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Abstract
Software effort estimation plays an important role in the software development process: inaccurate estimation leads to poor
utilization of resources and possibly to software project failure. Many software effort estimation techniques have been tried in
an effort to develop models that generate optimal estimation accuracy, one of which is machine learning. It is crucial in machine
learning to use a model that will maximize accuracy and minimize uncertainty for the purposes of software effort estimation.
However, the process of selecting the best algorithm for estimation is complex and expert-dependent. This paper proposes an
approach to analyzing datasets, automatically building estimation models with various machine learning techniques, and eval-
uating and comparing their results to find the model that produces the most accurate and surest estimates for a specific dataset.
The proposed approach to automated model selection combines the Bayesian information criterion, correlation coefficients, and
PRED measures.
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1 Introduction

In the software industry, planning the software development
process affects scheduling for the software project, the ef-
fort and cost involved in the project, and the quality of the
software product delivered to users. Software effort esti-
mation is crucial to optimal planning and is important for
controlling the software development process: overestima-
tion can lead to the misuse of development resources, while
underestimation can lead to a lower quality product. Effort
estimates should be both accurate and certain.

There are a number of software effort estimation techniques
available, such as expert judgment, the use of historical data,
analogy-based estimation, proxy-based estimation, and al-
gorithmic models. Software researchers have been seeking

ways to build estimation models since the 1960s.[1] Some
studies exploit machine learning techniques in algorithmic
models because of their ability to learn continuously and
their accuracy,[2] while machine learning-powered models
rely on historical data and expert knowledge for learning
and estimation. For this reason, the quality of the datasets
used and of the feature subsets selected in the construction
of these models is important, as is the knowledge of experts.

More accurate estimation models can be built by adding fea-
tures, such as size, development language, business sector,
etc., to machine learning techniques, but this may result in
overfitting: an estimation model with too many features can
exaggerate any minor fluctuations in the data and may over-
fit, leading to poor estimation performance in general. To
avoid overfitting and to make the model produce reasonable
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estimates on different datasets, it is important to apply the
uncertainty criterion during model selection.

Besides, finding the best model for a specific dataset is time-
consuming and requires expert knowledge. What is more,
even the experts may choose unsuitable criteria and estima-
tion techniques. For these reasons, a more structured es-
timation process for exploring multiple machine learning
techniques, supported by an automated selection subpro-
cess, would be highly beneficial.

This study proposes an approach to determining which ma-
chine learning model performs the best in terms of estimat-
ing software development effort on a specific dataset. The
proposed model will analyze new projects and learn from
them on an ongoing basis, keeping the effort estimation pro-
cess up to date.

Our objective is to develop an automated approach to ex-
ploring a number of estimation models to determine which
performs better, considering one set of criteria and all the
possible combinations of algorithms and feature subsets that
could be exploited. We present and test a prototype of this
approach in this paper, which we apply in a specific experi-
mental context using 9 different estimation techniques, each
of which uses 9 datasets.

The paper is organized as follows: Section 2 presents related
work. Section 3 explains the proposed approach. Section 4
presents the automated prototype. Section 5 presents the 9
datasets selected to test the prototype. Section 6 presents
the test results. Section 7 concludes the study and proposes
future work.

2 Related works
In this section, we review some of the studies in which ma-
chine learning techniques are exploited for software effort
estimation. Baskeles et al. investigate support vector re-
gression, radial basis functions, regression trees, and mul-
tilayer perceptron estimation techniques. Using NASA and
USC datasets, they found that regression trees perform the
best.[4] Shin and Goel apply radial basis function neural
networks to create an alternative to the linear regression ap-
proach.[5] Burgess and Lefley examine the capacity of ge-
netic programming to generate accurate effort estimations
on Desharnais data. Genetic programming performed better
than other algorithms, but more effort was required to set up
the estimation model.[6] Fisher applies artificial neural net-
works and regression trees to a COCOMO dataset for soft-
ware effort estimation, and compares their results with those
of non-machine learning techniques.[37] He found that the
artificial neural network and regression tree techniques com-
pare well.[7] Malhotra et al. compare several machine learn-
ing techniques using the PROMISE dataset.[18] They found
that support vector machines outperform artificial neural
networks and bagging, while decision trees outperform sup-

