 0.000±0.000 

 30 2000 0 4.90E-16±1.10E-15 2.33E-71±9.61E-71 0.000±0.000 0.000±0.000 

Average 50.00±0199.915 2.20E-01±5.51E-01 0.000±0.000 0.000±0.000 

p-value 0.646 0 0 0 

Significant (p-value <α=0.1)     

F-PSO vs. PSO  No Yes - - 

F-PSO vs. CatfishPSO - No Yes - 

F-PSO vs. F-CatfishPSO - No - Yes 

CatfishPSO vs. PSO No - Yes - 

F-CatfishPSO vs. PSO No - - Yes 

F-CatfishPSO vs. CatfishPSO - - No No 

Rank 0 1 2 2 

Legend: Yes indicates the method is significant improved. No indicates the method is not significant improved. Rank 
indicates the numbers of significance at α = 0.1 between the tested method and another method by z-test.  
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3.3.3 F-CatfishPSO compared to both F-PSO and CatfishPSO 
Although CatfishPSO performed well on the above-mentioned ten benchmark functions, it can still be improved by fuzzy 
adaptation of the inertia weight. The inertia weight of the original CatfishPSO is linearly decreasing from 0.9 to 0.4 
throughout the search process and thus can not be adapted [15]. Previous experimental results for PSO and F-PSO indicate 
that using a fuzzy system to dynamically adapt the inertia weight of CatfishPSO can improve the performance [3]. Tables 3 
to 12 show that F-CatfishPSO outperformed both CatfishPSO and F-PSO on all benchmark functions, a fact that could 
again be validated by statistical analysis with a z-test at α = 0.1. 

The quality of solutions achieved by CatfishPSO is further improved when a fuzzy system adapts the inertia weight 
(F-CatfishPSO). The rank of F-CatfishPSO for the Ellipsoid, Sum of difference power, Ridge, Rosenbrock and Ackley 
functions (see Tables 4, 5, 7, 9 and 12) is higher than the rank of CatfishPSO. The rank indicates the numbers of 
significance at α = 0.1 between the tested method and another method and is determined by the z-test. These experimental 
results and the statistical analysis thereof clearly demonstrate that the performance of F-CatfishPSO is superior to PSO, 
F-PSO, and CatfishPSO. 

Figures 8 to 17 plot the mean best fitness in the form of logarithm values over the number of generations for PSO [8], 
F-PSO [3], CatfishPSO [15] and F-CatfishPSO with 20 particles on the ten 30-dimensional benchmark functions. Tables 3, 8, 
10 and 11 indicate that CatfishPSO and F-CatfishPSO are both capable of finding optimal solutions, i.e., the fitness value 
were < 10-300. For the sake of convenience, the graphs in Figures 8, 13, 15 and 16 are only displayed until the mean best 
fitness values reaches 10-3. The figures again show that the search efficiency of F-CatfishPSO is superior to PSO, F-PSO, 
and CatfishPSO on all ten benchmark functions. In addition, Figures 8, 13, 15 and 16 demonstrate that F-CatfishPSO and 
CatfishPSO are capable of finding optimal solutions within 1200 generations, a fact also demonstrated in Tables 3, 8, 10 
and 11, where no standard deviation can be given for CatfishPSO and F-CatfishPSO. In Figs. 8 to 17, both CatfishPSO and 
F-CatfishPSO display a distinctly step-shaped curve, a phenomenon indicative of CatfishPSO’s capability to leave local 
optimal solutions and renew the search in other regions of the search space. The F-PSO curve, on the other hand indicates 
that F-PSO reaches near optimal solutions very early on in the search, but it lacks the capability of CatfishPSO to break 
through locally optimal solutions. It can be concluded that by combining a fuzzy system dynamically adapts the inertia 
weight with CatfishPSO a significant improvement of performance can be achieved. 

