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ABSTRACT

The surge of interest in personalized and precision medicine during recent years has increased the application of ordinal
classification problems in biomedical science. Currently, accuracy, Kendall’s τb, and average mean absolute error are three
commonly used metrics for evaluating the effectiveness of an ordinal classifier. Although there are benefits to each, no single
metric considers the benefits of predictive accuracy with the tradeoffs of misclassification cost. In addition, decision analysis that
considers pairwise analysis of the metrics is not trivial due to inconsistent findings. A new cost-sensitive metric is proposed to
find the optimal tradeoff between the two most critical performance measures of a classification task – accuracy and cost. The
proposed method accounts for an inherent ordinal data structure, total misclassification cost of a classifier, and imbalanced class
distribution. The strengths of the new methodology are demonstrated through analyses of three real cancer datasets and four
simulation studies. The new cost-sensitive metric proved better performance in its ability to identify the best ordinal classifier for
a given analysis. The performance metric devised in this study provides a comprehensive tool for comparative analysis of multiple
(and competing) ordinal classifiers. Consideration of the tradeoff between accuracy and misclassification cost in decisions
regarding ordinal classification problems is imperative in real-world application. The work presented here is a precursor to the
possibility of incorporating the proposed metric into a prediction modeling algorithm for ordinal data as a means of integrating
misclassification cost in final model selection.
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1. BACKGROUND

Ordinal classification is a multiclass classification problem
where objects are classified into groups that have an inherent,
natural ordering. In recent years, the prevalence of ordinal
classification problems in clinical cancer research has dra-
matically increased due to technological advancements in
genomics research coupled with the rise of personalized and
precision medicine.[1, 2] For example, typically, real-valued
attributes are used to classify a patient into one of several

ranked target classes such as health status, cancer stage, tu-
mor grade, risk prediction, or survival prognosis.

In practice, an integral task of a single classification study
is comparing the utility of several classifiers based on a pre-
defined performance metric. Choosing the best classifier
for a given dataset often involves consideration of multi-
ple input variables (or feature sets) and multiple machine
learning algorithms that employ different decision criteria.
Measures to assess the comparative performance of multiple
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classifiers for two-class problems are well defined. In su-
pervised learning for multiclass prediction, typically perfor-
mance metrics suitable for binary classification problems are
modified to accommodate multiclass problems (see Refs.[3, 4]

for two independent reviews). In turn, performance measures
for nominal classification problems are generally applied to
datasets with ordinal class structures.[5, 6] However, valuable
information is contained in the implicit ordered relationship
between classes and should not be disregarded in evaluating
the comparative performance of multiple ordinal classifiers.

Classification accuracy (Acc), the proportion of correctly
predicted objects/samples, is the most commonly used per-
formance metric to evaluate multiple classifiers. However,
accuracy alone is insufficient since it does not incorporate
a penalty for decision-theory misclassification costs. More-
over, Acc as a single metric is not effective for datasets with
imbalanced class distributions or ordinal datasets.[5, 7] Alter-
natively, performance metrics that measure the degree of loss
between predicted and true class membership have been pro-
posed as a supplement to Acc. These include mean absolute
error (MAE), mean squared error (MSE), and average MAE
across classes (AMAE). Although each of the aforemen-
tioned statistics attributes a higher cost to misclassifying an
object into a more distant class, each measure depends heav-
ily on the values used to label each class. In order to avoid
the quantitative influence of arbitrary class labels, Kendall’s
τb

[8] is generally used to assess the nonparametric associa-
tion between true and predicted class labels. Other proposed
methods consist of modifications of the receiver operating
characteristic (ROC) curves,[9] additional ordinal association
coefficients,[10, 11] and variants of rank-order correlation.[12]

Several algorithms have been developed to classify ordinal
data;[2, 13–17] some have been specifically devised to incor-
porate the cost of misclassification error.[18, 19] While these
methods may improve the precision of an ordinal classi-
fier, appropriate evaluation metrics for comparative studies
designed to determine the best classifier among multiple clas-
sifiers are still lacking. In this manuscript, we develop a new
performance metric to evaluate the performance of multiple
multiclass classifiers for a given ordinal dataset. The pro-
posed metric, which incorporates a cost for misclassification
and a weighting factor for class distribution, is guided by the
tradeoff between accuracy and misclassification cost. Several
real cancer datasets are used to present an analysis of the
proposed metric compared to Acc, AMAE, and Kendall’s
τb as comparative performance metrics. In addition, a study
of simulated confusion matrices with fixed accuracy is used
to evaluate the effectiveness of the aforementioned ordinal
metrics.

