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ABSTRACT

The traditional propositional logic is monotonic. With the same logical language as, the same valuation as and the validity of a
sequent different from the traditional propositional logic, a propositional logic could be nonmonotonic. In this paper, the four
Gentzen deduction systems G1, G2, G3, G4 and their dualities G1, G2, G3, G4 will be given which are proved to be sound and
complete with respect to the four definitions and their dualities of the validity of sequents, among which one is traditional and
others are variations of the traditional one. Moreover, G1, G3 are monotonic in both Γ and ∆; and G2, G4 are monotonic in Γ
and nonmonotonic in ∆. Dually, G1, G3 are nonmonotonic in both Γ and ∆; and G2, G4 are nonmonotonic in Γ and monotonic
in ∆.
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1. INTRODUCTION

The traditional Gentzen deduction system G1 for the propo-
sitional logic is monotonic,[1, 2] that is, given any theories
Γ,Γ′,∆,∆′, if sequent Γ ⇒ ∆ is provable in G1 and
Γ ⊆ Γ′,∆ ⊆ ∆′ then Γ′ ⇒ ∆,Γ ⇒ ∆′,Γ′ ⇒ ∆′
are provable in G1. Correspondingly, the Gentzen deduc-
tion system G1 for Γ 6⇒ ∆ is nonmonotonic,[3–5] that is,
given any theories Γ,Γ′,∆,∆′, if sequent Γ 6⇒ ∆ is prov-
able in G1 and Γ ⊆ Γ′,∆ ⊆ ∆′ then it may be true that
Γ′ 6⇒ ∆,Γ 6⇒ ∆′,Γ′ 6⇒ ∆′ are provable in G1.

The nonmonotonic logics are different from the monotonic
logics in that the deduction is nonmonotonic. The traditional
logics, such as the propositional logic, the first-order logic,
modal logic, etc., are monotonic. The nontraditional logics,
such as the default logic, the autoepistemic logic, circum-
scription, etc., are nonmonotonic.[4–8]

The nonmonotonicity of a nonmonotonic logic follows from
using a negation ∆ 6` A of a monotonic deduction ∆ ` A.
We found that each nonmonotonic logic has the occurrence of
∆ 6` A. For example, a formula B is deducible in the default

logic (or in some extension of default theory (∆, {A : B
B
})

from a default theory (∆, {A : B
B
}) if A is deducible in

propositional logic from ∆ and ¬B is not, that is,

∆ ` A&∆ 6` ¬B.

It is obvious that the monotonicity of ∆ ` A implies the
nonmonotonicity of ∆ 6` A.

As a deduction relation, 6` is contradictory to ` . Corre-
spondingly, in the Gentzen deduction systems, the validity
of Γ ⇒ ∆ is contradictory to the invalidity of Γ ⇒ ∆, i.e.,
the validity of Γ 7→ ∆, where Γ 7→ ∆ is valid if there is an
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assignment v such that v satisfies Γ and does not satisfy ∆,
where v satisfies Γ if v satisfies each formula in Γ; and v
satisfies ∆ if v satisfies some formula in ∆.

Therefore, as a contradictory relation ` Γ 7→ ∆ of ` Γ⇒ ∆,
there is a Gentzen-typed deduction system G1 such that G1
is sound and complete, that is, for any sequent Γ 7→ ∆,
if Γ 7→ ∆ is provable in G1 then Γ 7→ ∆ is valid; and
conversely, if Γ 7→ ∆ is valid then Γ 7→ ∆ is provable in
G1.

Formally, the validity of sequent Γ ⇒ ∆ is defined as fol-
lows:
|=G1 Γ ⇒ ∆ if for any assignment v, v |= Γ implies
v |= ∆, where v |= Γ if for every A ∈ Γ, v(A) = 1; and
v |= ∆ if for some B ∈ ∆, v(B) = 1.

Correspondingly, sequent Γ 6⇒ ∆ (denoted by Γ 7→ ∆)
being valid is defined as follows:
|=G1 Γ⇒ ∆ if there is an assignment v such that v |= Γ
and v 6|= ∆, where v |= Γ if for every A ∈ Γ, v(A) = 1;
and v 6|= ∆ if for every B ∈ ∆, v(B) = 0.

We consider other possible definitions of the validity and
have the following four definitions:

• for any assignment v, v |= Γ implies v |= ∆, where
v |= Γ if for every A ∈ Γ, v(A) = 1; and
v |= ∆ if for some B∈ ∆, v(B) = 1;
v |= ∆ if for every B∈ ∆, v(B) = 1;
v |= ∆ if for some B∈ ∆, v(B) = 0;
v |= ∆ if for every B∈ ∆, v(B) = 0;

• there is an assignment v such that v |= Γ and v 6|= ∆,
where v |= Γ if for every A ∈ Γ, v(A) = 1; and
v 6|= ∆ if for every B∈ ∆, v(B) = 0;
v 6|= ∆ if for some B∈ ∆, v(B) = 0;
v 6|= ∆ if for every B∈ ∆, v(B) = 1;
v 6|= ∆ if for some B∈ ∆, v(B) = 1.