 

Figure 8. Sphere function for PSO, F-PSO, CatfishPSO and F-CatfishPSO 
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Figure 9. Ellipsoid function for PSO, F-PSO, CatfishPSO and F-CatfishPSO 

 

Figure 10. Sum of difference power function for PSO, F-PSO, CatfishPSO and F-CatfishPSO 

 

Figure 11. Cigar function for PSO, F-PSO, CatfishPSO and F-CatfishPSO 
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Figure 12. Ridge function for PSO, F-PSO, CatfishPSO and F-CatfishPSO 

 

Figure 13. Step function for PSO, F-PSO, CatfishPSO and F-CatfishPSO 

 

Figure 14. Rosenbrock function for PSO, F-PSO, CatfishPSO and F-CatfishPSO 
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Figure 15. Rastrigrin function for PSO, F-PSO, CatfishPSO and F-CatfishPSO 

 

Figure 16. Griewark function for PSO, F-PSO, CatfishPSO and F-CatfishPSO 

 

Figure 17. Ackley function for PSO, F-PSO, CatfishPSO and F-CatfishPSO 
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Table 4. Mean function value for Ellipsoid function (Unimodal) 

Pop. Dim Gen. Optimal PSO [8] F-PSO [3] CatfishPSO [15] F-CatfishPSO 

20 10 1000 0 8.94E-22±6.01E-21 2.65E-71±1.74E-70 8.09E-26±5.72E-25 2.20E-70±1.56E-69 
 20 1500 0 2200.00±4184.520 4.22E-05±2.00E-04 8.64E-09±6.09E-08 9.02E-11±4.55E-10 
 30 2000 0 2200.00±4184.520 3.38E-03±9.48E-03 2.46E-05±8.94E-05 1.67E-09±1.18E-08 
        
40 10 1000 0 400.00±1979.487 4.16E-89±2.87E-88 6.92E-54±3.48E-53 6.57E-91±4.58E-90 
 20 1500 0 1800.00±1880.879 3.31E-56±1.90E-55 4.33E-20±3.05E-19 1.67E-62±1.15E-61 
 30 2000 0 2800.00±4535.574 8.44E-11±5.97E-10 5.07E-10±2.39E-09 5.28E-45±3.41E-44 
        
80 10 1000 0 4.86E-31±1.30E-30 9.2E-107±5.8E-106 6.21E-73±4.39E-72 8.8E-107±5.8E-106 
 20 1500 0 2400.00±4314.191 2.98E-70±2.06E-69 5.71E-33±4.03E-32 1.33E-74±9.41E-74 
 30 2000 0 3200.00±4712.121 1.68E-53±1.14E-52 1.77E-13±1.25E-12 3.37E-58±2.37E-57 
        
160 10 1000 0 1.11E-34±2.18E-34 8.1E-123±4.9E-122 2.3E-151±1.1E-150 7.5E-123±4.9E-122 
 20 1500 0 1200.00±3282.607 1.45E-86±6.47E-86 7.34E-41±5.19E-40 3.82E-92±1.84E-91 

 30 2000 0 3800.00±4903.144 3.22E-68±1.20E-67 1.41E-18±9.95E-18 1.72E-74±8.32E-74 

Average 1666.667±2998.087 2.85E-04±8.07E-04 2.05E-06±7.45E-06 1.46E-10±1.02E-09 

p-value 0.798 0 0 0 
Significant (p-value <α=0.1)     

F-PSO vs. PSO  No Yes - - 

F-PSO vs. CatfishPSO - No Yes - 

F-PSO vs. F-CatfishPSO - No - Yes 

CatfishPSO vs. PSO No - Yes - 

F-CatfishPSO vs. PSO No - - Yes 

F-CatfishPSO vs. CatfishPSO - - No Yes 

Rank 0 1 2 3 

Legend: Yes indicates the method is significant improved. No indicates the method is not significant improved. Rank 
indicates the numbers of significance at α = 0.1 between the tested method and another method by z-test.  