2. METHODS

2.1 Multiclass prediction performance metrics

There are many metrics to evaluate the efficiency of a multi-
class classifier. The list of metrics suitable for ordinal data is
much more limited. In general, three types of performance
metrics are used to evaluate ordinal classifiers. These mea-
sures include assessing overall accuracy, misclassification
error that accounts for the inherent order between classes,
and rank association. The goal of each is to measure how
well predicted class labels for N samples, {ŷ1, ŷ2 · · · , ŷN},
correspond to true class labels, {y1, y2, · · · , yN}. The most
popular metric for assessing a classifier’s performance is
Acc, which measures the proportion of correct classification:

(1)

where I{} is the indicator function with value 1 if ŷi = yi and
0 otherwise and 0 ≤ Acc ≤ 1. While accuracy is simplistic
in nature and provides a general overview of a classifier’s
performance, it ignores the cost of misclassification. On the
other hand, metrics such as MAE and MSE solely account
for misclassification by measuring the degree of error be-
tween true and predicted labels through a loss function. If
class sizes are imbalanced, which is typical in most cancer
classification studies, computing a weighted average of MAE
across all classes (AMAE)[5] is more robust.

(2)

where M is the number of classes, nm is the number of sam-
ples in the mth class, I{} is the indicator function with value
1 if yi ∈ classm and 0 otherwise, andAMAE ∈ [0,M−1].
Alternatively, the association between {y} and {ŷ} can be
measured using rank order correlation statistics. The most
widely used rank correlation coefficient is Kendall’s correla-
tion coefficient[8] τb ∈ [−1, 1]:

(3)

where C = the number of concordant pairs, D = the number
of discordant pairs, Tt = the number of tied pairs in the true
class membership, and Tp = the number of tied pairs in the
predicted class membership. Unlike metrics that measure
error via a loss function, Kendall’s τb simply assesses the
order relation between true and predicted class labels. Thus,
it is not affected by values chosen to represent class labels,
which are often arbitrary.
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2.2 Formulating the cost matrix

Let CM×M denote the cost matrix associated with predicting
the class membership ofN test objects into one ofM classes
for a single experiment. Let the rows and columns of CM×M

denote the predicted and true class membership, respectively.
Thus, an entry ci,j denotes the cost of misclassifying a “class
j” object into “class i”.

In this study, misclassification cost denotes the cost attributed
to a single classifier rather than simply the penalty or cost
of misclassifying a single object. Misclassification cost, as
presented herein, uses information from the distribution of
classes and domain knowledge about the ordinal class struc-
ture to derive the total misclassification cost associated with
a classifier. More specifically, cost is measured by the prod-
uct of two factors – the inverse probability of misclassifying
an object into a specific class given that the object has been
misclassified and absolute deviation between true and pre-
dicted class membership. The first component of the cost
term ensures that cost is weighted by class size so that pre-
diction error for rare classes is not masked by the majority
class. The second component is a linear absolute value loss
function, which measures the distance between predicted
and true class labels. This component could also indicate
the cost unit from domain knowledge and may be modified
based on study need. No cost is attributed to correct classi-
fication; therefore, all diagonal entries of CM×M are set to
ck,k for k = 1, · · · ,M . The off-diagonal entries of CM×M

are computed as:

(4)

with ni representing the number of training samples in “class
i”.

As an example, we present the cost matrix C of an imbal-
anced ordinal dataset with 3 classes of size 10, 20, and 70.
C is computed as the element-wise product of a matrix de-
noting misclassification cost given the inverse probability
of misclassifying an object into a specific class given that
the object has been misclassified and a symmetric matrix
representing the linear absolute value loss function:

Based on the given class distribution, the probability of mis-

classification into a given class, and the distance between
true and predicted class membership, entry c1,2 is attributed
highest cost.

