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Abstract
The previous studies demonstrated the effectiveness of the multi-fractal based method for the classification of histo-pathological
cases by calculating the local singularity coefficients of an image using different intensity measures. This paper proposed to
improve the previous results by investigating the features derived from the combination of the alpha-histograms and the multi-
fractal descriptors in the classification of Emphysema in computed tomography (CT) images. The performances of the classifiers
are measured by using the classification accuracy (error matrix) and the area under the receiver operating characteristic curve
(AUC). And further, the experimental results compared well with the local binary patterns (LBP) approach, a state-of-the-art
measure for pulmonary Emphysema. The results also show that the proposed cascaded approach significantly improves the
overall classification accuracy.

Key Words: Emphysema classification, Multi-fractal analysis, Multi-fractal spectrum, Histogram comparison, Statistical
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1 Introduction

Emphysema is one of the main components of chronic ob-
structive pulmonary diseases (COPD); it is characterized
by loss of lung tissue and may eventually lead to grad-
ual destruction of the lung. Detection and classification of
Emphysema are therefore very important as this may lead
to improved computer-aided diagnosis (CAD).[1] Diagnos-
ing Emphysema usually requires pulmonary function tests
(PFTs), combined with a history of symptoms. The main
tool through which the tests are performed is the spirom-
eter; however, PFTs are not capable of detecting COPD
at early stages. Another popular tool for diagnosing Em-
physema is high resolution computed tomography (HRCT)
imaging. CT imaging is a suitable method for demonstrat-
ing the presence, distribution and extent of Emphysema pat-

terns in images.[1] Emphysema in HRCT is characterized
by the presence of areas of abnormally low attenuation,
which can be easily contrasted with surrounding normal
lung parenchyma.[2] Emphysema can be classified into three
different classes: centrilobular Emphysema (CLE), parasep-
tal Emphysema (PSE) and panlobular Emphysema (PLE).
Sorensen has recently introduced new methods for texture
analysis in CT images using local binary patterns (LBP) that
achieved promising results in the classification of Emphy-
sema subtypes.

The intensity distribution of lung tissue images is highly ir-
regular and does not often permit a direct definition of shape
parameters using geometrical descriptors. One approach to-
wards extracting relevant features is to make use of the sta-
tistical self-similarities in local intensity variations. Most
biomedical images exhibit such statistical self-similarity, a
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repetition of form over a variety of scales. Several methods
of multi-fractal analysis of medical images have been sug-
gested and evaluated in different ways.[3–8] Hemsley and
Mukundan[3] developed a two-pass algorithm for the com-
putation of multi-fractal spectrum and used the calculated
spectra for the classification in a tissue image database. In
Ref.,[4] the Holder exponent for the power law approxima-
tion of intensity measures in pixel neighbourhood is used
for resolving local density variations in the CT lung images.

Multi-fractal analysis could find applications in Emphy-
sema classification in CT images of the lung, but not much
research has so far been done in this area. Recently in
Ref.,[9] we had proposed a classification algorithm using
multi-fractal descriptors. This paper provides an improved
method using a combination of two different descriptors
(multi-fractal spectra and alpha-histograms) for obtaining
higher accuracy in the results. The first approach combines
the features obtained from the multi-fractal descriptors and
the alpha-histograms in the form of hybrid for the classifica-
tion process. The second idea uses the area under the ROC
curves to identify the best features that could yield max-
imum classification accuracy and high computational effi-
ciency. The remainder of this paper is organized as follows:
In section 2, different intensity measures used for the com-
putation of Holder exponent and the overview of the multi-
fractal methods are outlined. Experimental results and dis-
cussion are given in section 3. Finally, section 4 summarizes
the work and outlines some future directions.