Table 5. Mean function value for Sum of difference Power function (Unimodal) 

Pop. Dim Gen. Optimal PSO [8] F-PSO [3] CatfishPSO [15] F-CatfishPSO 

20 10 1000 0 0.060±00.424 6.98E-12±4.16E-11 1.50E-24±1.06E-23 4.24E-46±2.91E-45 
 20 1500 0 0.660±01.944 1.40E-09±5.55E-09 8.35E-14±5.90E-13 1.85E-45±1.27E-44 
 30 2000 0 2.820±11.570 1.73E-12±9.68E-12 3.54E-16±2.50E-15 4.83E-40±3.41E-39 
        
40 10 1000 0 1.03E-29±6.84E-29 7.39E-29±5.22E-28 5.21E-47±3.68E-46 3.11E-56±2.20E-55 
 20 1500 0 0.060±0.424 1.12E-15±6.67E-15 8.43E-24±5.94E-23 1.84E-62±1.30E-61 
 30 2000 0 0.480±1.529 3.20E-10±2.26E-09 4.87E-20±3.42E-19 8.44E-52±5.13E-51 
        
80 10 1000 0 4.44E-34±1.50E-33 6.0E-100±4.20E-99 1.02E-69±7.23E-69 7.4E-103±3.2E-102 
 20 1500 0 8.74E-28±3.56E-27 5.01E-49±3.54E-48 1.79E-31±1.27E-30 9.70E-92±5.64E-91 
 30 2000 0 0.960±4.040 4.46E-74±2.98E-73 3.10E-21±2.16E-20 2.67E-76±1.33E-75 
        

160 10 1000 0 2.05E-36±6.69E-36 
2.44E-109±1.6E-10
8 

2.06E-67±1.33E-66 
2.40E-109±1.6E-10
8 

 20 1500 0 0.120±0.594 7.4E-105±3.7E-104 5.40E-44±2.78E-43 4.3E-105±3.0E-104 

(Table 5continued on page 164) 
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Table 5. (continued) 

Pop. Dim Gen. Optimal PSO [8] F-PSO [3] CatfishPSO [15] F-CatfishPSO 

  30 2000 0 0.120±0.594 7.73E-82±4.65E-81 1.11E-25±7.83E-25 3.99E-84±2.82E-83 

Average 0.440±1.760 1.44E-10±6.56E-10 6.98E-15±4.94E-14 4.02E-41±2.85E-40 

p-value 0.646 0 0 0 
Significant (p-value <α=0.1)     

F-PSO vs. PSO  No Yes - - 

F-PSO vs. CatfishPSO - No Yes - 

F-PSO vs. F-CatfishPSO - No - Yes 

CatfishPSO vs. PSO No - Yes - 

F-CatfishPSO vs. PSO No - - Yes 

F-CatfishPSO vs. CatfishPSO - - No Yes 

Rank 0 1 2 3 

Legend: Yes indicates the method is significant improved. No indicates the method is not significant improved. Rank 
indicates the numbers of significance at α = 0.1 between the tested method and another method by z-test.  

Table 6. Mean function value for Cigar function (Unimodal) 

Pop. Dim Gen. Optimal PSO [8] F-PSO [3] CatfishPSO [15] F-CatfishPSO 

20 10 1000 0 600.00±2398.979 2.04E-19±1.44E-18 0.000±0.000 2.15E-61±1.52E-60 
 20 1500 0 1600.00±3703.280 0.110±0.726 2.51E-09±1.57E-08 4.74E-10±3.35E-09 
 30 2000 0 1400.00±3505.098 0.500±1.816 5.89E-04±4.00E-03 1.56E-04±9.62E-04 
        
40 10 1000 0 200.00±1414.214 1.82E-82±1.28E-81 0.000±0.000 1.81E-82±1.28E-81 
 20 1500 0 1200.00±3282.607 1.33E-56±4.64E-56 2.83E-12±2.00E-11 1.60E-56±5.93E-56 
 30 2000 0 2400.00±4314.191 7.60E-10±5.37E-09 2.68E-06±1.89E-05 8.12E-09±5.74E-08 
        
80 10 1000 0 1200.00±3282.607 7.27E-99±4.37E-98 0.000±0.000 7.27E-99±4.37E-98 
 20 1500 0 2400.00±4314.191 3.19E-70±1.47E-69 3.80E-22±2.68E-21 2.06E-70±1.35E-69 
 30 2000 0 2600.00±4430.875 5.65E-57±1.92E-56 8.72E-10±6.16E-09 7.59E-57±2.91E-56 
        