2.2.1 Total misclassification cost of a classifier
Let FM×M represent the confusion matrix of a single clas-
sifier for an M -class classification problem. The confusion
matrix summarizes the performance of a classifier by dis-
playing how all N samples are distributed across predicted
(rows) and true (columns) class membership. For example,
f1,1 represents the total number of “class 1” samples that
were correctly classified, whereas f1,2 represents the total
number of “class 2” samples that were incorrectly classified
as “class 1”. By considering the cost matrix and the confu-
sion matrix for a classifier, total misclassification cost (TC)
of a supervised learning algorithm is represented as:

(5)

2.2.2 Estimating maximum total misclassification cost of
a classifier

We utilized ROC-based methods to construct the proposed
method, which identifies the best classifier by considering
the optimal tradeoff between the cost and accuracy of mul-
tiple classifiers. This approach requires transformation of
total misclassification cost to the [0,1] domain, which can
be achieved by reporting TC as a percentage of the maxi-
mum TC of a single classification problem. Maximum TC is
computed by fixing the cost matrix C and allowing the confu-
sion matrix Fx to be a random variable (in essence, allowing
for varying observations of a classifier’s performance). The
value of maximum TC was obtained by optimizing the func-
tion:

(6)

subject to the constraints:

The constrOptim[20] function in R (http://www.r-pro
ject.org) was used to determine the unique solution of
maxTC subject to the specified constraints.
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2.3 The tradeoff between accuracy and cost
Let Acc and MC = TC/max TC denote the accuracy and
misclassification cost, respectively, of a single classifier. The
[0, 1]×[0, 1] grid space for evaluating the comparative perfor-
mance of multiple classifiers is provided in Figure 1. Ideally,
the best classifier would achieve highestAcc and lowestMC,
resulting in an (Acc,MC) coordinate closest to (1, 0). The
distance between a classifier’s (Acc,MC) coordinate and
the ideal coordinate of (1, 0) is represented by:

(7)

where d ∈ [0,
√

2]. In this study, the classifier that achieves
minimum distance d is selected as the classifier with superior
performance. In the case of tied d statistics, the superior
classifier is identified as the point that maximizes the vertical
distance from the line of random chance. This distanced is
measured as |Acc+MC − 1|/

√
2.

Figure 1. [0, 1]× [0, 1] performance grid for evaluating the
comparative performance of multiple classifiers by
balancing misclassification cost and accuracy

3. RESULTS AND DISCUSSION
3.1 Analysis of three cancer datasets
We evaluated the performance of the proposed methodol-
ogy using three cancer datasets with ordinal class structure.
Each ordinal dataset had 3 ≤M ≤ 5 classes. In this paper,
the three datasets are referred to as: colon cancer (down-
loaded from the GEO database [GSE17536]),[21] lung cancer
(GSE19804),[22] and ovarian cancer[23] (obtained from the
TCGA database). There are multiple and competing ways to
derive a gene expression classifier. The subsequent analysis
carried out for each dataset presents a different application
of how the proposed methodology may be implemented in
ordinal classification decision theory. It is important to note
that for the purposes of this paper, we do not emphasize the
methodology behind building a classifier or assert that the

methods used in this paper are superior. Rather, the different
applications simply provide a platform for comparing mul-
tiple ordinal classifiers, which is the primary focus of the
current work.

3.1.1 Colon cancer dataset
Gene expression profiles from colon cancer patients cate-
gorized by 4 American Joint Committee on Cancer (AJCC)
stages were downloaded from the Gene Expression Om-
nibus (GEO) database (GSE17536).[21] AJCC stages were
available for 177 patients from the Moffitt Cancer Center,
resulting in 24, 57, 57, and 39 patients with AJCC stages
of I-IV respectively. For illustrative purposes, we applied
a support vector machine (SVM) algorithm and two ordi-
nal classification algorithms that were available in R to the
dataset. The SVM model, which uses hyperplanes to opti-
mize the linear separation between classes, was implemented
using the e1071 package[24] in R. The two ordinal predic-
tion models were constructed using the R packages glm-
netcr[14] and rpartScore.[16] In glmnetcr, ordinal response
data is modeled with an L1 penalized continuation ratio
model. rpartScore builds classification and regression trees
for ordinal response categories. Classification trees are con-
structed by a user-specified ordinal impurity function and
are pruned by a user-specified measure of predictive perfor-
mance. Both ordinal classification algorithms were designed
for high-dimensional data and can accommodate “large p,
small n” datasets. All three classification models were built
using a reduced dataset consisting of the 100 top-ranked
genes determined by ANOVA F -test statistics. For simplic-
ity, each prediction model was trained and tested on the same
Moffitt Cancer Center samples. Confusion matrices present-
ing the results of each algorithm are presented in Table 1(a).

