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ABSTRACT

This paper shows the effectiveness of the model proposed in the previous paper for system identifications. In the first simulation,
which is for EX-OR, the fundamental idea of the proposed model is explained. In the second simulation, which is for classification
problems for dataset of Iris, Wine, Sonar and BCW known as benchmark problems, the capability of the model is evaluated for
involving a large number of input variables. In the third simulation, as one of control problems, numerical simulation for obstacle
avoidance problem is performed. In these simulations, it is shown that the proposed model outperforms conventional models in
terms of system identifications.
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1. INTRODUCTION

There have been many studies on self-tuning fuzzy sys-
tems.[1–5] Their aim is to construct self-tuning fuzzy systems
from learning data based on the steepest descent method
(SDM). The obvious drawbacks of the method are its large
computational complexity and getting stuck in a shallow
local minimum. Therefore, ineffective systems with an infer-
ence error and the number of rules are constructed. In order
to construct effective systems, some novel methods have
been developed which 1) create fuzzy rules one by one start-
ing from a small number of rules,[6] 2) delete fuzzy rules one
by one starting from a sufficiently large number of rules,[7]

3) use a genetic algorithm to determine the structure of the
fuzzy model,[5] 4) use a self-organization or a vector quanti-
zation technique to determine the initial assignment of fuzzy
rules,[8, 9] 5) use generalized objective functions.[10] However,
there are little effective fuzzy inference systems. Therefore,

the conventional learning methods with multi-objective fuzzy
modeling and fuzzy modeling with constrained parameters
of the ranges have become popular.[5] On the other hand,
SIRMs (Single-Input Rule Modules) model aims to obtain
a better solution by using fuzzy inference system composed
of single-input rule modules.[11] Although it is easy to apply
SIRMs model to the problems with many input variables, it
is always difficult to obtain a good performance for nonlinear
problems. Accordingly, SNIRMs (Small Number of Input
Rule Modules) models, which is a generalized SIRMs, have
been proposed.[12–14] However, the capability of SNIRMs
models such as DIRMs (Double-Input Rule Modles) one
is still low compared with conventional models. Therefore,
we proposed SIRMs model with linear transformation (LT)
of input variables and showed its performance in previous
papers.[15, 16]
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In this paper, we investigate the performance of the proposed
model for various problems of system identifications. In
the simulation of classification problems, we compare the
proposed model and the conventional model in terms of accu-
racy and the number of parameters. Further, it is shown that
the proposed model can be applied to an obstacle avoidance
problem, which is an application of control problems. In the
simulation results, we will show that the proposed model
outperforms conventional models in terms of accuracy and
the number of parameters.

2. PRELIMINARY

2.1 The conventional model

The conventional model using the SDM was previously
presented.[1, 2, 6] Let Zk = {1, · · · , k} for the positive in-
teger k. Let R denote the set of all real numbers. Let
x = (x1, · · · , xm) and y denote input and output data, re-
spectively, where xi, y∈R for i ∈ Zm. Then, for j ∈ Zn,
the j-th rule of the conventional model is expressed as

Rj : if x1 isM1j and · · · xm isMmj then y is wj (1)

where Mij and wj denote a membership function and the
weight of j-th rule, respectively.

A membership value µj for input x is expressed as follows:

µj =
m∏
i=1

Mij(xi) (2)

For Gaussian membership function, Mij is defined as follow:

Mij(xi) = exp
(
−1

2

(
xi − cij
bij

)2
)

(3)

where cij and bij denote the center and width parameters,
respectively. The output y∗ of fuzzy inference is obtained as
follows:

y∗ =
∑n
j=1 µj · wj∑n
j=1 µj

(4)

The objective function E, which is the inference error be-
tween the desirable output yr and the output y∗, is defined
as follows:

E = 1
2 (y∗ − yr)2 (5)

In order to minimize the objective function E, the procedure
based on SDM updates each parameter β ∈ {cij , bij , wj} as
follows:

β(t+ 1) = β(t)−Kβ
∂E

∂β
(6)

where t is the learning time and Kβ is the learning rate of β,
which is a constant value.

Then, the following relation for Eq.(3) hold:

∂E

∂wj
= µj∑n

j=1 µj
· (y∗ − yr) (7)

∂E

∂cij
= µj∑n

j=1 µj
· (y∗ − yr) · (wj − y∗) ·

xj − cij
b2
ij

(8)

∂E

∂bij
= µj∑n

j=1 µj
· (y∗ − yr) · (wj − y∗) ·

(xj − cij)2

b3
ij

(9)

In the following, Gaussian function is used as a membership
function.

