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Abstract
This paper proposes a query suggestion method combining two ranked retrieval methods: TF-IDF and Jaccard coefficient. Four
performance criteria plus user evaluation have been adopted to evaluate this combined method in terms of ranking and relevance
from different perspectives. Two experiments have been conducted using carefully designed eighty test queries which are
related to eight topics. One experiment aims to evaluate the quality of the query suggestions generated by the proposed method,
and the other aims to evaluate the improvement of the relevance of retuned documents in interactive web search by using the
query suggestions so as to evaluate the effectiveness of the developed method. The experimental results show that the method
developed in this paper is the best method for query suggestion among the methods evaluated, significantly outperforming
the most popularly used TF-IDF method. In addition, the query suggestions generated by the proposed method significantly
improve the relevance of returned documents in interactive web search in terms of increasing the precision or the number of
highly relevant documents.
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1 Introduction

Internet search engines play the most important role in find-
ing information from the web. One of the great challenges
faced by search engines is to understand precisely users’ in-
formation need, since users usually submit very short (only
a couple of words) and imprecise queries.[1] Most existing
search engines retrieve information by finding exact key-
words. Sometimes, users do not know the precise vocab-
ulary of the topic to be searched and they do not know how
search algorithms work so as to produce proper queries.[2]

One solution to these problems is to devise a query sugges-
tion module in search engines, which helps users in their
searching activities. Kelly et al.[3] pointed out that query
suggestions were useful when users ran out of ideas or faced

a cold-start problem. Kato et al.[4] analysed three types of
logs in the Microsoft’s search engine Bing and found that
query suggestions are often used when the original query
is a rare query or a single-term query or after the user has
clicked on several URLs in the first search result page. Fur-
thermore, Carpineto and Romano[5] found that one advan-
tage of query expansion is that there is more chance for a
relevant document that does not contain the original query
terms to be retrieved. Niu and Kelly[6] found that when
searching for the most difficult topic, users save signifi-
cantly more documents retrieved by query suggestions than
by user-generated queries. There exist many query sugges-
tion methods that extract query related terms or features
from log files, ontologies, and documents returned from
search engines and use them to generate query suggestions.
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More related work will be described in the next section.

This paper proposes a query suggestion method combining
two ranked retrieval methods: TF-IDF and Jaccard coeffi-
cient, and evaluates the method using several performance
criteria and users’ judgement as well in terms of the qual-
ity of the generated query suggestions and the improve-
ment of relevance of the returned documents in interactive
web search. Comprehensive comparative experiments have
demonstrated the effectiveness of the method developed in
this paper.

2 Related work
2.1 Query expansion and reformulation

Query expansion is a technique to expand the query with re-
lated words and is widely used for query suggestion. It aims
to improve the overall recall of the relevant documents.[7, 8]

Query reformulation or dynamic query suggestion is more
complex than query expansion, which forms new queries us-
ing certain models.[8–10] This paper mainly addresses query
expansion.

2.2 Explicit and implicit feedback

Relevance feedback plays an important role in query sug-
gestion. There are two major categories of relevance feed-
back. Explicit feedback is provided directly by users, which
is expensive and time consuming. On the other hand, im-
plicit feedback is derived by the system.[7] The system de-
rives the feedback information from several sources of fea-
tures, such as log files, web documents, and ontologies. This
paper focuses on query suggestion methods based on im-
plicit relevance feedback.

There are many studies on query suggestion using log files,
from which user’s search behaviours and information need
can be derived.[1, 4, 8, 11–18] Various ontologies have been
applied to create knowledge-driven models for generating
query suggestions, such as WordNet,[19, 20] Wikipedia,[21]

ODP and YAGO.[22–25] Query suggestions can also be gen-
erated from query related features extracted from web doc-
uments returned by search engines.[2] There are some stud-
ies on query suggestion that combined query log and web
search results[26] or combined query log and ontology.[27]

2.3 Ranked retrieval models

In ranked retrieval models, the system returns an ordered
list of top matching documents with respect to a query. Typ-
ical ranked retrieval methods include Jaccard coefficient and
Term frequency - inverse document frequency (TF-IDF)[28]

which will be described in more detail in the next section.