160 10 1000 0 200.00±1414.214 7.8E-113±5.5E-112 0.000±0.000 7.8E-113±5.5E-112 
 20 1500 0 2600.00±4430.875 5.84E-86±3.12E-85 1.88E-39±1.33E-38 5.76E-86±3.12E-85 
 30 2000 0 3000.00±4629.100 1.20E-70±6.40E-70 1.99E-15±1.26E-14 1.89E-71±4.79E-71 

Average 1616.667±3426.686 5.09E-02±2.12E-01 4.93E-05±3.35E-04 1.30E-05±8.02E-05 

p-value 0.760 0 0 0 

Significant (p-value <α=0.1)     

F-PSO vs. PSO  No Yes - - 

F-PSO vs. CatfishPSO - No Yes - 

F-PSO vs. F-CatfishPSO - No - Yes 

CatfishPSO vs. PSO No - Yes - 

F-CatfishPSO vs. PSO No - - Yes 

F-CatfishPSO vs. CatfishPSO - - No No 

Rank 0 1 2 2 

Legend: Yes indicates the method is significant improved. No indicates the method is not significant improved. Rank 
indicates the numbers of significance at α = 0.1 between the tested method and another method by z-test.  
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Table 7. Mean function value for Ridge function (Unimodal) 

Pop. Dim. Gen. Optimal PSO [8] F-PSO [3] CatfishPSO [15] F-CatfishPSO 

20 10 1000 0 2.98E-20±8.10E-20 2.62E-24±1.85E-23 0.000±0.000 2.29E-66±1.39E-65 
 20 1500 0 2.23E-11±1.09E-10 4.19E-08±2.92E-07 2.14E-12±2.84E-10 0.000±0.000 
 30 2000 0 600.00±2398.979 1.01E-06±3.89E-06 5.75E-07±5.12E-05 5.38E-13±3.53E-12 
        
40 10 1000 0 6.67E-25±1.54E-24 1.43E-71±1.01E-70 0.000±0.000 3.08E-85±1.46E-84 
 20 1500 0 5.83E-15±1.40E-14 2.51E-46±1.77E-45 1.96E-15±2.51E-13 4.00E-57±2.83E-56 
 30 2000 0 5.88E-11±9.83E-11 1.58E-23±8.02E-23 1.73E-10±1.98E-08 0.000±0.000 
        
80 10 1000 0 3.86E-28±1.29E-27 2.54E-88±1.79E-87 0.000±0.000 2.48E-97±1.30E-96 
 20 1500 0 2.55E-18±4.08E-18 3.86E-61±1.94E-60 1.76E-30±1.99E-28 1.69E-76±1.19E-75 
 30 2000 0 1.98E-13±4.67E-13 3.65E-43±2.07E-42 1.23E-18±1.68E-16 0.000±0.000 
        
160 10 1000 0 6.83E-32±2.18E-31 1.3E-103±9.5E-103 0.000±0.000 5.9E-113±4.1E-112 
 20 1500 0 2.66E-21±6.33E-21 1.70E-72±8.25E-72 3.08E-39±4.36E-37 4.65E-88±3.26E-87 
 30 2000 0 4.90E-16±1.10E-15 1.94E-56±1.27E-55 1.20E-20±1.70E-18 0.000±0.000 

Average 50.00±0199.915 8.77E-08±3.49E-07 4.79E-08±4.27E-06 4.49E-14±2.95E-13 

p-value 0.646 0 0 0 

Significant (p-value <α=0.1)     

F-PSO vs. PSO  No Yes - - 

F-PSO vs. CatfishPSO - No No - 

F-PSO vs. F-CatfishPSO - No - Yes 

CatfishPSO vs. PSO No - Yes - 

F-CatfishPSO vs. PSO No - - Yes 

F-CatfishPSO vs. CatfishPSO - - No Yes 

Rank 0 1 1 3 

Legend: Yes indicates the method is significant improved. No indicates the method is not significant improved. Rank 
indicates the numbers of significance at α = 0.1 between the tested method and another method by z-test.  