2.2 The leaning algorithm
A typical learning algorithm is introduced as the conventional
one.[2] Let D = {(xp1, · · · , xpm, yrp)|p ∈ ZP } be a given set
of learning data. Figure 1 shows the learning algorithm,
which minimizes the following objective function

E = 1
P

P∑
p=1

(y∗p − yrp)2 (10)

Figure 1. The flowchart of the conventional learning
algorithm

In the algorithm, θ and Tmax are the threshold for inference
error and the maximum number of learning time, respec-
tively.

3. SIRMS AND DIRMS MODELS
The SIRMs and DIRMs models are introduced.[12–14]
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Each rule of SIRMs model is expressed as

SIRM−1 : {R1
i : if x1 is M1

i then y1 is w1
i }ni=1

...

SIRM−l : {Rli : if xl is M l
i then yl is wli}ni=1

...

SIRM−m : {Rmi : if xm is Mm
i then ym is wmi }ni=1

A membership value for input x and output for the l-th rule
are expressed as follows:

µli = M l
i (xl) (11)

y0
l =

∑n
i=1 µ

l
iw

l
i∑n

i=1 µ
l
i

(12)

Then the output of fuzzy inference is obtained as follow:

y∗ =
m∑
l=1

hly
0
l (13)

Each parameter for the objective function E is updated as
follow:

∂E

∂hl
= (y∗ − yr)y0

l (14)

∂E

∂wli
= hl

µli∑l
i=1 µ

l
i

(y∗ − yr) (15)

∂E

∂cli
= hl(y∗ − yr)

(wli − y0
l )∑n

i=1 µ
l
i

xi − cli
(bli)2 (16)

∂E

∂bli
= hl(y∗ − yr)

(wli − y0
l )∑n

i=1 µ
l
i

(xi − cli)2

(bli)3 (17)

where hl, wli, c
l
i and bli are parameters.

Likewise, the rule of DIRMs model is expressed as

DIRMs-12

{R12
i : if x1 is M1

i and x2 is M2
i then y12 is w12

i }ni=1

...
DIRMs-l1l2

{Rl1l2i : if xl1 is M l1
i and xl2 is M l2

i then yl1l2 is wl1l2i }
n
i=1

...
DIRMs-m− 1,m

{Rm−1,m
i : if xm−1 is Mm−1

i and xm is Mm
i

then ym−1,m is wm−1,m
i }ni=1

where l1 < l2.

In this case, a membership value, output for the l1l2-th rule

and output for fuzzy inference system are shown as follows:

µl1l2i = M l1
i (xl1)M l2

i (xl2) (18)

y0
l1l2 =

∑n
i=1 µ

l1l2
i wl1l2i∑n

i=1 µ
l1l2
i

(19)

y∗ =
∑

l1l2∈Z2
m

hl1l2y
0
l1l2 (20)

where Z2
m = Zm×Zm, and l1 < l2.

Each parameter for the objective function E is updated as
follow:

∂E

∂hl1l2
= (y∗ − yr)y0

l1l2 (21)

∂E

∂wl1l2i

= hl1l2
µl1l2i∑n
i=1 µ

l1l2
i

(y∗ − yr) (22)

∂E

∂cl1l2i

= hl1l2(y∗ − yr) · γ · xi − c
l1l2
i

(bl1l2i )2
(23)

∂E

∂bl1l2i

= hl1l2(y∗ − yr) · γ · (xi − cl1l2i )2

(bl1l2i )3
(24)

where γ = (wl1l2
i
−y0

l1l2
)∑n

i=1
µ

l1l2
i

, and hl1l2 , wl1l2i , cl1l2i and bl1l2i are

parameters.

Figure 2. The block diagrams of three types of models for
m = 3

Figure 2 shows the relation among conventional, SIRMs
and DIRMs models for m = 3. Note that each order of
the numbers of rules for three models is O(hm), O(mh)
and O(m2h2), respectively, where h denotes the number of
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partitions in a membership function. Further, the numbers
of parameters for them are (2m + 1)hm, (3h + 1)m and
(5h2 + 1)mC2, respectively.

Learning methods for SIRMs and DIRMs models are shown
as the same methods as Figure 1.