Therefore, we have four Gentzen deduction systems
G1, G2, G3, G4[2, 9–11] and their dualities G1, G2, G3, G4,

where

and

It will be proved that:[6, 8, 12–15]

(1) G1, G3 are monotonic in both Γ and ∆;
(2) G2, G4 are monotonic in Γ and nonmonotonic in ∆;
(3) G1, G3 are nonmonotonic in both Γ and ∆;
(4) G2, G4 are nonmonotonic in Γ and monotonic in ∆.

This paper is organized as follows: the next section gives the
basic definitions in the propositional logic; the third section
gives the Gentzen deduction system G1 for the traditional
propositional logic and G1 for the nonmonotonic proposi-
tional logic; the fourth section gives the Gentzen deduction
systems G2 and G2 and proves that they are sound and com-
plete; the fifth section gives sound and complete Gentzen
deduction systems G3 and G3 and analyzes their monotonic-
ity; the sixth section lists the sound and complete Gentzen
deduction systems G4 and G4; and the last section concludes
the whole paper with the table of monotonicity of all the
systems.

2. THE LOGICAL LANGUAGE OF THE PROPO-
SITIONAL LOGIC

The logical language of the propositional logic consists of
the following symbols:

• propositional variables: p0, p1, ...;
• logical connectives: ¬,∧,∨, and
• auxiliary symbols: (, ).

A string A of symbols is a formula if

A ::= p|¬p|A1 ∧A2|A1 ∨A2.

The semantics of the propositional logic is given by an as-
signment v, a function from the propositional variables to
{0, 1}.

Given an assignment v, a formula A is true in v, denoted by
v |= A, if

where ∼,&, or are symbols used in the meta-language, and
correspondingly, ¬,∧,∨ are the ones used in the language.
Therefore, v 6|= A1 can be represented as ∼ (v |= A1).

A sequent δ is a pair (Γ,∆), denoted by Γ⇒ ∆, where Γ,∆
are sets of formulas.

A literal l is a propositional variable or the negation of a
propositional variable.
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3. THE PROPOSITIONAL LOGIC G1

A sequent Γ ⇒ ∆ is valid, denoted by |=G1 Γ ⇒ ∆, if
for any assignment v, v(A) = 1 for every A ∈ Γ implies
v(B) = 1 for some B ∈ ∆.

The Gentzen deduction system G1 consists of the following
axioms and deduction rules:

• Axioms:

(A⇒) incon(Γ) or incon(∆) or Γ ∩∆ 6= ∅
Γ⇒ ∆

where Γ,∆ are sets of literals.
• Deduction rules:

Theorem 3.1 (The soundness and completeness theorem).
For any sequent Γ⇒ ∆,

`G1 Γ⇒ ∆ iff |=G1 Γ⇒ ∆

The propositional logic of G1

Definition 3.2 A sequent Γ 7→ ∆ is valid, denoted by
|=G1 Γ 7→ ∆ if there is an assignment v such that v |= Γ
and v |= ∆, where v |= Γ if for each A ∈ Γ, v(A) = 1; and
v |= ∆ if for each B ∈ ∆, v(B) = 0.

A sequent Γ 7→ ∆ is not valid if Γ 7→ ∆ is unsatisfiable, i.e.,
there is no assignment v such that v |= Γ and v |= ∆.

Lemma 3.3 Given two sets Γ,∆ of literals, |=G1 Γ 7→ ∆ if
and only if Γ and ∆ are consistent, and Γ ∩∆ = ∅.

The Gentzen deduction system G1 consists of the following
axioms and deduction rules:

• Axioms:

(A 7→) con(Γ) & con(∆) & Γ ∩∆ = ∅
Γ 7→ ∆

where ∆,Γ are sets of literals.
• Deduction rules:

Definition 3.4 A sequent Γ 7→ ∆ is provable, denoted by
`G1 Γ 7→ ∆ if there is a sequence {Γ1 7→ ∆1, ...,Γn 7→

∆n} such that Γn 7→ ∆n = Γ 7→ ∆, and for each
1 ≤ i ≤ n,Γi 7→ ∆i is an axiom or is deduced from the
previous sequents by one of the deduction rules.

Theorem 3.5 (The soundness and completeness theorem).
For any sequent Γ 7→ ∆,

`G1 Γ 7→ ∆ iff |=G1 Γ 7→ ∆

4. THE PROPOSITIONAL LOGIC G2

Definition 4.1 A sequent Γ ⇒ ∆ is G2-valid, denoted by
|=G2 Γ⇒ ∆ if for any assignment v, v |= Γ implies v |= ∆,
where v |= Γ if for every A ∈ Γ, v(A) = 1; and v |= ∆ if
for each B ∈ ∆, v(B) = 1.

Proposition 4.2 Let Γ,∆ be sets of literals. |=G2 Γ⇒ ∆ if
and only if

∆ ⊆ Γ or incon(Γ).

Proof. Assume that ∆ ⊆ Γ or incon(Γ). Then, |=G2 Γ ⇒
∆.

Conversely, assume that ∆ 6⊆ Γ and con(Γ). There is a lit-
eral l ∈ ∆ − Γ. Define an assignment v such that for any
propositional variable p,

Then, v |= Γ and v 6|= ∆.