2 Material and methods
The online CT Emphysema database[10] used for this re-
search consists of 168 non-overlapping annotated ROIs of
size 61 × 61 pixel patches from three different classes:
NT (59 never-smokers), CLE (50 healthy smokers), and
PSE (59 smokers with COPD).[11] The system overview for
the multi-fractal approach of Emphysema classification is
shown in Figure 1. The process involves several algorithmic
stages, first of which is the calculation of the Holder expo-
nent (α-values) at each pixel using a pre-selected intensity
measure defined in pixel neighbourhoods. This computa-
tion is explained in detail in Section 2.1. The α-values de-
scribe the variation in the local density of the image with re-
spect to the chosen measure. The collection of all α-values
for a given image is referred to as the α-image. The range
of α-values is subdivided into a number of small intervals,
effectively decomposing the α-image into several disjoint
image slices. Each α-image slice represents the collection
of pixels in the input image having similar intensity varia-
tion (obeying similar power-law relationship in the intensity
measure) across the pixel neighbourhoods. The traditional
box-counting method is used for the calculation of the frac-
tal dimension f(α) of the α-images, providing the multi-
fractal spectrum. The pixels having similar α-values collec-
tively yield a α-histogram. Both the α-histogram and the

multi-fractal spectrum contain highly discriminating texture
features. Such features are gathered to form a descriptor and
used in the image classifier.

2.1 Holder exponent and multi-fractal measures

The multi-fractal analysis describes the fractal properties of
an image using an intensity-based measure within the neigh-
bourhoods of each pixel. The local singularity coefficient,
also known as the Holder exponent[5, 12–14] reveals the local
behaviour of a measure function denoted as µp(w) where w
stands for the window size centred at the pixel p (see Figure
2). The variation of the intensity measure with respect to w
can be characterized as follows:

µp(w) = Cwαp (1)

w = 2k + 1, k = 0, 1, 2, · · · ,m (2)

where C is an arbitrary constant, and m is the total number
of boxes used in the computation of αp. The value of αp can
be estimated from the slope of the linear regression line in
a log-log plot where log(µp(w)) is plotted against log(w).
Some commonly used multi-fractal intensity measures used
for the computation of the Holder exponent are the summa-
tion measure, the iso-surface measure, the maximum inten-
sity measure and the inverse minimum measure. The final
multi-fractal spectrum computed from an image obviously
depends on the choice of the intensity-based measure that
represents local variations of intensity values.

Figure 1: System overview of multi-fractal based
classification of CT
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Figure 2: The Holder exponent is computed across
multiple windows

A brief description of the intensity measures is given be-
low. The sum measure µ[sum](w)

p is defined as the sum of
the intensity values within a local neighbourhood w. The
measure could be further normalized using the total mass
intensity; the normalized measure prevents values from be-
coming exceedingly large, which may lead to numerical in-
stability.[3, 9, 15]

µ[sum]
p (w) =

∑
q∈w

Iq (3)

where Iq denotes the intensity value at a pixel q within the
window w. The iso measure µ[iso]

p (w) counts the number
of pixels that have the same intensity value with the centred
pixel p in a neighbourhood. If the centred pixel is the only
pixel with unique intensity in the region, then measure has
a value 1.

µ[iso]
p (w) = {q Iq ∼= Ip; q ∈ w} (4)

where # is the number of pixels. To account for minor varia-
tions in intensity values and noise, a threshold is often used
in the comparison in (4). The inverse-minimum measure is
µ

[min]
p (w) defined as follows:

µ[min]
p (w) = 1−minq∈wIq (5)

In (5), the intensity values are assumed to be normalized in
the range [0 1], so that the value resulting from the subtrac-
tion is always positive. The subtraction from 1 is used to
meet the requirement that the measure does not decrease in
value with increasing window size. The maximum measure
is the measure with the greatest intensity found in the win-
dow w centred at the pixel p.