According to all ordinal performance metrics, comparative
analyses of the three classifiers (presented in Table 2) demon-
strate that SVM markedly dominates both ordinal classifiers.
Not only does SVM achieve highest accuracy, but it also
has the lowest AMAE and the highest rank correlation. Nat-
urally, the identification of SVM as the superior classifier
holds when assessing our proposed metric d, i.e. SVM also
attains minimum d (see Figure 2(a)).

3.1.2 Lung cancer dataset
Microarray gene expression from 56 lung adenocarcinoma
patients (GEO; GSE19804)[22] with varying stages of dis-
ease was used to evaluate the performance of selected per-
formance metrics. Stage information of these patients was
encoded into three categories. Among the 56 patients, only
one sample (103T) was stage 4 and thus was grouped with
stage 3 patients. In total, there were 31 stage 1 patients, 12
stage 2 patients and 13 stage 3 patients. For each gene, a
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linear regression model was performed to evaluate whether
its expression level was associated with patients’ stage. This
analysis identified 24 significant genes (p < .0001), which
were subsequently used to develop a classifier using the diag-
onal linear discriminant analysis[25] prediction algorithm. A
leave-one-out cross-validation procedure was used to predict
stage information for each patient. In addition, we shuffled
the resulting confusion matrix to create a second set of pre-
dicted results with the same accuracy. To establish a null
baseline for comparison, we randomly selected 24 genes
from the original gene pool in GSE19804 and developed a
corresponding prediction model to predict stage information
for each patient.

Table 1. Confusion matrices of classifiers for (a) colon
cancer patients classified by 4 AJCC stages (GSE17536), (b)
lung adenocarcinoma patients classified by 3 ordered stages
of disease (GSE19804), and (c) TCGA ovarian cancer
patients classified by 5 stages of disease.
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Confusion matrices resulting from prediction using the 24
significant predictor genes (Sig24), shuffling the confusion
matrix of Sig24 (Shuffle24) but maintaining the same accu-
racy, and prediction using 24 randomly selected predictor
genes (Rand24) are given in Table 1(b). As expected, the
classifier generated by Rand24 performs worst according to
all four performance metrics. Since accuracy is the same for
Sig24 and Shuffle24, a comparative analysis of the two must
be guided by some other performance metric. Unfortunately,
AMAE and τb, two metrics often recommended for ordinal
datasets, present conflicting results. Shuffle24 has smaller
misclassification error; however, Sig24 has higher rank cor-
relation. On the other hand, our proposed metric d, which
assesses the balance between accuracy and misclassification
cost, clearly indicates that Sig24 is the better classifier of the
two (see Table 2(b), Figure 2(b)).

3.1.3 Ovarian cancer dataset
All four ordinal classification performance metrics were also
evaluated on an ovarian cancer dataset downloaded from The
Cancer Genome Atlas Database.[23] Data was obtained for
579 ovarian cancer patients who were classified into five
different groups based on their stage information (Group 1:
stage IA-IC, n=16; Group 2: stage IIA-IIC, n=30; Group 3:
stage IIIA-IIIB, n=32; Group 4: stage IIIC, n=417; Group
5: stage IV, n=84). For each gene, an ANOVA test was
performed to investigate whether its expression level was as-
sociated with stage of disease. Four different significant gene
sets were identified by using four distinct p-value thresholds
(p < 10−8, p < 10−7, p < 10−6, and p < 10−5). Similar to
the analysis for the lung cancer dataset, a leave-one-out cross-
validation procedure and the DLDA method were utilized to
predict stage of ovarian cancer for each patient. Confusion
matrices showing classification results for the four classifiers
produced by the varying gene sets are presented in Table
1(c).