The Gentzen deduction system G2 consists of the following
axioms and deduction rules:

• Axioms:

(A⇒) ∆ ⊆ Γ or incon(Γ)
Γ⇒ ∆ ,

where ∆,Γ are sets of literals.
• Deduction rules:

Theorem 4.3 (The soundness theorem). For any sequent
Γ⇒ ∆, if `G2 Γ⇒ ∆ then |=G2 Γ⇒ ∆.

Proof. We prove that each axiom is valid and each deduction
rule preserves the validity.
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To verify the validity of the axiom, by Proposition 4.2, the
axiom is valid.

To verify that (⇒∧L
i ) preserves the validity, assume that for

any assignment v,

v |= Γ, Ai implies v |= ∆

For any assignment v, assume that v |= Γ, A1 ∧ A2. Then,
v |= Γ, Ai, and by the induction assumption, v |= ∆.

To verify that (⇒∧R) preserves the validity, assume that for
any assignment v,

v |= Γ implies v |= B1,∆

v |= Γ implies v |= B2,∆

For any assignment v, assume that v |= Γ. By the in-
duction assumption, v |= B1,∆ and v |= B2,∆. Hence,
v |= B1 ∧B2,∆.

To verify that (⇒∨L) preserves the validity, assume that for
any assignment v,

v |= Γ, A1 implies v |= ∆,

v |= Γ, A2 implies v |= ∆

For any assignment v, assume that v |= Γ, A1 ∨ A2. Then,
either v |= Γ, A1 or v |= Γ, A2, and by the induction as-
sumption, either case implies v |= ∆.

To verify that (⇒∨R
i ) preserves the validity, assume that for

any assignment v,

v |= Γ implies v |= Bi,∆

For any assignment v, assume that v |= Γ. By the induction
assumption, v |= Bi,∆. Hence, v |= B1 ∨B2,∆.

4.1 The completeness theorem of G2

Theorem 4.4 (The completeness theorem). For any sequent
Γ⇒ ∆, if |=G2 Γ⇒ ∆ then `G2 Γ⇒ ∆.

Proof. Given a sequent Γ ⇒ ∆, we construct a tree T as
follows:

• the root of T is Γ⇒ ∆;
• if for each sequent Γ′ ⇒ ∆′ at a node, Γ′,∆′ are sets of

literals then the node is a leaf; and
• if a sequent Γ′ ⇒ ∆′ at a nonleaf node of T is not an

axiom then the node has the direct child nodes

where
[
δ1
δ2

represents that δ1, δ2 are at a same child node;

and
{
δ1
δ2

represents that δ1, δ2 are at different direct child

nodes;

Theorem 4.5 If there is a branch ξ ⊆ T such that the leaf of
ξ is not an axiom in G2 then there is an assignment v such
that v 6|=G2 Γ⇒ ∆.

Proof. Assume that the leaf of ξ is not an axiom in G2, and
let the leaf be Γ′ ⇒ ∆′, Then, By Proposition 4.2, there is
an assignment v such that v 6|=G2 Γ′ ⇒ ∆′.

We shall prove that for each node Γ1 ⇒ ∆1 of ξ, v 6|=G2

Γ1 ⇒ ∆1. There are the following cases for Γ1 ⇒ ∆1.

Case 1. Γ1 ⇒ ∆1 = Γ2, A1, A2 ⇒ ∆2 ∈ ξ is a direct
child nodes of Γ2, A1 ∧ A2 ⇒ ∆2 ∈ ξ. By the induction
assumption,

v 6|=G2 Γ2, A1, A2 7→ ∆2

and we have that v 6|=G2 Γ2, A1 ∧A2 7→ ∆2.

Case 2. Γ1 ⇒ ∆1 = Γ2 ⇒ Bi,∆2 ∈ ξ is a direct child
node of Γ2 ⇒ B1 ∧B2,∆2 ∈ ξ. By the induction assump-
tion,

v 6|=G2 Γ2 ⇒ Bi,∆2

and we have that v 6|=G2 Γ2 ⇒ B1 ∧B2,∆2.

Case 3. Γ1 ⇒ ∆1 = Γ2, Ai ⇒ ∆2 ∈ ξ is a direct child
node of Γ2, A1 ∨ A2 ⇒ ∆2 ∈ ξ. By the induction assump-
tion,

v 6|=G2 Γ2, Ai ⇒ ∆2

and we have that v 6|=G2 Γ2, A1 ∨A2 ⇒ ∆2.

Case 4. Γ1 ⇒ ∆1 = Γ2 ⇒ B1, B2,∆2 ∈ ξ is a direct
child node of Γ2 ⇒ B1 ∨ B2,∆2 ∈ ξ. By the induction
assumption,

v 6|=G2 Γ2 ⇒ B1, B2,∆2

that is,
v 6|=G2 Γ2 ⇒ B1,∆2,
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v 6|=G2 Γ2 ⇒ B2,∆2

and we have that v 6|=G2 Γ2 ⇒ B1 ∨B2∆2.

Theorem 4.6 If each leaf Γ′ ⇒ ∆′ of T is an axiom in G2

then T is a proof tree of Γ⇒ ∆ in G2.

Proof. The theorem follows directly from the definition of T.

4.2 The propositional logic G2
Definition 4.7 A sequent Γ 7→ ∆ is G2-valid, denoted by
|=G2 Γ 7→ ∆ if there is an assignment v such that v |= Γ
and v |= ∆, where v |= Γ if for every A ∈ Γ, v(A) = 1; and
v |= ∆ if for some B ∈ ∆, v(B) = 0.