port vector machines.[8] Bibi et al. investigate five machine
learning methods, examining not only their accuracy, but
also their comprehensibility, causality, applicability, sensi-
tivity, and uncertainty, as well as their handling of missing
values and dynamic updating. They propose using a deci-
sion tree to select the best estimation technique, since the
performance of these techniques can change, depending on
the dataset and the weights of the model features.[9] Sarcia
et al.[33] propose a different approach for evaluating esti-
mation techniques, which is to select the model based on
uncertainty instead of accuracy, as they consider that accu-
racy can vary widely, since it depends on the nature of the
test sample, the error measure used, and the error statistics
selected (e.g. MMRE (Mean Magnitude of Relative Error),
PRED, Mean, and Standard Deviation). In contrast, uncer-
tainty is an invariant evaluation criterion with respect to the
error statistics. Also, they extend their technique by defining
Bayesian Prediction Intervals for evaluating uncertainty.

Researchers will use different techniques, parameters, and
datasets depending on their expertise. In our review of the
literature, we found that the best effort estimation model for
a particular dataset may change because different criteria are
used. That is, a technique might beat all the others when
it is used by an expert on some datasets, but it could fail
when it is used by another expert in conjunction with dif-
ferent estimation parameters and datasets. Furthermore, in
industrial practice, very few experts with sufficient in-depth
knowledge of a broad range of estimation techniques are
available to analyze a specific dataset, select suitable param-
eters, build models using different estimation techniques,
and, from the results obtained, determine the best estima-
tion technique for that dataset. Our study here proposes a
strategy to address these issues, in which some steps of the
estimation process are automated and a mechanism for se-
lecting the best model for a specific dataset is included.

3 Proposed approach
We begin by considering a number of machine learning
techniques for estimation, comparing their performances on
a specific dataset, and deriving a set of criteria for select-
ing the model that performs the best on that dataset. We
apply cross validation to define datasets for training and
testing; feature subset selection to eliminate unnecessary
features; execution of the available estimation techniques
on the dataset to come up with suitable estimation mod-
els; analysis of model performances; and comparison of the
models and identification of best model for the dataset in-
vestigated. All the steps in this approach are explained in
greater detail in the subsections below.

3.1 Selection of datasets for training and testing

Our proposed approach cross validates the dataset selected
for a project to create training and testing datasets to assess
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how accurately an estimation model will perform in prac-
tice. It defines a part of the dataset for testing the model in
the training phase, with a view to limiting problems such as
overfitting and for generalizing the model to different inde-
pendent datasets.

One of the most common approaches to cross validation is
K-Fold Cross Validation. In this approach, in which N ob-
servations are validated, K defines the partition of the N ob-
servations into K disjoint subsets. Repeated calls return dif-
ferent randomly generated partitions. K-1 subsets are used
for training and the final subset is used for testing. This pro-
cess is repeated K times, leaving out one different subset for
evaluation each time. Different values of K can be used in
K-Fold Cross Validation. In this study, we take K = 5 (5-
Fold Cross Validation), as it provides the best overall result.

3.2 Feature subset selection

The importance of feature subset selection is that it elimi-
nates features that will decrease the accuracy of the estima-
tion model, as well as decreasing the computational cost of
the model. One of most powerful feature subset selection
algorithms is Wrapper, which evaluates all combinations of
features using two different algorithms:

• The learning algorithm for estimation,
• The search algorithm for finding the best combination

of features, based on the results of the automated es-
timation techniques tested.

Various search and learning algorithms are used in Wrap-
per, but, in general, an exhaustive search algorithm and the
K-Nearest Neighbor algorithm outperform the others. In
this study, Wrapper is implemented with the feature sub-
set selection settings considered above. It gives superior
accuracy, but at the cost of high computational effort.[15]

This cost is not a drawback for the proposed selection pro-
cess, however, because the selection model does not need
to run during estimation – and only if there are changes in
the training dataset – on a weekly or bi-weekly basis, saving
the model parameters to be used later. We combine fea-
ture subset selection with Linear Regression (LR) and the
Multi Layer Perceptron (MLP) artificial neural network in
this study, in order to achieve better accuracy with these al-
gorithms.

3.3 Estimation

Briefly, these are the algorithms that we use in our proposed
effort estimation approach.