Table 8. Mean function value for Step function (Unimodal) 

Pop. Dim. Gen. Optimal PSO [8] F-PSO [3] CatfishPSO [15] F-CatfishPSO 

20 10 1000 0 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 
 20 1500 0 0.000±0.000 0.140±0.405 0.000±0.000 0.000±0.000 

 30 2000 0 
800.204±2740.47
8 

2.060±4.787 0.000±0.000 0.000±0.000 

        
40 10 1000 0 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 
 20 1500 0 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 
 30 2000 0 0.040±0.198 0.440±1.417 0.000±0.000 0.000±0.000 
        
80 10 1000 0 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 
 20 1500 0 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 
 30 2000 0 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 
        
160 10 1000 0 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 
 20 1500 0 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 

(Table 8 continued on page 166) 
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Table 8. (continued) 

Pop. Dim. Gen. Optimal PSO [8] F-PSO [3] CatfishPSO [15] F-CatfishPSO 

 30 2000 0 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 

Average 66.687±228.390 0.220±0.551 0.000±0.000 0.000±0.000 

p-value 0.655 0 0 0 
Significant (p-value <α=0.1)     

F-PSO vs. PSO  No Yes - - 

F-PSO vs. CatfishPSO - No Yes - 

F-PSO vs. F-CatfishPSO - No - Yes 

CatfishPSO vs. PSO No - Yes - 

F-CatfishPSO vs. PSO No - - Yes 

F-CatfishPSO vs. CatfishPSO - - No No 

Rank 0 1 2 2 

Legend: Yes indicates the method is significant improved. No indicates the method is not significant improved. Rank 
indicates the numbers of significance at α = 0.1 between the tested method and another method by z-test.  

Table 9. Mean function value for Rosenbrock function (Unimodal) 

Pop. Dim. Gen. Optimal PSO [8] F-PSO [3] CatfishPSO [15] F-CatfishPSO 

20 10 1000 0 117.427±268.636 52.880±162.146 5.957±0.532 4.610±1.071 

 20 1500 0 226.368±316.326 132.127±231.694 16.237±0.416 14.905±1.388 

 30 2000 0 206.789±262.795 128.186±191.861 26.376±0.388 24.945±1.674 

        

40 10 1000 0 41.325±081.814 52.785±154.554 5.360±0.421 4.056±1.215 

 20 1500 0 150.224±278.776 81.703±216.202 16.033±0.448 13.276±0.578 

 30 2000 0 179.492±269.172 109.077±171.627 26.326±0.441 23.441±0.887 

        

80 10 1000 0 31.540±035.831 17.620±038.041 5.198±0.442 3.476±1.552 

 20 1500 0 70.342±154.499 70.546±157.172 15.698±0.398 12.940±0.705 

 30 2000 0 276.720±393.668 82.744±160.830 26.332±0.605 23.145±0.823 

        

160 10 1000 0 30.616±061.285 19.193±033.259 4.642±0.460 2.694±0.977 

 20 1500 0 78.152±157.556 63.380±160.068 15.580±0.556 12.479±0.662 

 30 2000 0 201.813±314.810 62.256±064.559 25.919±0.466 22.952±1.011 

Average 134.234±216.264 72.708±145.168 15.805±0.464 13.577±1.045 

p-value 0.756 0.574 0 0 

Significant (p-value <α=0.1)     

F-PSO vs. PSO  No No - - 

F-PSO vs. CatfishPSO - No Yes - 

F-PSO vs. F-CatfishPSO - No - Yes 

CatfishPSO vs. PSO No - Yes - 

F-CatfishPSO vs. PSO No - - Yes 

F-CatfishPSO vs. CatfishPSO - - No Yes 

Rank 0 0 2 3 

Legend: Yes indicates the method is significant improved. No indicates the method is not significant improved. Rank 
indicates the numbers of significance at α = 0.1 between the tested method and another method by z-test.  
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Table 10. Mean function value for Rastrigrin function (Multimodal) 