Proposition 4.8 Let Γ,∆ be sets of literals. |=G2 Γ 7→ ∆ if
and only if

∆ 6⊆ Γ & con(Γ).

The Gentzen deduction system G2 consists of the following
axioms and deduction rules:

• Axioms:

(A 7→) ∆ 6⊆ Γ & con(Γ)
Γ 7→ ∆ ,

where ∆,Γ are sets of literals.
• Deduction rules:

Theorem 4.9 (The soundness theorem). For any sequent
Γ 7→ ∆, if `G2 Γ 7→ ∆ then |=G2 Γ 7→ ∆.

Proof. We prove that each axiom is valid and each deduction
rule preserves the validity.

To verify the validity of the axiom, by Proposition 4.8, the
axiom is valid.

To verify that (7→∧L) preserves the validity, assume that there
is an assignment v such that

v |= Γ, A1&v |= ∆,

v |= Γ, A2&v |= ∆.

For this assignment v, v |= Γ, A1 ∧A2 and v |= ∆.

To verify that (7→∧R
i ) preserves the validity, assume that

there is an assignment v such that

v |= Γ&v |= Bi,∆.

For this assignment v, v |= Γ and v |= B1 ∧B2,∆.

To verify that ( 7→∨L
i ) preserves the validity, assume that there

is an assignment v such that

v |= Γ, Ai&v |= ∆.

For this assignment v, v |= Γ, A1 ∨A2 and v |= ∆.

To verify that ( 7→∨R) preserves the validity, assume that
there is an assignment v such that

v |= Γ&v |= B1,∆,

v |= Γ&v |= B2,∆.

For this assignment v, v |= Γ and v |= B1 ∨B2,∆.

4.3 The completeness theorem of G2

Theorem 4.10 (The completeness theorem). For any sequent
Γ 7→ ∆, if |=G2 Γ 7→ ∆ then `G2 Γ 7→ ∆.

Proof. Given a sequent Γ 7→ ∆, we construct a tree T as
follows:

• the root of T is Γ 7→ ∆;
• if for each sequent Γ′ 7→ ∆′ at a node, Γ′,∆′ are sets of

literals then the node is a leaf; and
• if a sequent Γ′ 7→ ∆′ at a nonleaf node of T is not an

axiom then the node has the direct child nodes

Theorem 4.11 If there is a branch ξ ⊆ T such that the leaf
of ξ is a precondition of the axiom in G2 then `G2 Γ 7→ ∆.

Proof. Assume that the leaf of ξ is a precondition of the
axiom in G2, by (7→ A),`G2 Γ′ 7→ ∆′.

We shall prove that for each node Γ1 7→ ∆1 of ξ,`G2 Γ1 7→
∆1. There are the following cases for Γ1 7→ ∆1.

Case 1. Γ1 7→ ∆1 = Γ2, A1, A2 7→ ∆2 ∈ ξ is a direct
child node of Γ2, A1 ∧ A2 7→ ∆2 ∈ ξ. By the induction
assumption,

`G2 Γ2, A1 7→ ∆2,

`G2 Γ2, A2 7→ ∆2,

and by (7→∧L), we have that `G2 Γ2, A1 ∧A2 7→ ∆2.

Case 2. Γ1 7→ ∆1 = Γ2 7→ Bi,∆2 ∈ ξ is a direct child
node of Γ2 7→ B1 ∧B2,∆2 ∈ ξ. By the induction assump-
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tion,
`G2 Γ2 7→ Bi,∆2,

and by (7→∧R
i ), we have that `G2 Γ2 7→ B1 ∧B2,∆2.

Case 3. Γ1 7→ ∆1 = Γ2, Ai 7→ ∆2 ∈ ξ is a direct child
node of Γ2, A1 ∨ A2 7→ ∆2 ∈ ξ. By the induction assump-
tion,

`G2 Γ2, Ai 7→ ∆2,

and by (7→∨L
i ), we have that `G2 Γ2, A1 ∨A2 7→ ∆2.

Case 4. Γ1 7→ ∆1 = Γ2 7→ B1, B2,∆2 ∈ ξ is a direct
child node of Γ2 7→ B1 ∨ B2,∆2 ∈ ξ. By the induction
assumption,

`G2 Γ2 7→ B1, B2,∆2,

that is,
`G2 Γ2 7→ B1,∆2,

`G2 Γ2 7→ B2,∆2,

and by (7→∨R), we have that `G2 Γ2 7→ B1 ∨B2∆2.

Theorem 4.12 If each leaf Γ′ 7→ ∆′ of T is not an axiom in
G2 then T is a proof tree of Γ⇒ ∆ in G2.

Proof. The theorem follows directly from the definition of T.

5. THE PROPOSITIONAL LOGIC G3

Given a sequent Γ ⇒ ∆, we say that v satisfies Γ ⇒ ∆,
denoted by v |=G3 Γ ⇒ ∆, if 1) that for each for-
mula A ∈ Γ, v(A) = 1 implies 2) that for some formula
A ∈ ∆, v(A) = 0.

A sequent Γ ⇒ ∆ is valid, denoted by |=G3 Γ ⇒ ∆, if for
any assignment v, v |=G3 Γ⇒ ∆.