Similar to the lung cancer dataset, our proposed statistic, d,
favors the classifier with highest accuracy (see Figure 2(c)).
Interestingly enough, p_1E-8 has the highest AMAE and is
tied with p_1E-7 for the lowest measure of τb, which would
suggest that the classifier using a p-value threshold of p_1E-8
has poorest performance. However, p_1E-8 is a clear winner
in this particular comparative analysis because not only does
it attain highest accuracy, it also has the lowest misclassifica-
tion cost. This assessment/decision is not trivial without the
added information of misclassification cost.

3.2 Simulation study
Four simulation studies were conducted to further evaluate
the comparative performance of d, AMAE, and Kendall’s τb

as metrics for comparing multiple classifiers. For each simu-
lation study, we simulate the performance of a classification
model by simulating confusion matrices (i.e. the classified
outcome rather than raw data) and evaluate the effectiveness
of each metric when comparing two confusion matrices with
equal accuracy. Naturally, Acc ceases to be a useful metric
under the setting of equal predictive accuracy. Moreover,
the goal of the simulation study was to assess how often the
ordinal performance metrics, d, AMAE, and Kendall’s τb, co-
incided with the preferred (i.e. lower misclassification cost)
classifier when accuracy was fixed. In general, 4 or 5 class
confusion matrices were simulated based on designs of either
fixed class-wise accuracy (Acci = Acc for i = 1, · · · ,M )
or fixed overall accuracy. A total of 10,000 pairs of confusion
matrices were evaluated for each simulation scenario. We
reported the percent of instances (out of 10,000) where d,
AMAE, and Kendall’s τb favor the confusion matrix with
lower cost.
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Figure 2. Performance grid of misclassification cost (MC) versus accuracy for the (a) colon cancer (GSE17536), (b) lung
cancer (GSE19804), and (c) TCGA ovarian cancer datasets.

Table 2. Summary of performance metrics for the colon cancer, lung cancer, and ovarian cancer datasets. The arrow listed
beside each performance metric indicates whether low values (↓) or high values (↑) are preferred.

 

 

 

Performa
nce Metric 

Colon Cancer  Lung Cancer  Ovarian Cancer 

SVM Glmnetcr RpartScore  Sig24 Shuffle24 Rand24  p_1E-8  p_1E-7  p_1E-6 p_1E-5 

d ↓ 0.07 1.07 0.26 0.33 0.36 0.68 0.55 0.70 0.73 0.74 

Accuracy ↑ 0.93 0.32 0.75 0.73 0.73 0.43 0.46 0.34 0.30 0.28 

AMAE ↓ 0.11 1.00 0.29 0.34 0.28 0.86 1.15 1.1 0.97 0.87 

b ↑ 0.91 NA 0.79 0.72 0.49 0.08 0.19 0.19 0.25 0.28 

In the first two simulations, 4 × 4 confusion matrices to
represent four ordinal classes were simulated based on the
following criteria: total sample size N = 400, accuracy set
to 0.60 and 0.80, and proportion of the largest class to total
sample size set to 0.25 (balanced design), 0.50, and 0.75.
Confusion matrices were simulated with fixed class-wise
accuracy in Simulation 1 and with fixed overall accuracy in
Simulation 2. As an extension of Simulation 2, we increase
the total sample size to N = 800 in Simulation 3, all other
settings held constant. In Simulation 4, 5× 5 confusion ma-

trices to represent five ordinal classes were simulated based
on the following criteria: total sample size N = 1, 000,
fixed overall accuracy set to 0.60 and 0.80, and proportion of
largest class to total sample size set to 0.25 (balanced design),
0.50, and 0.75.