Pop. Dim. Gen. Optimal PSO [8] F-PSO [3] CatfishPSO [15] F-CatfishPSO 

20 10 1000 0 5.441±02.587 4.439±02.157 0.000±0.000 0.000±0.000 

 20 1500 0 23.189±07.497 19.673±06.144 0.000±0.000 0.000±0.000 

 30 2000 0 46.752±15.403 41.028±13.328 0.000±0.000 0.000±0.000 

        

40 10 1000 0 3.662±02.093 2.707±01.621 0.000±0.000 0.000±0.000 

 20 1500 0 17.558±05.723 15.749±05.402 0.000±0.000 0.000±0.000 

 30 2000 0 37.837±09.537 30.642±10.903 0.000±0.000 0.000±0.000 

        

80 10 1000 0 2.089±01.176 1.931±00.993 0.000±0.000 0.000±0.000 

 20 1500 0 12.362±03.943 11.000±04.707 0.000±0.000 0.000±0.000 

 30 2000 0 28.504±06.871 24.433±07.091 0.000±0.000 0.000±0.000 

        

160 10 1000 0 1.194±01.025 1.194±00.964 0.000±0.000 0.000±0.000 

 20 1500 0 8.894±02.755 6.917±02.430 0.000±0.000 0.000±0.000 

 30 2000 0 24.097±06.949 19.859±06.631 0.000±0.000 0.000±0.000 

Average 17.632±05.463 14.964±05.198 0.000±0.000 0.000±0.000 

p-value 1 0.996 0 0 

Significant (p-value <α=0.1)     

F-PSO vs. PSO  No No - - 

F-PSO vs. CatfishPSO - No Yes - 

F-PSO vs. F-CatfishPSO - No - Yes 

CatfishPSO vs. PSO No - Yes - 

F-CatfishPSO vs. PSO No - - Yes 

F-CatfishPSO vs. CatfishPSO - - No No 

Rank 0 0 2 2 

Legend: Yes indicates the method is significant improved. No indicates the method is not significant improved. Rank 
indicates the numbers of significance at α = 0.1 between the tested method and another method by z-test.  

Table 11. Mean function value for Griewark function (Multimodal) 

Pop. Dim. Gen. Optimal PSO [8] F-PSO [3] CatfishPSO [15] F-CatfishPSO 

20 10 1000 0 0.099±0.050 0.081±0.052 0.000±0.000 0.000±0.000 
 20 1500 0 0.034±0.027 0.032±0.034 0.000±0.000 0.000±0.000 
 30 2000 0 0.015±0.019 0.017±0.017 0.000±0.000 0.000±0.000 
        
40 10 1000 0 0.089±0.036 0.060±0.034 0.000±0.000 0.000±0.000 
 20 1500 0 0.028±0.024 0.025±0.025 0.000±0.000 0.000±0.000 
 30 2000 0 0.009±0.008 0.013±0.018 0.000±0.000 0.000±0.000 
        
80 10 1000 0 0.068±0.037 0.068±0.040 0.000±0.000 0.000±0.000 
 20 1500 0 0.037±0.033 0.024±0.027 0.000±0.000 0.000±0.000 
 30 2000 0 0.013±0.013 0.012±0.014 0.000±0.000 0.000±0.000 
        
160 10 1000 0 0.065±0.025 0.058±0.026 0.000±0.000 0.000±0.000 
 20 1500 0 0.033±0.026 0.028±0.021 0.000±0.000 0.000±0.000 

(Table 11 continued page 168) 
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Table 11. (continued) 

Pop. Dim. Gen. Optimal PSO [8] F-PSO [3] CatfishPSO [15] F-CatfishPSO 

 30 2000 0 0.012±0.014 0.010±0.011 0.000±0.000 0.000±0.000 

Average 0.042±0.026 0.036±0.027 0.000±0.000 0.000±0.000 

p-value 0.958 0.890 0 0 
Significant (p-value <α=0.1)     

F-PSO vs. PSO  No No - - 

F-PSO vs. CatfishPSO - No Yes - 

F-PSO vs. F-CatfishPSO - No - Yes 

CatfishPSO vs. PSO No - Yes - 

F-CatfishPSO vs. PSO No - - Yes 

F-CatfishPSO vs. CatfishPSO - - No No 

Rank 0 0 2 2 

Legend: Yes indicates the method is significant improved. No indicates the method is not significant improved. Rank 
indicates the numbers of significance at α = 0.1 between the tested method and another method by z-test.  