Proposition 5.1 Let Γ,∆ be sets of literals. |=G3 Γ⇒ ∆ if
and only if

incon(Γ) or incon(¬∆) or Γ ∩ ¬∆ 6= ∅.

Proof. |=G3 Γ⇒ ∆ iff for any assignment v, 1) that for each
formula A ∈ Γ, v(A) = 1 implies 2) that for some formula
A ∈ ∆, v(A) = 0; iff for any assignment v, 1) that for each
formula A ∈ Γ, v(A) = 1 implies 2) that for some formula
A ∈ ∆, v(¬A) = 1; iff |=G1 Γ⇒ ¬∆, iff

incon(Γ) or incon(¬∆) or Γ ∩ ¬∆ 6= ∅,

where ¬∆ = {¬B : B ∈ ∆}.

Proposition 5.2 Let Γ,∆ be sets of literals.
incon(Γ) or incon(¬∆) or Γ ∩ ¬∆ 6= ∅ if and only if
incon(Γ ∪∆).

The Gentzen deduction system G3 contains the following

axioms and deduction rules:
• Axioms:

incon(Γ) or incon(¬∆) or Γ ∩ ¬∆ 6= ∅
Γ⇒ ∆ ,

where Γ,∆ are sets of literals.
• The deduction rules for connectives:

Definition 5.3 `G3 Γ ⇒ ∆ if there is a sequence {Γ1 ⇒
∆1, ...,Γn ⇒ ∆n such that Γn ⇒ ∆n = Γ ⇒ ∆, and for
each 1 ≤ i ≤ n,Γi ⇒ ∆i is an axiom or is deduced from
the previous sequents by one of the deduction rules in G3.

Theorem 5.4 (The soundness theorem). For any sequent
Γ⇒ ∆, if `G3 Γ⇒ ∆ then |=G3 Γ⇒ ∆.

Proof. We prove that each axiom is valid and each deduction
rule preserves the validity.

To verify the validity of the axiom, by Proposition 5.1, the
axiom is valid.

To verify that (⇒∧R1) preserves the validity, assume that for
any assignment v,

v |= Γ, A1 implies v |= ∆.

For any assignment v, assume that v |= Γ, A1 ∧ A2. Then,
v |= Γ, A1. By the induction assumption, v |= ∆.

To verify that (⇒∧R) preserves the validity, assume that for
any assignment v,

v |= Γ implies v |= B1,∆.

For any assignment v, assume that v |= Γ. By the induction
assumption, v |= B1,∆. If v |= ∆ then v |= B1∧B2,∆; oth-
erwise, v |= B1 and so v |= B1 ∧B2, i.e., v |= B1 ∧B2,∆.

To verify that (∨L) preserves the validity, assume that for
any assignment v,

v |= Γ, A1 implies v |= ∆

v |= Γ, A2 implies v |= ∆.

For any assignment v, assume that v |= Γ, A1 ∨ A2. If
v |= A1 then v |= Γ, A1, and by the induction assumption,
v |= ∆; and if v |= A2 then, v |= Γ, A1, and by the induction
assumption, v |= ∆.

To verify that (⇒∨R) preserves the validity, assume that for
any assignment v,

v |= Γ implies v |= B1,∆
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v |= Γ implies v |= B2,∆.

For any assignment v, assume that v |= Γ. By the induc-
tion assumption, v |= B1,∆ and v |= B1,∆. If v |= ∆
then v |= B1 ∨B2,∆; otherwise, v |= B1; v |= B2, and so
v |= B1 ∨B2,∆.

5.1 The completeness theorem of G3

Theorem 5.5 (The completeness theorem). For any sequent
Γ⇒ ∆, if |=G3 Γ⇒ ∆ then `G3 Γ⇒ ∆.

Proof. Given a sequent Γ ⇒ ∆, we construct a tree T as
follows:

• the root of T is Γ⇒ ∆;
• if for each sequent Γ′ ⇒ ∆′ at a node, Γ′,∆′ are sets of

literals then the node is a leaf; and
• if a sequent Γ′ ⇒ ∆′ at a nonleaf node of T is not an

axiom then the node has the direct child nodes

Theorem 5.6 If there is a branch ξ ⊆ T such that the leaf of
ξ is not an axiom in G3 then there is an assignment v such
that v 6|=G3 Γ⇒ ∆.

Proof. Assume that the leaf of ξ is not an axiom in G3, and
let the leaf be Γ′ ⇒ ∆′, Then, By Proposition 5.1, there is
an assignment v such that v 6|=G3 Γ′ ⇒ ∆′.

We shall prove that for each node Γ1 ⇒ ∆1 of ξ, v 6|=G3

Γ1 ⇒ ∆1. There are the following cases for Γ1 ⇒ ∆1.

Case 1. Γ1 ⇒ ∆1 = Γ2, A1, A2 ⇒ ∆2 ∈ ξ is a direct
child node of Γ2, A1 ∧ A2 ⇒ ∆2 ∈ ξ. By the induction
assumption,

v 6|=G3 Γ2, A1, A2 ⇒ ∆2,

and we have that v 6|=G3 Γ2, A1 ∧A2 ⇒ ∆2.