• Linear Regression (LR)
• LR with Feature Subset Selection (LRFS)
• Least Median Squares (LMS)
• Pace Recognition (PR)
• K-Nearest Neighbor (KNN)

• M5P
• Support Vector Regression (SVR)
• Multi Layer Perceptron (MLP)
• MLP with Feature Subset Selection (MLPFS)

These algorithms are explained in greater detail in the sub-
sections below. In addition, a software prototype is devel-
oped to run the algorithms, compare the outcomes, and se-
lect the best possible algorithm and parameters combina-
tion.

3.3.1 Linear regression

The LR technique is aimed at finding a learning function
that maps a feature to an output with a continuous value,
which is software effort in this study. LR achieves this by
finding a line, which minimizes the sum of the squares on
the training dataset. Simple LR is also combined with fea-
ture subset selection (LRFS) in this study.

3.3.2 Least median squares

The LMS linear regression method estimates the parameters
by solving the nonlinear minimization of the median squares
of the error.

3.3.3 Pace regression

PR is a type of linear regression, proposed by Wang,[35]

which is aimed at removing the drawbacks of linear re-
gression by calculating the effect of each feature and using
clustering to estimate its contribution to the overall regres-
sion.[36]

3.3.4 K-nearest neighbor

The KNN algorithm works as follows: first, it computes the
distance of a specific instance from all the other instances
and finds its k nearest instances, or neighbors. Based on
the k nearest neighbors, it estimates the dependent feature,
which is software effort estimation in this study. We use
the IBK algorithm, which is implemented as the KNN algo-
rithm in the WEKA API, in our proposed model. We also
use the IBK with different numbers of neighbors, k.

3.3.5 M5P

The Decision Tree (DT) is one of the most easily under-
stood machine learning techniques in estimation. Basically,
the DT consists of a root and internal and leaf nodes. These
techniques work recursively, to make splitting decisions ac-
cording to impurity measures until all the features have been
assigned to a particular class. M5P is one of the DT algo-
rithms used in this study. It is implemented in the WEKA
API used in the model prototype, and empirical analyses are
performed accordingly.[12]
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3.3.6 Support vector regression

SVMs can be used in both regression and classification.
SMOreg is an implementation of the SVM in regression.
Here, we implement SMOreg with different kernels, and the
RegSMOImproved algorithm[16] as a learning algorithm.

3.3.7 Multi layer perceptron

The MLP is a feed-forward Artificial Neural Network
(ANN), which can be applied to regression, classification,
and time-series forecasting.[17] We apply the MLP with
various numbers of hidden layers, momentum values, and
learning rates. It can also be combined with feature subset
selection (MLPFS) and is used as such in this study.

3.4 Selection criteria

To evaluate the performance of the various models pro-
posed, a number of criteria are combined and used in this
study: PRED(25), the Correlation Coefficient (CORR), and
the Bayesian Information Criterion (BIC).

3.4.1 PRED(X)

PRED is a ratio of estimates, which are within X percent
of the actual values according to the Magnitude of relative
error (MRE). The MRE is calculated as follows:

MRE = |actuali − predictedi|
actuali

(1)

and PRED is calculated as follows:

PRED(X) = 100
N
∗

N∑
i=1

{
1, ifMREi ≤ X
0, otherwise

(2)

Generally, X=25 is the value of X used in the literature. The
higher the value of PRED(X), the better. PRED(25) = 60
means that 6 out of 10 estimates are within 25% of the ac-
tual values.

3.4.2 Correlation coefficient

The correlation of two variables (the predicted value and
the actual value in this case) shows how the variables are
linearly related to each other. A CORR can take values be-
tween -1 and +1, and perfectly reflects either the negative or
the positive linear relationship between the variables.[13]

3.4.3 Bayesian information criterion )

The BIC is a criterion for model selection among a finite set
of models, and is based on the likelihood function. It was

introduced by Schwarz (1978) as follows:

BIC = −2 ∗ ln L + k ∗ ln N (3)

where N is the sample size, L is the maximized value of
the likelihood function of the estimated model, and k is the
number of independent features in the estimated model.[31]

Other above considered measures only measure accuracy,
and model accuracy can change according to the size of the
test dataset and the error statistics. Uncertainty can be a
good alternative in estimation model selection, because it is
a invariant criterion.[32] The BIC is used to measure the un-
certainty of an estimation model, and is not dependent on
the size of the test dataset or the error measures.