Table 12. Mean function value for Ackley function (Multimodal) 

Pop. Dim. Gen. Optimal PSO [8] F-PSO [3] CatfishPSO [15] F-CatfishPSO 

20 10 1000 0 19.999±2.22E-06 9.600±10.093 8.88E-16±9.96E-32 8.88E-16±9.96E-32 
 20 1500 0 19.999±5.52E-12 12.901±09.550 8.88E-16±9.96E-32 8.88E-16±9.96E-32 
 30 2000 0 19.999±2.05E-06 14.009±08.915 8.54E-02±5.46E-01 8.84E-04±6.22E-03 
        
40 10 1000 0 19.599±0002.828 12.399±09.806 8.88E-16±9.96E-32 8.88E-16±9.96E-32 
 20 1500 0 19.999±3.57E-05 11.181±10.012 8.88E-16±9.96E-32 8.88E-16±9.96E-32 
 30 2000 0 19.999±2.74E-05 15.985±08.074 8.88E-16±9.96E-32 8.88E-16±9.96E-32 
        
80 10 1000 0 19.999±1.29E-11 11.199±10.028 8.88E-16±9.96E-32 8.88E-16±9.96E-32 
 20 1500 0 19.999±9.61E-06 12.794±09.693 8.88E-16±9.96E-32 8.88E-16±9.96E-32 
 30 2000 0 19.999±5.42E-12 14.732±08.824 8.88E-16±9.96E-32 8.88E-16±9.96E-32 
        
160 10 1000 0 19.999±5.80E-05 12.399±09.806 8.88E-16±9.96E-32 8.88E-16±9.96E-32 
 20 1500 0 19.999±2.32E-05 11.626±09.941 8.88E-16±9.96E-32 8.88E-16±9.96E-32 
 30 2000 0 19.999±6.52E-12 12.773±09.678 8.88E-16±9.96E-32 8.88E-16±9.96E-32 

Average 19.996±2.36E-01 12.633±09.535 7.12E-03±4.55E-02 7.37E-05±5.18E-04 

p-value 1 0.826 0 0 

Significant (p-value <α=0.1)     

F-PSO vs. PSO  No No - - 

F-PSO vs. CatfishPSO - No Yes - 

F-PSO vs. F-CatfishPSO - No - Yes 

CatfishPSO vs. PSO No - Yes - 

F-CatfishPSO vs. PSO No - - Yes 

F-CatfishPSO vs. CatfishPSO - - No Yes 

Rank 0 0 2 3 

Legend: Yes indicates the method is significant improved. No indicates the method is not significant improved. Rank 
indicates the numbers of significance at α = 0.1 between the tested method and another method by z-test.  
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4 Conclusion 

In this paper, fuzzy CatfishPSO (F-CatfishPSO) is introduced, which adopts a fuzzy system to improve the performance of 

the CatfishPSO algorithm. In CatfishPSO, catfish particles initialize a new search from extremes of the search space when 

the gbest value has not made progress for a number of iterations. Better solutions can be found by guiding the whole 

swarm to more promising regions in the search space. CatfishPSO has the inherent capability to break through local 

optimal solution. F-CatfishPSO incorporates the advantages of both CatfishPSO and F-PSO, and achieved far better 

performance than the PSO, F-PSO and CatfishPSO algorithms. This fact was validated by statistical analysis with a z-test 

at α = 0.1 on ten benchmark functions conducted under equal conditions. It can be concluded that the introduction of new 

individuals into a group (catfish particles) has a significantly positive effect on the entire swarm, and that the fuzzy system 

effectively improved the solution quality of CatfishPSO. F-CatfishPSO can conceivably be applied to problems in other 

areas in the future. 
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