Figure 3. The proposed model: Input x is transformed into
intermediate z by the matrix A and SIRMs model with
variable z is formed

Figure 4. The flowchart of the proposed learning algorithm

4. PROPOSED FUZZY INFERENCE MODEL
The proposed model is shown in Figure 3.[15, 16]

The model consists of two stages. The first stage performs a
linear transformation (LT) A from input x into intermediate
variables z = (z1, · · ·, zl)T as follows:



z1
...
zj
...
zl


=



a10 · · · a1k · · · a1m
...

aj0 · · · ajk · · · ajm
...

al0 · · · alk · · · alm





x0
...
xk
...

xm


(25)

where A = (ajk) for j∈Zl and k∈Zm∪{0} and zj =∑m
k=0 ajkxk for x0 = 1. The second stage is performed

by SIRMs model with z1, · · ·, zl. The output y∗ is calculated
as follows:

µji = M j
i (zj) (26)

y0
j =

∑n
i=1 µ

j
iw

j
i∑n

i=1 µ
j
i

(27)

y∗ =
l∑

j=1
hjy

0
j (28)

where hi for i∈Zl is the weight for the i-th module.

Then, the following relation hold:

∂E

∂hj
= (y∗ − yr)y0

j (29)

∂E

∂wji
= hj

µji∑n
i=1 µ

j
i

(y∗ − yr) (30)

∂E

∂cji
= (y∗ − yr)hj

(wji − y0
j )µji∑n

i=1 µ
j
i

zj − cji
(bji )2

(31)

∂E

∂bji
= (y∗ − yr)hj

(wji − y0
j )µji∑n

i=1 µ
j
i

(zj − cji )2

(bji )3
(32)

Further, ∂E
∂ajk

is computed as follows:

∂E

∂ajk
= (yr − y∗) hj∑n

i=1 µ
j
i

n∑
i=1

µji (w
j
i − y

0
j )zj − c

j
i

(bji )2

(33)

The flowchart for learning algorithm of the proposed model
is shown in Figure 4.

Figure 5. A schematic explanation of the proposed model:
Three lines mean the centers of three membership functions.
Two input of (0; 1) and (1; 0) are nearly on Line 2, where ◦
and • mean output 1 and 0, respectively
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In this case, let θ and Tmax be the threshold for inference
error and the maximum number of learning time.

We will determine the number of intermediate variables l
according to the threshold of inference error θ and the maxi-
mum number of learning time Tmax. Note that the number
of parameters for the proposed model is (m+ 3h+ 2)l.

Figure 6. Simulation on obstacle avoidance, where r1 and
θ1 are the distance and the angle between the agent and the
obstacle, and r2 and θ2 are the distance and the angle
between the agent and the destination.

5. NUMERICAL SIMULATIONS
In this section, the effectiveness of the proposed model is in-
vestigated for EX-OR, classification and obstacle avoidance
problems.

5.1 The EX-OR problems
The EX-OR problem with m input variables is defined by
the following equation.

z = x1⊕x2⊕· · ·⊕xm (34)

where x1, · · ·, xm, z∈{0, 1} and ⊕ is the Exclusive OR op-
erator.[2]

Let Kc, Kb, Kw, Kh, Ka and Tmax in numerical sim-
ulations be the learning rate of cji , b

j
i , w

j
i , hj and ajk

and the maximum number of learning time, respectively.
Further, ajk means each element of the matrix A (See
Eq.(25)). In this simulation, Kc = 0.001, Kb = 0.001,
Kw = 0.05, Kh = 0.05, Ka = 0.01 and h = 3 are
used. Further, Tmax = 50000, 100, 2000 and 50000 are
set for the conventional SIRMs, DIRMs and proposed meth-
ods, respectively. Furthermore, initial parameters cji , b

j
i ,

wji , hj and ajk are as follows: cji is set to equal intervals
1

2h−1 × (the domain of input), and wji , hj and ajk are ran-
domly selected from domains [0, 1], [0, 1] and [−1, 1], re-
spectively. The simulation result is shown in Table 1, where
the symbol “-” means that it is impossible to simulate the

problem in the condition or the result is over 0.25. The MSE
value is the average value from ten trials. In Table 1, MSE
= 0 means that the correct output is obtained for any input
case, and MSE = 0.25 mean that the correct output is not
obtained for just 25% input cases. Therefore, the SIRMs
model and the DIRMs one for m = 3 cannot implement the
EX-OR problem. On the other hand, the proposed model can
implement the EX-OR problem for any m.