3.5 Selection technique

In this study, three of the criteria considered above: PRED,
CORR, and BIC, are implemented for each model on each
dataset individually. As well, separate ranks are calculated
for each criteria (predRank, corrRank, and bicRank) for all
the models, sorted by best result first. Then, the following
formula is used to calculate the final rank of the model:

algorithmRank = predWeight ∗ predRank

+ corrWeight ∗ corrRank + bicWeight ∗ bicRank

(4)

Note that predWeight, corrWeight, and bicWeight are para-
metric coefficients, which can be determined prior to the es-
timation process, according to the organization’s estimation
goals. Estimation goals should be determined before model
selection, since PRED and CORR measure the accuracy of
the model, and BIC measures the uncertainty of the model.
After calculating final ranks of all the models, the proposed
solution selects the model with the highest rank.

4 Experimental prototype

To illustrate and evaluate the proposed approach, a machine
learning model was developed in MATLAB.[10] Code was
then compiled into dynamic link libraries (DLLs), and a
software service was developed in .NET,[11] which exploits
the machine learning DLLs developed as an estimation en-
gine. Our proposed automated effort estimation model ac-
complishes all the steps depicted in Figure 1. Experimenta-
tion starts with the Cross Validate Data step, and ends with
results analysis and selection of the best model.
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Figure 1: Proposed Approach

5 Empirical evaluation
The datasets used for empirical evaluation are described in
this section.

5.1 Datasets

The characteristics of a dataset are considered to be signifi-
cant in terms of model performance and model evaluation in
machine learning.[34] Different datasets from different do-
mains and sources behave differently. To illustrate the gen-
erality of the proposed approach, we use 9 different datasets
in this study, with different types of measurement methods
from the following two sources:

• PROMISE - The PRedictOr Models In Software En-
gineering data repository,[18, 19] which is a publicly
available online data repository.

• ISBSG - The International Software Benchmarking
Standards Group data repository. The ISBSG is a
non-profit organization which maintains the ISBSG
dataset of projects contributed by organizations across
the world[20] that have been measured using a recog-
nized functional size measurement method.

5.1.1 COCOMO 81 Dataset

This dataset consists of 63 TRW projects. Project effort is
measured in person-months, and software size is measured

in LOC (Lines Of Code). In the COCOMO model – equa-
tion (5) – the constants a and b are domain-specific con-
stants, and EMi are effort multipliers, which can be ex-
pressed on any of the six levels of the following ordinal
scale: very low, low, nominal, high, very high, and extra
high.

Effort = a∗(kLOCb)∗(EM1∗EM2∗· · ·∗EM15) (5)

5.1.2 NASA 93 Dataset

This dataset consists of 93 flight or ground system software
projects developed for NASA in seven different develop-
ment centers in the 1970s and 1980s.[19, 23, 24]

5.1.3 COCOMONASA Dataset

This dataset consists of 60 NASA projects from various cen-
ters in the 1980s and 1990s.

5.1.4 Desharnais Dataset

This dataset consists of 81 software projects from a Cana-
dian software house collected by J. M. Desharnais.[19, 21, 22]

The software size measure for this dataset is the function
point (FP).

5.1.5 ISBSG-Telco Dataset

This dataset was extracted from the 2007 version of the IS-
BSG dataset and contains 132 projects.[26] In previous stud-
ies, a breakdown of the ISBSG repository according to busi-
ness domain has also been used.[25]

5.1.6 China Dataset

This dataset consists of 499 projects and 16 numeric fea-
tures; however, the duration feature has been removed be-
cause it was derived from the effort feature. The software
size measure is the FP.[27]

5.1.7 Maxwell Dataset

This dataset consists of 62 software projects and 26 features.
The size measure is the LOC. As with the China dataset, the
duration feature has been removed, and for the same rea-
son.[28]

5.1.8 Miyazaki 94 Dataset

This dataset consists of 24 projects from the Fujitsu Large
Systems Users Group.[29] The software size measure is the
LOC.

5.1.9 Finnish v2 Dataset

This dataset contains 38 projects, and its features are size,
development type, hardware platform, development lan-
guage, business sector, and effort.[30]

Published by Sciedu Press 49



www.sciedu.ca/air Artificial Intelligence Research 2015, Vol. 4, No. 2

5.2 Summary of datasets

Table 1 presents a summary of these 9 datasets in terms of
their projects and the number of features they contain. In
summary, these datasets are diverse in terms of their do-
main, their sources, and their size, which makes them a rel-
evant basis for testing the proposed approach.