In information retrieval, ranked retrieval methods are used
to order relevant documents with respect to a query. Sim-
ilarly, highly relevant query suggestions are preferable to

appear first in query suggestions.[29] Therefore, it is reason-
able to adapt ranked retrieval methods for query suggestion.

3 Methods
3.1 TF-IDF

TF-IDF[7] is the most popular term weighting scheme in in-
formation retrieval. The TF-IDF score of a term in a set of
documents is calculated as follows:

tfidfi =
N∑

j=1
wij (1)

wij =
{

(1 + log fi,j)× log N
ni

, if fi,j > 0
0, otherwise

(2)

where fi,j is the frequency of term i in document j, ni is
the number of documents in which term i appears, N is the
total number of available documents.

TF-IDF has been used to measure word relatedness.[30]

Therefore, it can be applied to identify terms in the docu-
ments returned from search engines, which are mostly rele-
vant to the original query, as query suggestions.

3.2 Jaccard coefficient

Jaccard coefficient[28] is a measure of overlap of two re-
turned documents D1 and D2, which are represented as vec-
tors of terms and may not have the same size. Jaccard coeffi-
cient has been used to measure the similarity between search
texts.[8] Kulkarni and Caragea[31] used this method to com-
pute semantic relatedness between two concept clouds.

The Jaccard coefficient for a length-normalized model is
calculated as follows:

Jaccard(D1, D2) = |D1 ∩D2|
|
√

D1 ∪D2|
(3)

where ∩ represents intersection and ∪ union. In this paper,
D1 and D2 are bags of words which contain query sugges-
tion candidates that are selected from words which appear in
at least two returned documents. In mathematics, the notion
of multiset or bag is a generalization of the notion of set, in
which members are allowed to appear more than once. The
intersection or union of multisets is a multiset in general.[32]

If a query suggestion candidate is from more than two re-
turned documents, its Jaccard coefficient can be extended as
follows:

Jaccard(D1, D2, · · ·DM ) = |D1 ∩D2 ∩ · · ·DM |
|
√

D1 ∪D2 ∪ · · ·DM |
(4)

In this paper, for each query suggestion candidate, M doc-
uments that contain this suggestion term are identified, and
then Jaccard coefficient is calculated as the score to rank this
candidate.
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3.3 A new method based on the combination of
TF-IDF and Jaccard coefficient

Our initial experiment found that the TF-IDF method was
capable of producing suggestions relevant to the user’s orig-
inal query whilst Jaccard coefficient was good to rank the
suggestions. Therefore, a method called Tfjac is proposed
in this paper, which selects terms from the combination of
the top ten candidate words from the TF-IDF method and up
to ten candidate words from the Jaccard coefficient method.
The process starts with finding duplicate words from both
methods. If the number of these words is less than ten,
more candidate words from the Jaccard coefficient method
are added. If the number of terms is still less than ten, more
candidate words from the TF-IDF method are added till ten
query suggestions are selected. The overall process of the
Tfjac method is shown in Figure 1.

Figure 1: Diagram of the Tfjac method

4 Experiments and results
4.1 Experimental design

He and Ounis[33] proposed an entropy measure which es-
timates how the occurrences of a query term spread over
returned documents. The higher the entropy is, the more
a returned document is related to the query. Their results
show that the entropy in the top five returned documents
is very high, and it decreases rapidly in the remaining docu-
ments. Therefore, it has been decided that in this experiment
query suggestions are created from analysing the top eight
Google search returned documents. That would be enough
to generate highly relevant or good suggestions to the orig-
inal query from these documents. Each document is pre-

processed as follows. First of all, not the whole document,
but only the title and snippet content in each document are
considered. After that, all HTML tags are removed and all
contents are separated into tokens. Thirdly, since the most
selective terms for query suggestions should be nouns,[7, 34]

only nouns are considered for suggestions.

There are two experiments in this paper. The first exper-
iment aims to evaluate the quality of the query sugges-
tions generated by the method combing TF-IDF and Jac-
card coefficient, in comparison with the TF-IDF and Jac-
card coefficient methods respectively. A simple search en-
gine using the Google API has been implemented in this
experiment. From the analysis of titles and snippets of the
top eight Google returned documents using the query sug-
gestion methods, query suggestions are generated by each
method for each query. The second experiment aims to eval-
uate and compare the relevance of the returned documents in
interactive web search, which are retrieved from the original
query with and without using query suggestion respectively
so as to evaluate the effectiveness of the proposed query sug-
gestion method.