Case 2. Γ1 ⇒ ∆1 = Γ2 ⇒ B1, B2,∆2 ∈ ξ is a direct
child node of Γ2 ⇒ B1 ∧ B2,∆2 ∈ ξ. By the induction
assumption,

v 6|=G3 Γ2 ⇒ B1, B2,∆2,

and we have that v 6|=G3 Γ2 ⇒ B1 ∧B2,∆2.

Case 3. Γ1 ⇒ ∆1 = Γ2, Ai ⇒ ∆2 ∈ ξ is a direct child
node of Γ2, A1 ∨ A2 ⇒ ∆2 ∈ ξ. By the induction assump-

tion,
v 6|=G3 Γ2, Ai ⇒ ∆2,

and we have that v 6|=G3 Γ2, A1 ∨A2 ⇒ ∆2.

Case 4. Γ1 ⇒ ∆1 = Γ2 ⇒ Bi,∆2 ∈ ξ is a direct child
node of Γ2 ⇒ B1 ∨B2,∆2 ∈ ξ. By the induction assump-
tion,

v 6|=G3 Γ2 ⇒ Bi,∆2,

and we have that v 6|=G3 Γ2 ⇒ B1 ∨B2∆2.

Theorem 5.7 If each leaf Γ′ ⇒ ∆′ of T is an axiom in G3

then T is a proof tree of Γ⇒ ∆ in G3.

Proof. The theorem follows directly from the definition of T.

5.2 The propositional logic G3
Definition 5.8 A sequent Γ 7→ ∆ is valid in G3, denoted by
|=G3 Γ 7→ ∆ if there is an assignment v such that v |= Γ
and v |= ∆, where v |= Γ if for each A ∈ Γ, v(A) = 1; and
v |= ∆ if for each B ∈ ∆, v(B) = 1.

A sequent Γ 7→ ∆ is not valid in G3 if Γ 7→ ∆ is unsatisfi-
able inG3, i.e., there is no assignment v such that v |= Γ and
v |= ∆, equivalently, for any assignment v, v |= Γ implies
v |= ∆.

Lemma 5.9 Given two sets Γ,∆ of literals, |=G3 Γ 7→ ∆
if and only if Γ and ¬∆ are consistent, and Γ ∩ ¬∆ = ∅,
equivalently, con(Γ ∪∆).

The Gentzen deduction system G3 consists of the following
axioms and deduction rules:

• Axioms:

(A 7 →) con(Γ) & con(¬∆) & Γ ∩ ¬∆ = ∅
Γ 7→ ∆ ,

where ∆,Γ are sets of literals.
• Deduction rules:

Definition 5.10 A sequent Γ 7→ ∆ is provable, denoted by
`G3 Γ 7→ ∆ if there is a sequence {Γ1 7→ ∆1, ...,Γn 7→
∆n} such that Γn 7→ ∆n = Γ 7→ ∆, and for each
1 ≤ i ≤ n,Γi 7→ ∆i is an axiom or is deduced from the
previous sequents by one of the deduction rules.

5.3 The soundness and completeness theorem of G3
Theorem 5.11 (The soundness theorem). For any sequent
Γ 7→ ∆,

`G3 Γ 7→ ∆ implies |=G3 Γ 7→ ∆.
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Proof. We prove that each axiom is valid and each deduction
rule preserves the validity.

To verify the validity of the axiom, assume that con(Γ),
con(¬∆) and Γ ∩ ¬∆ = ∅. By Lemma 5.2.8, there is an
assignment v such that v |=G3 Γ 7→ ∆.

To verify that (7→∧L) preserves the validity, assume that there
is an assignment v such that

v(Γ, A1) = 1&v |= ∆,

v(Γ, A2) = 1&v |= ∆.

For this very assignment v, v(Γ, A1 ∧A2) = 1 and v |= ∆.

To verify that (7→∧R) preserves the validity, assume that
there is an assignment v such that

v |= Γ&v(∆, B1) = 1,

v |= Γ&v(∆, B2) = 1.

For this very assignment v, v |= Γ and v(∆, B1 ∧B2) = 1.

To verify that (7→∨L
1 ) preserves the validity, assume that there

is an assignment v such that v(Γ, A1) = 1 and v |= ∆. For
this very assignment v, v(Γ, A1 ∨A2) = 1 and v |= ∆.

To verify that (7→∨R
1 ) preserves the validity, assume that

there is an assignment v such that v |= Γ and v(∆, B1) = 1.
For this very assignment v, v |= Γ and v(∆, B1 ∨B2) = 1.

Theorem 5.12 (The completeness theorem). For any sequent
Γ 7→ ∆,

|=G3 Γ 7→ ∆ implies `G3 Γ 7→ ∆.

Proof. Given a sequent Γ 7→ ∆, we construct a tree T as
follows:

• the root of T is Γ 7→ ∆;
• if for each sequent Γ′ 7→ ∆′ at a node, Γ′,∆′ are sets of

literals then the node is a leaf; and
• if a sequent Γ′ 7→ ∆′ at a nonleaf node of T is not an

axiom then the node has the direct child nodes

Theorem 5.13 If there is a branch ξ ⊆ T such that the leaf
of ξ is an axiom in G3 then `G3 Γ 7→ ∆.

Proof. Assume that the leaf of ξ is an axiom in G3.