Table 1: Feature and Project Count of Datasets
 

 

No Dataset  No. of Features  No. of Projects 

1 COCOMO 81 17 63 
2  NASA 93 17 93 
3 COCOMONASA 17 60 
4 Desharnais 11 81 
5 ISBSG-Telco 8 132 
6 China 15 499 
7 Maxwell 25 62 
8 Miyazaki94 22 24 
9 Finnish v2 5 38 

 

6 Experimentation results

Nine different experiments, one for each of the 9 datasets,
were carried out. For each experiment, the dataset was di-
vided into training and testing datasets using cross valida-
tion. Nine different machine learning models were trained
on these datasets, and the accuracy and uncertainty of the
models were analyzed on the testing datasets.

The best performing model was selected based on the high-
est score achieved using the accuracy criterion and the low-
est score using the uncertainty criterion. The score com-
prised a combination of the PRED, CORR, and BIC rank-
ings of each model. For this set of experiments, the para-
metric weights of the ranking mechanism were assigned the
values 0.25, 0.25, and 0.5 for PRED, CORR, and BIC re-
spectively. This set of values gives equal importance to
accuracy and certainty (considering that PRED and CORR
are accuracy criteria, and BIC is an uncertainty criterion).
Of course, in an organizational context, these values can be
modified depending on the preferences of an organization:
for example, it may want to stress accuracy over uncertainty,
and so give more weight to PRED and CORR.

Figures 2 to 10 present the estimation results on the testing
dataset for the best machine learning estimation model iden-
tified for each of the 9 datasets. The actual values and the
estimated values are shown on the Y-axis and X-axis respec-
tively.

Figure 2 shows the results for the COCOMO 81 dataset. Af-
ter cross validation with a ratio of 4:1, 13 test instances re-
mained, which are shown on the X-axis, and the actual val-
ues and the values predicted by SVR for these test instances
are shown on the Y-axis. SVR is considered to be the best
of all the models in this case, with a PRED value of 15.38,
a CORR value of 0.93, and a BIC value of 14.47.

Figure 2: Results for COCOMO 81 Dataset – SVR

Figure 3 shows the results for the NASA 93 dataset. Af-
ter cross validation with a ratio of 4:1, 19 test instances re-
mained. M5P was found to be the best of the models in this
case, with a PRED value of 21.05, a CORR value of 0.97,
and a BIC value of 13.

Figure 3: Results for NASA 93 Dataset – M5P

Figure 4 shows the results for the COCOMONASA dataset.
After cross validation with a ratio of 4:1, 12 test instances
remained. MLPFS was considered to be the best of the mod-
els in this case, with a PRED value of 33.33, a CORR value
of 0.94, a BIC value of 13.88, and an overall ranking of 8.25.

Figure 5 shows the actual and predicted values for the De-
sharnais dataset. This dataset had been split into 65 training
and 16 testing instances by cross validation. LRFS was se-
lected as the best model by the automated estimation model,
with a total score of 8.5.

50 ISSN 1927-6974 E-ISSN 1927-6982



www.sciedu.ca/air Artificial Intelligence Research 2015, Vol. 4, No. 2

Figure 4: Results for COCOMONASA Dataset - MLPFS

Figure 5: Results for Desharnais Dataset - LRFS

Figure 6: Results for ISBSG-Telco Dataset – M5P

Figure 7: Results for China Dataset – M5P

Figure 8: Results for Maxwell Dataset - SVR

Figure 6 shows the results for the ISBSG-Telco dataset. Af-
ter the cross validation with ratio of 8:2, 26 test instances
remained for validation of the candidate models. M5P was
selected as the best of the models, with a PRED value of
65.38, a CORR value of 0.94, and a BIC value of 15.33.

Figure 7 shows the actual and predicted values for the 100
test instances of the China dataset. M5P outperformed the
other models, with a PRED value of 72, a CORR value of
0.94, a BIC value of 16.63, and an overall ranking of 9 (out
of 9). The highest PRED value in this study was obtained by
the China dataset. A large number of instances in the train-
ing and testing datasets may be the reason for its superiority.

Figure 8 shows the results for the Maxwell dataset. After
cross validation with a ratio of 4:1, 12 test instances re-
mained.