Table 1: Categories of test queries
 

 

Category Description Number of queries 

1 Movies 10 
2 Food 10 
3 Traveling 10 
4 Shopping 10 
5 Sports 10 
6 Arts 10 
7 Flowers 10 
8 Animals 10 

Total 80 

 

For evaluation purposes, eighty test queries were selected
from eight popular search topics (categories), as shown in
Table 1. Each category contains ten queries consisting of
one to three words that are commonly known and conve-
nient for user evaluation. These test queries were used in
both experiments. It is important to know whether a query
suggestion is truly good or not in the performance evalu-
ation. In the first experiment, highly relevant, mildly rel-
evant and irrelevant suggestions for each test query were
judged by two approaches in order to reduce subjective bias
to expected results and make the experimental results more
reliable. Fifty percent of the decisions were based on the
suggestions by the Google search engine, which has been
widely recognized, and another fifty percent of the decisions
were made by users who were five PhD students participat-
ing in this experiment. In the second experiment, highly rel-
evant and mildly relevant websites returned from the Google
search for each test query were judged by eight participants
from the University of Essex. For the performance evalua-
tion, four evaluation methods: Mean reciprocal rank(MRR),
Mean Average Precision(MAP), precision at 10(P@10), and

Published by Sciedu Press 121



www.sciedu.ca/air Artificial Intelligence Research 2015, Vol. 4, No. 2

discounted cumulated gain(DCG), were used in both exper-
iments.

4.2 User’s selection of suggested queries and as-
sessment of relevance of search results

To confirm whether the evaluation results are acceptable
by real users, user evaluation has been conducted as well.
Questionnaires were used to obtain users’ evaluative feed-
back. Five participants who were PhD students studying
in different fields were asked to select a top suggestion
from the query suggestions made by each query suggestion
method for each of the eighty test queries and then rank the
top suggestions made by the three query suggestion meth-
ods for each test query from one to three.

For evaluating the relevance of the search results, question-
naires were also used. In each questionnaire, there are six-
teen returned websites for each test query, half of which
were returned by using the original query and the other half
returned by using query suggestion. The eight participants
were asked to select and rank the top three most relevant
web sites for each of the eighty test queries from one to
three.

4.3 Performance criteria

Four performance criteria have been used in the experi-
ments: MRR, MAP, DCG, and P@10.

4.3.1 Mean reciprocal rank

MRR[35, 36] is a statistic measure suitable for query sugges-
tion’s ranking evaluation. For query j, the reciprocal rank
of a good query suggestion i, RRji, is the multiplicative in-
verse of the rank of this suggestion in the list of potential
query suggestions made by a query suggestion method, rji,
i.e.,

RRji = 1
rji

(5)

MRR is the average of the reciprocal ranks of all the good
suggestions for all the queries, i.e.,

MRR = 1
q

q∑
j=1

1
Qj

Qj∑
i=1

RRji (6)

where Qj is the number of good suggestions for query j, q is
the number of queries. For a query, its good query sugges-
tions are determined partly by users’ judgement and partly
by the Google query suggestions in the experiment in this
paper.

4.3.2 Mean average precision

MAP[29, 36] is an average precision across multiple queries
and rankings. MAP assumes that users are interested in
finding many relevant query suggestions and highly relevant
suggestions should appear first in the list of suggestions.

Let the rank of the ith relevant query suggestion in the
potential query suggestions made by a query suggestion
method for query j be rji. The precision of the ith sug-
gestion is defined as

Pji = number of relevant suggestions

number of suggestions examined
= i

rji
(7)

For an irrelevant suggestion, the precision is set to 0. MAP
is defined as the average precision of all the query sugges-
tions for all the queries, i.e.,

MAP = 1
q

q∑
j=1

1
Qj

Qj∑
i=1

Pji (8)

where Qj is the number of relevant query suggestions for
query j and q is the number of queries.

4.3.3 Discounted cumulated gain

MAP allows only binary relevance assessment (relevant or
irrelevant), which does not distinguish highly relevant sug-
gestions from mildly relevant suggestions. DCG[28, 29] is a
metric that combines graded relevance assessments effec-
tively.