Table 1. The simulation result for EX-OR problem with m
input variables

 

 

 
m 

2 3 4 10 

The conventional 0 0 0 - 
SIRMs 0.25 - - - 
DIRMs 0 0.25 - - 
The proposed (l = m) 0 0 0 0 

 

In the following, the idea of the proposed model is explained.
Let us consider the following fuzzy inference system for
l = 1 and n = 3 obtained by learning.

z = 1.07− 0.51x1 − 0.64x2 (35)

h1 = 0.93

SIRMs− 1


R1

1 : if z is M1
1 then y is − 0.06,

R1
2 : if z is M1

2 then y is 1.37,
R1

3 : if z is M1
3 then y is − 0.06,

M1
1 = exp

(
− (z + 0.01)2

0.12

)
(36)

M1
2 = exp

(
− (z − 0.50)2

0.11

)
(37)

M1
3 = exp

(
− (z − 1.00)2

0.12

)
(38)

Figure 7. Learning data for simulation

In Figure 5, three lines of Lines 1, 2, and 3 mean the centers
of three membership functions for Eqs.(36), (37) and (38),
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respectively. As two input of (0,1) and (1,0) are nearly on
Line 2, the output is about 1. Further, output of (0,1) and
(1,0) for Lines 1 and 3 nearly equal to 0. Therefore, output
for (0,1) and (1,0) obtained from all rules nearly equals to
1. Likewise, we can consider about the cases of (0,0) and
(1,1). On the other hand, we have already shown that EX-OR
problem with two variables cannot be implemented by any
SIRMs model.[16]

5.2 Classification problems

For classification problems, the benchmark datasets Iris,
Wine, Sonar and BCW from UCI database are used.[18] The
numbers of data, variables and classes are 150, 4 and 3 for
Iris, 178, 13 and 3 for Wine, 208, 60 and 2 for Sonar and
683, 9 and 2 for BCW, respectively. In order to evaluate the
model, 5-fold cross-validation is used. As the initial condi-
tion, Kc = 0.001, Kb = 0.001, Kw = 0.05, Kh = 0.05,
Ka = 0.01, h = 3 and Tmax = 50000 are used. Further, the
initial value of cji , b

j
i , w

j
i , hj and ajk are as follows: cji is

set to equal intervals 1
2h−1 × (the domain of input), and bji ,

wji , hj and ajk are randomly selected from domains [0, 1],
[0, 1] and [−1, 1], respectively.

Table 2 shows the simulation result for the classification
problems. In each box, two numbers from the top show mis-
classification rate for training and test data sets, respectively,
and the bottom number shows the number of parameters.
The simulation result is obtained as the average value from
twenty trials.

Table 2. The simulation result for classification problems
 

 

 Iris Wine Sonar BCW 

The conventional 
0.004 
0.055 
(729) 

- - - 

SIRMs 
0.021 
0.052 
(40) 

0.022 
0.102 
(130) 

0.024 
0.301 
(600) 

0.055 
0.063 
(90) 

DIRMs 
0.001 
0.057 
(276) 

0.011 
0.092 
(3588) 

- 
0.001 
0.065 
(1656) 

The proposed 
0.029 
0.031 
(45) 

0.001 
0.037 
(72) 

0.001 
0.205 
(213) 

0.016 
0.036 
(60) 

 

In Table 2, the symbol “-” means that it is impossible to sim-
ulate the problem. Table 2 shows that the proposed method is
superior to SIRMs and DIRMs models in terms of accuracy
and the proposed one is superior to the conventional model
in terms of the number of parameters.

5.3 Obstacle avoidance problem
As an application to control problems, let us show simula-
tions of an obstacle avoidance problem used in the previous
paper.[14] See it for the detailed explanation of the simu-
lations.[14] Until now, we have already performed some
simulations by the conventional, SIRMs and DIRMs mod-
els. As a result, the conventional and DIRMs models were
successful in learning and test simulations.[14] We will show
that the proposed model is successful with a small number
of parameters.

Figure 8. Simulation result for Test 1

As shown in Figure 6, four parameters are selected as input
variables. The problem is to construct a fuzzy system by
which the mobile agent avoids the obstacle and arrives at
the destination. The mobile agent moves with the vector
A = (Ax, Ay) at each step, where Ax is constant and Ay
is only adjusted as an output from the fuzzy system. The
learning data with 200 points are obtained from an exami-
nee. Using the learning data, fuzzy inference rules are con-
structed for SIRMs and the proposed models. As simulation
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conditions for SIRMs and proposed models, Kc = 0.001,
Kb = 0.001, Kw = 0.05, Kh = 0.05, Ka = 0.05, h = 3
and Tmax = 50000 are selected. Initial values for cji and bji
are set to equal intervals and 1

2(h−1) (the domain of input),

respectively. Initial values for wji , hj and ajk are selected
randomly from [0, 1], [0, 1] and [−1, 1], respectively. For
h = 3, the number of parameters of SIRMs is 40 and that of
proposed model is 30, respectively.