Let the leaf be Γ′ 7→ ∆′. Then, con(Γ′), con(¬∆′) and
Γ′ ∩ ¬∆′ = ∅, and by (A),`G3 Γ′ ⇒ ∆′.

We shall prove that for each node Γ1 7→ ∆1 of ξ,`G3 Γ1 ⇒
∆1. There are the following cases for Γ1 7→ ∆1.

Case 1. Γ1 7→ ∆1 = Γ2, A1 ∧ A2 7→ ∆2 ∈ ξ. Then,
Γ1 7→ ∆1 has a direct child node Γ2, A1, A2 7→ ∆2 (that is,
Γ2, A1 7→ ∆2 Γ2, A2 7→ ∆2). By the assumption, we have

`G3 Γ2, A1 7→ ∆2,

`G3 Γ2, A2 7→ ∆2,

and by ( 7→∧L) in G3,`G3 Γ2, A1 ∧A2 7→ ∆2.

Case 2. Γ1 7→ ∆1 = Γ2, A1 ∨ A2 7→ ∆2 ∈ ξ. Then,
Γ1 7→ ∆1 has two direct child node Γ2, A1 7→ ∆2 and
Γ2, A2 7→ ∆2. There is an i ∈ {1, 2} such that Γ2, Ai 7→
∆2 ∈ ξ. By the induction assumption, we have

`G3 Γ2, A1 7→ ∆2,

and by ( 7→∨L) in G3,`G3 Γ2, A1 ∨A2 ⇒ ∆2.

Case 3. Γ1 7→ ∆1 = Γ2 7→ B1 ∧ B2,∆2 ∈ ξ. Then,
Γ1 7→ ∆1 has a direct child node Γ2 7→ B1, B2,∆2 (that is,
Γ2 7→ B1,∆2 Γ2 7→ B2,∆2). By the induction assumption,

`G3 Γ2 7→ B1,∆2,

`G3 Γ2 7→ B2,∆2,

and by ( 7→∧R) in G3,`G3 Γ2 7→ B1 ∧B2,∆2.

Case 4. Γ1 7→ ∆1 = Γ2 7→ B1 ∨ B2,∆2 ∈ ξ. Then,
Γ1 7→ ∆1 has two direct child nodes Γ2 7→ B1,∆2 and
Γ2 7→ B2,∆2. There is an i ∈ {1, 2} such that Γ2 7→
Bi,∆2 ∈ ξ. By the assumption, we have

`G3 Γ2 7→ Bi,∆2,

and by ( 7→∨R
i ) in G3,`G3 Γ2 7→ B1 ∨B2,∆2.

Theorem 5.14 If each leaf Γ′ 7→ ∆′ of T is not an axiom in
G3 then T is a proof tree of Γ⇒ ∆ in G3.

Proof. Directly from the definition of T.

5.4 The nonmonotonicity of G3

Theorem 5.15 (The monotonicity theorem). G3 is mono-
tonic in both Γ and ∆, that is, for any formula sets Γ,Γ′,∆
and ∆′,

Γ ⊆ Γ′& `G3 Γ 7→ ∆ implies `G3 Γ′ 7→ ∆;

∆ ⊆ ∆′& `G3 Γ 7→ ∆ implies `G3 Γ 7→ ∆′.

Theorem 5.16 (The nonmonotonicity theorem). G3 is non-
monotonic in both Γ and ∆, that is, for any formula sets
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Γ,Γ′,∆ and ∆′,

Γ ⊆ Γ′& `G3 Γ 7→ ∆ may not imply `G3 Γ′ 7→ ∆;

∆ ⊆ ∆′& `G3 Γ 7→ ∆ may not imply `G3 Γ 7→ ∆′.

Proof. We prove that the axiom is nonmonotonic and each
deduction rule preserves the monotonicity.

Assume that con(Γ), con(¬∆) and Γ ∩ ¬∆ = ∅. There is
a superset Γ′ ⊇ Γ such that Γ′ ∩ ¬∆ 6= ∅; and there is a
superset ∆′ ⊇ ∆ such that Γ ∩ ¬∆′ 6= ∅. Hence, G3 is
nonmonotonic in both Γ and ∆.

To show that (7→∧R) preserves the monotonicity of Γ, as-
sume that Γ 7→ B1,∆ and Γ 7→ B2,∆ are monotonic with
respect to Γ. By (7→∧R), from Γ 7→ B1,∆ and Γ 7→ B2,∆,
we infer Γ 7→ B1 ∧ B2,∆. Then, for any Γ′ ⊇ Γ,Γ′ 7→
B1,∆ and Γ′ 7→ B2,∆ follows by the assumptions; and
by ( 7→∧R), from Γ′ 7→ B1,∆ and Γ′ 7→ B2,∆, we in-
fer Γ′ 7→ B1 ∧ B2,∆. Hence, Γ 7→ B1 ∧ B2,∆ implies
Γ′ 7→ B1 ∧ B2,∆, that is, Γ 7→ B1 ∧ B2,∆ is monotonic
with respect to Γ.