Cumulative Gain (CG) of the Qj query suggestions for
query j is defined as

CGj = w1 + w2 + · · ·wQj
(9)

where wi is rating or weighting factor of the rank of the ith
suggestion. Discounted Cumulative Gain (DCG) is defined
by using a discount factor 1/(log2 i):

DCGj = w1 + w2

log2 2 + w3

log2 3 + · · ·
wQj

log2 Qj
(10)

The average DCG (AvgDCG) over q queries is defined as

AvgDCG = 1
q

q∑
j=1

DCGj (11)

4.3.4 Precision at 10

Precision is defined here as the ratio of the number of rele-
vant suggestions to the total number of irrelevant and rele-
vant suggestions. This is a simple performance criterion and
is often used as a baseline evaluation method.

Precision@10[36, 37] is the precision for the top ten query
suggestions, which is calculated as follows:

P@10 = number of relevant suggestions among top 10
10

(12)

4.3.5 Integrated evaluation and user evaluation

The above four performance criteria emphasize different as-
pects of the performance. MRR is used to measure the
performance of ranking, whilst P@10 is used to measure
the performance of generating relevant query suggestions or
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web documents. MAP and DCG can measure the perfor-
mance of both ranking and producing relevant suggestions
and web documents. Integrating the evaluation results from
these four methods may lead to more comprehensive evalu-
ation.

In order to check whether the evaluation using the above
criteria is acceptable by real users, user evaluation will be
conducted as well. Questionnaires as described in section
4.2 were used for this purpose.

4.4 Experimental results and evaluation

The experimental results are shown in the following tables,
where an asterisk indicates that the related score differs sig-
nificantly from the best one with the p value < .05. The
method adopted for statistical significance test is t-test.

4.4.1 Evaluation of the quality of query suggestions

There are three methods which were evaluated and com-
pared in this experiment: the combined method (Tfjac), TF-
IDF (Tfidf), and Jaccard coefficient (Jac). By using four
evaluation methods including integrated evaluation and user
evaluation, the experimental results are illustrated below.

MRR results: The results of evaluation using MRR are given
in Table 2, which show that the best query suggestion meth-
ods is Tfjac followed by Jac, and the ranking score of Tfidf
is significantly lower than that of the best method.

Table 2: MRR results
 

 

QS methods MRR scores Rank 

Tfidf 0.2934* 3* 

Jac 0.3211 2 

Tfjac 0.3846 1 

 

MAP results: The results of evaluation using MAP are given
in Table 3, which show that Tfjac is the best method for gen-
erating query suggestions in terms of ranking and producing
relevant words.
Table 3: MAP results

 

 

QS methods MAP scores Rank 

Tfidf 0.9544 2 

Jac 0.9485 3 

Tfjac 0.9712 1 

 

P@10 results: The results of evaluation using P@10 are
given in Table 4, which show that Jac and Tfjac have the
same score and outperform Tfidf method in terms of gener-
ating relevant suggestions, and the score of Tfidf is signifi-
cantly lower than those of the two best methods.

Table 4: P@10 results
 

 

QS methods P@10 scores Rank 

Tfidf 0.9145* 3* 

Jac 0.9524 1 

Tfjac 0.9524 1 

 

DCG results: The results of evaluation using DCG are given
in Table 5, which show that Tfjac is the best method for
ranking and producing highly relevant suggestions followed
by Jac and Tfidf.

Table 5: DCG results
 

 

QS methods DCG scores Rank 

Tfidf 8.0339 3 

Jac 8.2880 2 

Tfjac 8.5880 1 

 

Integrated evaluation: Table 6 shows the rankings of the
three query suggestion methods in terms of the four per-
formance criteria respectively. For a method whose rank is
significantly lower than the others, the rank is multiplied by
two.
Table 6: Summary of evaluation results

 

 

QS 
methods 

MRR 
ranking 

MAP 
ranking 

P@10 
ranking 

DCG 
ranking 

Sum 

Tfidf 3*(6) 2 3*(6) 3 17 
Jac 2 3 1 2 8 
Tfjac 1 1 1 1 4 

 
The rankings in Table 6 can be transferred into MRR scores
as shown in Table 7. It is clear that Tfjac is the best method
overall for generating query suggestions, and Jac and Tfidf
are significantly worse than Tfjac.