In the simulations, only when the agent reaches the destina-
tion unless colliding with the obstacle, the trial is regarded
as a successful one. Otherwise, the trial is regarded as a
unsuccessful (failed) one. There are two types of evaluations:
learning and test. For the learning evaluation, the positions of
the agent’s starting point, the obstacle and the destination are
same as the ones of learning data. In the learning evaluation,
SIRMs fails in the trials but the proposed model is successful.
For the test evaluation, one or more of the three positions are
different from the ones of learning data. The following four
types of test evaluations are considered in the simulations.

(1) Test 1 uses some different agent’s starting points (see
Figure 8). Figure 8 shows the movements of the agent from
starting points (0.0, 0.1), (0.0, 0.2), · · ·, (0.0, 0.8), (0.0, 0.9)
after learning. The test evaluation result is shown in Figure
8. Like the learning evaluation, SIRMs fails in the trials but
the proposed model is successful.

(2) Test 2 assumes the scenario where the mobile agent avoids
the obstacle placed at a different place and arrives at the dif-
ferent destination. The proposed model is applied for the
obstacle at (0.4, 0.4) and the destination (1.0, 0.6). Every
trial is successful as shown in Figure 9.

(3) Test 3 assumes the scenario where the obstacle moves
with the fixed speed. As shown in Figure 10, every trial is
successful.

Figure 9. Simulation result for Test 2

Figure 10. Simulation result for Test 3

Figure 11. The movement of the mobile obstacle for Test 4

Figure 12. Simulation result for Test 4

(4) Test 4 assumes the scenario where the obstacle moves
randomly with a random vector B as shown in Figure 11,
where |B| is constant and the angle θb changes randomly at
each step. As shown in Figure 12, the proposed model is
successful for every trial.
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In Ref,[14] we have already shown that the simulations are
successful by DIRMs model in almost the same condition.
In this paper, it is shown that they are successful by the pro-
posed model with half of the parameters compared to DIRMs
model.

Lastly, we consider the interpretation for fuzzy rules of the
proposed model. Let us consider fuzzy rules of Table 3 ob-
tained by learning. Assume that there are three attributes
“small”, “middle” and “large” for r1, r2, θ1 and θ2, and that
there are two attributes left (Ay > 0) and right (Ay < 0)
for the direction of Ay. From this result, we can obtain the
following fuzzy rules:

Z1 : (r1 is small) or (θ1 is large) or (r2 is large) or (θ2 is
small)
A11 : If Z1 is small then move to the right
A12 : If Z1 is middle then move to the right
A13 : If Z1 is large then move to the left
Z2 : (r1 is large) or (θ1 is small) or (r2 is small) or (θ2 is
large)
A21 : If Z2 is small then move to the left
A22 : If Z2 is middle then move to the left
A23 : If Z2 is large then move to the right

Let us consider the behavior for two cases on the places of
object.
(I) The case that the mobile agent approaches to the obstacle:

In this case, “r1 is small” and “r2 is large” are valid.
(i) If θ1 is large, the mobile agent move to the left based on
A13.

(ii) If θ1 is not so large, the mobile agent move to the right

based on A11 or A12.
Likewise, we can also explain about the rule of Z2.
(II) The case that the mobile agent approaches to the destina-
tion:

In this case, “r1 is large” and “r2 is small” are valid.
(i) If θ2 is large, the mobile agent move to the right based

on A23.
(ii) If θ2 is not so large, the mobile agent move to the left

based on A21 or A22.
Likewise, we can also explain about the rule of Z1.

That is, it is shown that the mobile agent moves away from
the obstacle when the mobile agent approaches to the obsta-
cle and mobile agent moves to the direction of the destination
when the mobile agent approaches to the destination.

6. CONCLUSIONS
In previous papers, we proposed the SIRMs model with LT
of input variables. In this paper, we showed the effectiveness
of the proposed method for system identifications. In the
second simulation of classification problems, well-known
benchmark datasets Iris, Wine, Sonar and BCW are used.
According to the simulation result, it is difficult for the con-
ventional model to implement classification problems with
large number of parameters such as Wine, Sonar and BCW.
However, the proposed model can implement them while
keeping high accuracy. Further, as one of control problems,
the simulation of obstacle avoidance problem is performed.
The simulation result shows that the proposed model out-
performs conventional models in terms of accuracy and the
number of parameters. In our future work, we will consider
to refine the proposed model.
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