To show that (7→∧R) preserves the nonmonotonicity of Γ,
assume that Γ 7→ B1,∆ and Γ 7→ B2,∆ are nonmono-
tonic with respect to Γ. By ( 7→∧R), from Γ 7→ B1,∆ and
Γ 7→ B2,∆, we infer Γ 7→ B1 ∧ B2,∆. Then, for some
Γ′ ⊇ Γ,

Γ 7→ A1,∆ may not imply Γ′, A1 67→ ∆;

Γ 7→ A2,∆ may not imply Γ′, A2 67→ ∆;

and by (7→∧R),Γ 7→ B1 ∧ B2,∆ may not imply Γ′ 7→
B1 ∧B2,∆, that is, Γ 7→ B1 ∧B2,∆ is nonmonotonic with
respect to Γ.

To show that ( 7→∧R) preserves the monotonicity of ∆, as-
sume that Γ 7→ B1,∆ and Γ 7→ B2,∆ are monotonic with
respect to ∆. By ( 7→∧R), from Γ 7→ B1,∆ and Γ 7→ B1,∆,
we infer Γ 7→ B1 ∧ B2,∆. Then, for any ∆′ ⊇ ∆,Γ 7→
B1,∆′ and Γ 7→ B2,∆ follows; and by ( 7→∧R), from
Γ 7→ B1,∆ and Γ 7→ B2,∆, we infer Γ 7→ B1∧,∆′.
Hence, Γ 7→ B1 ∧B2,∆ implies Γ 7→ B1 ∧B2,∆′, that is,
Γ 7→ B1 ∧B2,∆ is monotonic with respect to ∆.

To show that ( 7→∧R) preserves the nonmonotonicity of ∆,
assume that Γ 7→ B1,∆ and Γ 7→ B2,∆ are nonmono-
tonic with respect to ∆′. By ( 7→∧R), from Γ 7→ B1,∆ and
Γ 7→ B2,∆, we infer Γ 7→ B1 ∧ B2,∆. Then, for some
∆′ ⊇ ∆,

Γ 7→ B1,∆ may not imply Γ 7→ B1,∆′;

Γ 7→ B2,∆ may not imply Γ 7→ B2,∆′;

and by ( 7→∧R),Γ 7→ B1 ∧ B2,∆ may not imply Γ 7→
B1 ∧ B2,∆′, that is, Γ 7→ B1 ∧ B2,∆ is nonmonotonic
with respect to ∆.

Similar to show that other deduction rules preserve the mono-
tonicity and nonmonotonicity with respect to Γ and ∆.

By the soundness and completeness theorem, we have that
for any formula sets Γ,Γ′,∆ and ∆′,

Γ ⊆ Γ′& |=G3 Γ 7→ ∆ may not imply |=G3 Γ′ 7→ ∆,

∆ ⊆ ∆′& |=G3 Γ 7→ ∆ may not imply |=G3 Γ 7→ ∆′.

6. THE PROPOSITIONAL LOGIC G4

Definition 6.1 A sequent Γ ⇒ ∆ is G4-valid, denoted by
|=G4 Γ⇒ ∆ if for any assignment v, v |= Γ implies v |= ∆,
where v |= Γ if for every A ∈ Γ, v(A) = 1; and v |= ∆ if
for each B ∈ ∆, v(B) = 0.

Proposition 6.2 Let Γ,∆ be sets of literals. |=G4 Γ⇒ ∆ if
and only if

¬∆ ⊆ Γ or incon(Γ).

Proof. Assume that ¬∆ ⊆ Γorincon(Γ). Then, |=G4 Γ⇒
∆.

Conversely, assume that ¬∆ 6⊆ Γ and con(Γ). There is a
literal l ∈ ¬∆− Γ. Define an assignment v such that for any
propositional variable p,

Then, v |= Γ and v 6|= ∆.

The Gentzen deduction system G4 consists of the following
axioms and deduction rules:

• Axioms:

(A⇒) ¬∆ 6⊆ Γ & con(Γ)
Γ⇒ ¬∆ ,

where ∆,Γ are sets of literals.
• Deduction rules:

Theorem 6.3 (The soundness and completeness theorem).
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For any sequent Γ⇒ ∆,

`G4 Γ⇒ ∆ iff |=G4 Γ⇒ ∆.

The propositional logic G4
Definition 6.4 A sequent Γ 7→ ∆ is G4-valid, denoted by
|=G4 Γ 7→ ∆ if there is an assignment v such that v |= Γ
and v |= ∆, where v |= Γ if for every A ∈ Γ, v(A) = 1; and
v |= ∆ if for some B ∈ ∆, v(B) = 1.5.

Proposition 6.5 Let Γ,∆ be sets of literals. |=G4 Γ 7→ ∆ if
and only if

¬∆ 6⊆ Γ&con(Γ).

The Gentzen deduction system G4 consists of the following
axioms and deduction rules:

• Axioms:

(A 7→) ¬∆ 6⊆ Γ & con(Γ)
Γ 7→ ∆ ,

where ∆,Γ are sets of literals.
• Deduction rules:

Theorem 6.6 (The soundness and completeness theorem).

For any sequent Γ 7→ ∆,

`G4 Γ 7→ ∆ iff |=G4 Γ 7→ ∆.

7. CONCLUSIONS
In this paper we proved thatG1, G2, G3, G4, G1, G2, G3, G4
are sound and complete, and their monotonicity given in the
following table:

where ¬Γ = {¬A : A ∈ Γ}. Hence, ¬Γ is consistent if and
only if Γ is consistent.
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