µ[max]
p (w) = maxq∈wIq (6)

2.2 α-Images and the multi-fractal spectrum

The αp values at pixels p obtained from the previous step
define a range [αmin, αmax] of the real line, which is fur-
ther divided into n discrete steps α1, α2, α3, · · · , αn. Each
intermediate value αk is defined as follows:

αk = αmin + (k − 1)αk, k = 1, 2, · · · , n (7)

∆αk = (αmax − αmin)/n (8)

For our experimental analysis, we used the value n = 100.
The following images and histogram values are readily ob-
tained:

α-image:

I(α)
p =

(
αp − αmin
αmax − αmin

)
255 (9)

α-histogram:

hk = #{p|αp ∈ [ak, ak+1]}, k = 1, 2, · · · , n− 1 (10)

α-slices:

Ak = {p|αp ∈ [ak, ak+1]}, k = 1, 2, · · · , n− 1 (11)

An α-slice Ak is a binary image the only foreground pixels
(with maximum intensity value) are those pixels that satisfy
the condition in (11). It therefore represents the collection of
pixels in the original image where the values of the chosen
intensity measure show the same power law variation.

2.3 Multi-fractal spectrum

An important texture feature that could be used in classifi-
cation is the statistical self-similarity property exhibited by
the sub-images represented by the α-slices. Each α-slice
can be characterised by its fractal dimension. We subdi-
vide an α-slice Ak into a regular grid of boxes with inte-
gral box sizes ε. The boxes containing at least one fore-
ground pixel as given in (11) are counted, giving the number
Nk(ε). The box sizes are recursively scaled by half, as per
the well-known box-counting algorithm,[14] and the fractal
dimension of the α-slice estimated as the slope of the lin-
ear regression line on the log-log plot with log(ε) along the
x-axis, and log(Nk(ε)) along the y-axis. We denote this
fractal dimension by f(αk). The variation of f(αk) with
αk, k = 1, 2, · · · , n− 1 gives the multi-fractal spectrum.

3 Experimental results and discussion
In this section, we outline experimental results obtained us-
ing images from the Emphysema database,[10] based on the
implementation of the methods discussed in the previous
sections. The feature vectors extracted from the calculated
multi-fractal spectra and the alpha-histograms are used for
classification and retrieving purposes. The results of the
multi-fractal descriptors obtained for the three classes of the
Emphysema images using four multi-fractal intensity mea-
sures (Section 2.1) are presented in Figure 3.

The histogram descriptors used for the classification exper-
iments are constructed by dividing the range of α-values
generated from the Holder exponent into 100 intervals. The
alpha-histogram is calculated for each alpha bin as the num-
ber of pixel counts with the α-values within the α-range
[αi αi+1]. The average of the alpha-histogram for four ran-
domly selected images is calculated and the feature vectors
obtained from the descriptors are trained with the classifier
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algorithm. The alpha-histograms for each Emphysema class
using the summation measure for the computation of Holder
exponent are given in Figure 4.

The first stage of the classification uses the summation in-
tensity measures for the Emphysema classification with dif-
ferent distance metrics.[15] The summary of the classifica-
tion results is shown in Table 1.
Table 1: Classification results using the summation
measures

 

 

 Predicted 

Actual 

 NT CLE PSE 
NT 100 0 0 
CLE 50 50 0 
PSE 17 25 55 

 

It can be observed from the results in Table 1 that there is a
clear separation between the normal Emphysema class and
other pathological cases, but some CLE classes are misclas-
sified as the normal (NT) classes while some PSE classes

also give some classification errors. In the second stage
of the classification, the normal Emphysema class is re-
moved such that the alpha-histogram descriptor is used for
further classification of the two pathological classes (CLE
and PSE). The Naïve Bayes classifier is introduced to this
process, we applied the holdout partition method to divide
the observations into training sets and test sets.[16] There is
a scalar specifying the proportion of the number of obser-
vations to be randomly selected for validation. In order to
achieve promising results since the accuracy of the classi-
fiers majorly depends on the training data; we consider 70
percent of the feature vectors for the training and 30 percent
for testing. The performance of the classifiers is evaluated
in the form of confusion matrix. A confusion matrix can be
represented as a matrix M ∈ Rk×k, a square matrix whose
diagonal elements represents the actual classification accu-
racy where k is the number of classes in the dataset. The
classification error of the classifiers can be calculated as fol-
lows:

Figure 3: Multi-fractal descriptors for three classes of Emphysema images using each intensity measure

Figure 4: Alpha-histograms of each class of Emphysema image using the summation measure

Error = 1− trace(confusionMatrix)
sum(confusionMatrix) (12)

where trace (.) is the sum of all the elements in the diago-
nal, and sum (.) is the sum of all the entries in the confusion
matrix. The classification results obtained using the Naïve
Bayes classifier over the alpha-histograms datasets are pre-
sented in Table 2. The entries in the diagonal cells of the

tables presented are the percentage of the instances that are
correctly classified, where the actual class matches the pre-
dicted classes, the entries off the diagonal are the percentage
of the cases that are wrongly classified.

The results presented in Table 2 show good performance but
with few errors. The next stage of the experiment would be
to cascade this current result with the previous results ob-
tained from the multi-fractal descriptors. The outlines of
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the experimental procedures are given in Figure 5.

Figure 5: Outline of the experimental procedures for
classification

It is noted from the results in Table 2 that the combination
of information from the local singularity of the image (the
alpha-histograms), combined with the information extracted
from the multi-fractal descriptors, that is, the global features
would form a powerful discriminating feature for the Em-
physema classification. That is the reason for combining the
results from the first stage of the classification to the second
stage of the classification, and the final classification outputs
are presented in Table 3.

The best two approaches investigated in Ref.[11] are the LBP
with an estimated classification accuracy of 95.2%, and the
Gaussian filter bank (GFB) histogram with an estimated ac-
curacy of 94%. The overall classification accuracy of 94.7%
achieved by the proposed approach compared well with the
two best approaches. The LBP result is slightly better, but
gives few errors in separating the normal class from other

pathological cases, 7% of the normal class are misclassi-
fied as PSE class. Our results clearly separated the normal
class from the pathological cases (CLE and PSE), and out-
performed the results achieved by the GFB approach. How-
ever, the results of the cascaded method indicate that the
CLE and PSE classes have a higher number of misclassifi-
cation errors than the GFB_LBP.

Table 2: Classification results for the two pathological
classes

 

 

 Predicted 
 Alpha-histograms descriptors 

Actual 
 CLE PSE 
CLE 92 8 
PSE 8 92 

 
Table 3: Classification results after combining the results
from the two stages

 

 

 Predicted 
 Final Classification Outputs 

Actual 

 NT CLE PSE 
NT 100 0 0 
CLE * 92 8 
PSE * 8 92 

 

The results in Table 3 are achieved by direct combination of
the results from the multi-fractal data sets in Table 1 and the
classification results generated by the alpha-histogram de-
scriptors in Table 2. The two cells in the Table are marked
with the asterisk symbol, indicating there are no results be-
tween the pathological cases (CLE and PSE) and the normal
Emphysema class (NT), since it has been eliminated from
the data sets. The results achieved by this proposal show ex-
cellent performance with the overall classification accuracy
of 94.7% (see Table 3). The final results are then compared
with the two best approaches used in the recently published
paper[11] as presented in Table 4.

Table 4: Comparison of classification results using cascaded approach and LBP
 

 

 Predicted 

Actual 

GFB LBP Our results 

 NT CLE PSE NT CLE PSE NT CLE PSE 
NT 93 0 7 93 0 7 100 0 0 
CLE 4 96 0 2 98 0 * 92 8 
PSE 7 0 93 3 2 95 * 8 92 

 

The performances of the descriptors obtained from the
alpha-histograms and the multi-fractal are also evaluated us-
ing the weighted area under the ROC curves. The area under
the ROC curve is calculated for all possible combinations
of the Emphysema class labels over the data sets derived
from the hybrid combination of the alpha-histogram and the
multi-fractal descriptors by using the Wilcoxon rank sum
test. The average of the AUC for the possible class pair is
calculated for each column and the column with the maxi-

mum AUC’s value is chosen as the best feature (see Table 5).
Figure 6 presented the ROC curves for the selected features
of the data sets and the corresponding class comparison of
the AUC are given in Table 5.