The study of simulated confusion matrices reveals a number
of key findings (see Table 3). Since the proposed method-
ology is the only one that incorporates cost, our method
scores perfectly across all simulation settings. In a com-
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pletely balanced design, the cost matrix (as specified in the
current manuscript) is equal to a scalar times AMAE. Thus,
AMAE and d perform identically for most of the simulation
study designed for balanced class sizes. When the number
of classes increases and fixed overall accuracy is set to 80%,
as in Simulation 4, a small number of simulated confusion
matrices contained no entries for predicted class 1. In this
case, AMAE chose the classifier with a higher misclassifica-
tion cost, which explains the slight deviation of AMAE from
d in Simulation 4 for Acc = 80%.

Table 3. Summary of comparative performance metrics for
four simulation studies, each was carried out under two
predictive accuracy settings – 0.60 and 0.80.

 

 

Simulation 
 Acc=60%  Acc=80% 

 
Bal 0.50 0.75  Bal 0.50 0.75 

1 d 1.000 1.000 1.000  1.000 1.000 1.000 

 
AMAE 1.000 0.616 0.591  1.000 0.609 0.571 

 b  0.960 0.708 0.673  0.980 0.726 0.726 

2 d 1.000 1.000 1.000  1.000 1.000 1.000 

 
AMAE 1.000 0.571 0.646  1.000 0.592 0.666 

 b  0.905 0.671 0.606  0.956 0.703 0.443 

3 d 1.000 1.000 1.000  1.000 1.000 1.000 

 
AMAE 1.000 0.570 0.651  1.000 0.572 0.661 

 b  0.908 0.683 0.606  0.961 0.724 0.443 

4 d 1.000 1.000 1.000  1.000 1.000 1.000 

 
AMAE 1.000 0.601 0.686  0.996 0.599 0.717 

 b  0.909 0.667 0.662  0.953 0.708 0.516 

 

In Table 3, Simulation 1 has 4 classes with fixed class-wise
accuracy. Simulation 2 is a study of 4 classes with fixed
overall accuracy. Simulation 3 is an extension of Simula-
tion 2 with double the total sample size. Simulation 4 has 5
classes with fixed overall accuracy. Each simulation study is
evaluated for balanced class distribution (Bal), largest class
size 50% of total sample size (0.50), and largest class size
75% of total sample size (0.75).

Kendall’s τb performs best when the class sizes are balanced
and class-wise accuracy is fixed, a scenario that is not often
encountered in real-world application. In every simulation
scenario, Kendall’s τb monotonically decreases as the im-
balance between class sizes increases. In general, as the
opportunity for misclassification error increases, Kendall’s
τb is more severely impacted. In Simulations 2 – 4, we ob-
served a much larger gap between largest class percentages
of 0.50 and 0.75 when Acc is fixed at 0.80. In the former
largest class percentage, there is less of an imbalance in class
size so when accuracy is high, a number of classes can be per-
fectly classified. This, in turn, reduces misclassification error
and increases the potential association between predicted and

true class membership.

In contrast to Kendall’s τb when overall Acc is fixed, AMAE
shows a consistent v-shaped pattern across increased class
distribution imbalance. Performance measures are lower
for the largest class percentage of 0.50 due to the increased
range of possible absolute error. A property observed across
all ordinal metrics is the invariance of performance to total
sample size and number of classes.

In our analysis of real data, the proposed methodology often
selected the classifier that achieved highest accuracy, which
is reasonable since a classifier with high accuracy is more
likely to also have low cost. The decision to favor a model
with better accuracy is intuitive when there is a large dis-
crepancy in predictive accuracy. Thus, to study the tradeoff
between accuracy and cost and evaluate the ability of the
selected metrics to identify a lower accuracy/lower cost clas-
sifier, we carried out an additional simulation study with
fixed overall accuracy set to 0.6, 0.7, and 0.8. Confusion ma-
trices were simulated for a 4 class study with a total sample
size of 800 and largest class percentage of 0.75. A total of
10,000 confusion matrices were simulated for each accuracy
setting. We performed a pair-wise analysis of the simulated
confusion matrices for Acc = 0.60 vs. Acc = 0.70 and for
Acc = 0.70 vs. Acc = 0.80 and identified pairs of matrices
where the proposed metric favored the lower accuracy/lower
cost confusion matrix. A representative sample of the hits
from each accuracy comparison is provided in Table 4.