Table 7: Integrated evaluation in MRR scores
 

 

QS methods MRR scores Rank 

Tfidf 0.2917* 3* 

Jac 0.5833* 2* 

Tfjac 1.0000 1 

 

User evaluation: The results of the user rankings in MRR
scores are given in Table 8, which show that the majority of
the participants indicated that the query suggestions made
by Tfjac were the best followed by Tfidf and Jac.

Table 8: User evaluation in MRR scores
 

 

QS methods MRR scores Rank 

Tfidf 0.6495 2 

Jac 0.6157 3 

Tfjac 0.6732 1 

 

These experimental results showed that Tfjac (a combined
method based on TF-IDF and Jaccard coefficient method)
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was the best method for query suggestion among the three
methods evaluated in terms of all performance criteria in-
cluding by user evaluation, significantly outperforming the
most popularly used TF-IDF method.

4.4.2 Evaluation of the effectiveness of the query sugges-
tion method in interactive web search

In the second experiment, the Tfjac method was used to gen-
erate query suggestions for interactive web search to evalu-
ate the relevance of the top eight Google search returned
documents by using query suggestions in comparison with
that by using the original query only. The eighty test queries
and the performance criteria used here are the same as in
section 4.4.1, but the ranking is about the relevance of the
returned web documents rather than directly the quality of
query suggestions. The relevance ranks were obtained by
eight participants as described in section 4.2.

MRR results: The results of evaluation using MRR are given
in Table 9, which show that the documents returned by us-
ing the original query only were better ranked by the par-
ticipants on average than by using query suggestion. How-
ever, there is no significant difference between the two MRR
scores.
Table 9: MRR results

 

 

Methods  MRR scores 

Query  0.4618 

Query + suggestion  0.4452 

 

MAP results: The results of evaluation using MAP are given
in Table 10, which show that the documents returned by us-
ing query suggestion were significantly better than those by
using the original query only in terms of the relevance of the
returned documents to user’s information need.
Table 10: MAP results

 

 

Methods  MAP scores 

Query  0.9435 

Query + suggestion  0.9740* 

 

P@10 results: The results of evaluation using P@10 are
given in Table 11, which show that the documents returned
by using query suggestion had significantly higher precision
scores. It means that these returned documents met users’
information need significantly better.

Table 11: P@10 results
 

 

Methods P@10 scores 

Query  0.8422 

Query + suggestion  0.9531* 

 

DCG results: The results of evaluation using DCG are given
in Table 12, which show that the DCG score obtained by us-
ing query suggestion is higher than that by using the original
query only.

Table 12: DCG results
 

 

Methods  DCG scores 

Query  9.1162 

Query + suggestion  9.4021 

 

In general, the second experiment demonstrated that the pro-
posed query suggestion method is effective and it improves
the relevance of the returned web documents through inter-
active web search.

5 Conclusions
This paper has investigated several ranked retrieval meth-
ods, adapted and combined them as well for query sugges-
tion. Three query suggestion methods including the com-
bined method developed in this paper have been evaluated
using four performance criteria, integrated evaluation, and
user evaluation as well. The experimental results show that
Tfjac is the best for generating query suggestions among
the three methods evaluated in terms of relevance and rank-
ing. It is demonstrated that the Tfjac method is capable of
combining the good query suggestions from both TF-IDF
and Jaccard coefficient methods. The experimental results
also indicate that the query suggestions made by the Tf-
jac method significantly improve the relevance of returned
documents in interactive web search in terms of increasing
the precision or the number of highly relevant documents.
However, this combined method may deserve further inves-
tigation and there may be room for further improvement by
using better combination strategies.

Performance evaluation usually depends on the queries used
in the experiment and the judgment on the relevance of
query suggestions with the original queries. This paper has
designed eighty test queries related to eight topics based on
Google search results and users’ suggestions and adopted
multiple performance criteria from different perspectives to
ensure fair comparison and evaluation. However, further
work may be conducted to overcome the limitation in this
aspect of the performance evaluation and in the user evalu-
ation conducted in this paper, for example, using standard
or previously used benchmark datasets. Future work in line
of this research may also include improving query sugges-
tion by using knowledge base and user feedback, such as
click-through data, through computational intelligence ap-
proaches.
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