Table 5: Pairwise AUCs for Emphysema Classes
 

 

Class comparison 
NT vs. 
CLE 

NT vs. 
PSE 

CLE vs. 
PSE 

Mean 
AUC 

Best Features 0.9204 0.7915 0.7633 0.8251 
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Table 6: AUCs for Normal class vs. other cases and CLE
vs. PSE

 

 

Class 
comparison 

NT vs. others 
(ours) 

CLE vs. 
PSE 

NT vs. others 
(KNN) 

AUCs 0.8559 0.7633 0.713 

 

Figure 6: ROC curves of the combined features from the
alpha-histograms and the Multi-fractal datasets using the
best features

The Table 6 is generated from the pairwise class comparison
results presented in Table 5 by adding the AUCs of the NT
versus CLE and the NT versus PSE classes to produce NT
versus other cases as indicated in Table 6. The closer the
AUC’s values to 1, the better the performance of the data
sets. It can be noted from the outcomes in Table 6 that the
performances of the NT class versus other classes (CLE &
PSE) are better than the CLE class versus PSE class using
the selected best features. This is also demonstrated in Fig-
ure 6, the ROC curves of the NT class versus the CLE class
are more separated than the ROC curve for the CLE class
versus PSE class. The mean AUC of 0.8251, obtained by
averaging all of the pairwise values in Table 5 is used for
the selection of the best features. The result in Table 6 is
then compared with another recent paper by Sorensen and
Nielson.[17] In Ref.,[17] the region of interest (ROI) classifi-
cation for discriminating the Emphysema with and without
COPD is calculated using the k nearest neighbour approach
and the AUC of 0.713 is achieved. In comparison with our
results, the AUC value of 0.8559 obtained is significantly
better than the 0.713 achieved by Sorensen.[17] The major
contributions of this study from the medical doctor’s point

of view is that the combined descriptor constructed after the
cascaded approach, has significantly improved the overall
classification accuracy of Emphysema images. The AUC
value of 0.8559 also demonstrates the discriminating power
of our approach in terms of separating the Emphysema with
and without diseases; this is a great achievement since the
separations between the normal and non-normal image sam-
ples are very important to the medical doctor or the radiolo-
gist.

4 Conclusion
This paper has presented a cascaded approach using the
combined features of the multi-fractal and alpha-histograms
descriptors for the classification of Emphysema in CT pul-
monary images. The multi-fractal based descriptors demon-
strate good performance in discriminating the normal Em-
physema class from other pathological cases. Furthermore,
the introduction of the alpha-histograms further improves
the classification results. The performances of the descrip-
tors are measured by the overall classification accuracy and
the area under the ROC curves. Our results compared
favourably well with the state-of-the-art measure for Em-
physema, with an AUC of 0.8559 compared to 0.713. The
proposed ideas significantly increase the classification ac-
curacy, and confirm the effectiveness and robustness of the
multi-fractal techniques in the classification of Emphysema
images. The problem with the combined features is that the
model complexity increases, which might slow the compu-
tational time and also increase the memory usage. The per-
formance of the combined descriptors can be improved by
parallelizing the classifier algorithms using the GPU paral-
lel computing as this might improve the computational ef-
ficiency. Further effort would be to cascade the LBP-based
approach with the multi-fractal techniques, and the results
of the combined descriptors would be examined on the clas-
sification of Emphysema in CT images. The performances
of the descriptors may be evaluated against other classifica-
tion approaches.
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