In the first comparison, the classifier with lower accuracy is
preferred by d although AMAE and Kendall’s τb favor the
classifier with higher accuracy. However, MC is at least two
folds higher for the higher accuracy classifier (0.15 vs. 0.33
for Acc = 0.60 vs. Acc = 0.70). Thus, we are willing to
forsake a 10% increase in accuracy for a 50% increase in
cost, which is a decision the other metrics never consider.
In the second comparison (see Table 4(b)), we again ob-
serve that the classifier with higher accuracy also has higher
cost. The value of MC for confusion matrices generated with
Acc = 0.70 and Acc = 0.80 are 0.13 and 0.26, respectively.
Although this comparison also demonstrates that the price to
pay for 10% increase in accuracy is double the value in cost,
analysis of the d metric shows almost no distinction between
the two. When this happens, we base our decision on the
distance from the line of random chance to the coordinates
for each classifier. These distances are 0.12 and 0.04 for
Acc = 0.70 and Acc = 0.80, respectively, which indicates
that the classifier with 70% accuracy is farther from the line
of random chance in the performance grid (see Figure 1) and
is thus the superior classifier.
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Table 4. Representative confusion matrices and ordinal
performance metrics for evaluating simulated data with (a)
Acc = 0.60 vs. Acc = 0.70 and (b) Acc = 0.70 vs.
Acc = 0.80
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4. CONCLUSIONS
Predictive accuracy for multiclass classification problems
has a number of drawbacks when evaluating data with im-
balanced class distribution. For example, if the largest class
represents a large proportion of all the samples, the classifier
can achieve high accuracy by simply classifying each sample
into the majority class. However, the cost associated with
misclassifying a sample can be detrimental when classes are
ordered and there is an increasing probability of risk. The
most efficient classifier should consider these costs along
with predictive accuracy.

An interesting observation in this study is that the best cost-
sensitive model was not consistent with pairing Acc with
AMAE or Acc with Kendall’s τb. In other words, in some
cases the model with better accuracy had higher misclassifica-
tion error and sometimes the model with higher accuracy had
lower rank correlation. This is problematic if either ordinal
metric is used to judge the performance of a prediction model
in lieu of accuracy or taken together with Acc. Naturally, if
two classifiers have the same predictive accuracy, then the
classifier associated with lower cost is the better model. Our
analysis of simulated confusion matrices with fixed accuracy
settings demonstrates that although AMAE is more consis-

tent with the proposed method when class size is balanced,
neither AMAE nor Kendall’s τb consistently correlated with
the classifier associated with lower cost under imbalanced
class distribution. This was true for varying sample sizes,
class distributions, and number of classes.

In this study, we incorporate domain knowledge by assuming
a linear loss function in the cost matrix for ordinal classifi-
cation to determine the optimum tradeoff between cost and
accuracy. This imposes a constraint on evaluation that may
not be ideal. For example, in an application of cancer predic-
tion, the cost associated with classifying a normal patient into
an advanced cancer category is not equivalent to the cost of
mislabeling a patient with advanced cancer as normal. Since
it is difficult to estimate the true cost matrix, a linear loss
function offers some guidance in quantifying a cost-sensitive
measure. On the other hand, if a researcher has additional
information that would suggest a different or more accurate
cost function, then the proposed methodology can be easily
modified by changing the cost matrix.

Previous studies have evaluated accuracy and alternative per-
formance metrics for ordinal data and have compared them
under different settings and for different purposes.[26, 27] In
this study, we introduce a new performance metric for com-
paring ordinal classifiers and use the ordered relationships
between classes to attribute cost to each error. We make
no presumptions about the predictive modeling algorithm
(e.g. details about feature selection, incorporating misclassi-
fication cost in the classifier-building algorithm, final model
selection, etc.) nor do we stress how the resulting classi-
fication was derived; although most algorithms are guided
by accuracy. Subsequent to selecting suitable classifiers for
a given dataset, the current work provides researchers an
improved metric for evaluating the comparative performance
of multiple ordinal classifiers. Alternatively, it may prove
beneficial to utilize the proposed metric in the development
of an ordinal classifier through the process of integrating cost
as a means of selecting the final classifier model.
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