SVR is considered to be the best of the models in this case,
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with a PRED value of 38.46, a CORR value of 0.68, and a
BIC value of 21.52. The highest BIC scores were obtained
by the Maxwell dataset, which means that this dataset ob-
tained the most uncertain results. Figure 9 shows the re-
sults for the Miyazaki94 dataset. The nine test instances on
the X-axis were obtained by cross validation, with a ratio of
8:2. LRFS was selected by the automated estimation model,
with a PRED value of 55.56, a CORR value of 0.97, and a
BIC value of 7.2. The least uncertain results were obtained
by this dataset, as its BIC score was the lowest of all the
datasets.

Figure 9: Results for Miyazaki94 Dataset - LRFS

Figure 10 shows the results for the Finnish v2 dataset. After
cross validation with a ratio of 8:2, 30 training and 8 testing
instances remained. M5P performed the best of all the mod-
els, with a PRED value of 62.5, a CORR value of 0.94, and
a BIC value of 16.02.

Figure 10: Results for Finnish v2 Dataset - LRFS

Table 2 presents the best model selected for each of the 9

datasets. For 4 of the 9 datasets, the M5P model outper-
formed the other models, in terms of accuracy and uncer-
tainty, with LRFS receiving the next highest score.

Table 2: Best Model Selected for each of the 9 Datasets
 

 

Dataset Model PRED CORR BIC Score 

COCOMO 81 SVR 15.38 0.93 14.47 8.75 
NASA 93 M5P 21.05 0.97 13 8.75 
COCOMONASA MLPFS 33.33 0.94 13.88 8.25 
Desharnais LRFS 37.5 0.95 16.36 8.5 
ISBSG-Telco M5P 65.38 0.94 15.33 8.75 
China M5P 72 0.94 16.63 9 
Maxwell SVR 38.46 0.68 21.52 7.25 
Miyazaki94 LRFS 55.56 0.97 7.20 8.75 
Finnish v2 M5P 62.5 0.94 16.02 8.75 

 

Combining three different measures in the model selection
process improves the estimation result. For instance, as
shown in Table 3, LMS outperformed the other models for
the COCOMONASA dataset in terms of the PRED measure,
but it was not selected as the best model owing to its high
BIC and low CORR. So, MLPFS, which had the highest
overall score, was selected because of its high CORR and
low BIC. Figure 4 shows that the MLPFS result is satisfac-
tory.

Table 3: Model Scores in COCOMONASA Dataset
 

 

No Model PRED CORR BIC Score 

1 LR 33.33 0.93 14.06 5.25 
2 LRFS 33.33 0.93 14.05 6.25 
3 LMS 58.33 0.9 14.95 3.25 
4 PR 33.33 0.93 14.32 5.5 
5 KNN 16.67 0.82 14.89 1.5 
6 M5P 25 0.9 14.62 2.75 
7 SVR 41.67 0.91 14.51 5 
8 MLP 33.33 0.94 13.88 7.25 
9 MLPFS 33.33 0.95 13.87 8.25 

 

7 Summary and future work

An approach has been proposed in this research for the
use of multiple machine learning estimation techniques and
evaluation of their outcomes for the selection of the one that
performs best on a specific dataset. A prototype has been de-
veloped to implement this approach, which has been tested
using 9 machine learning techniques and evaluated on 9 dif-
ferent datasets. This is in contrast to previous studies in the
literature, in which machine learning models are compared
and the results analyzed using a single dataset.[38, 39]

Furthermore, previous studies have compared machine
learning models only in terms of accuracy.[13] However, ac-
curacy may change with the data and with accuracy statis-
tics, and so relying on accuracy alone may result in inef-
ficient models. The ranking mechanism that we use in our
proposed approach considers not only the PRED and CORR
accuracy criteria, but also the uncertainty criterion.
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In addition, the proposed estimation model combines the
measures considered above based on the weights assigned
by the organization. Clearly, the goals of any organization,
or estimation researcher, can vary. One organization may
be more interested in some results than in others, while an-
other organization may aim for greater accuracy. Conse-
quently, if an organization is interested in estimation results
that are more certain, it can increase the weight of the BIC
in the model. Furthermore, the proposed estimation model
performed well for all the datasets, and the results of the
model are highly acceptable in terms of uncertainty and ac-
curacy. For these datasets, the M5P decision tree algorithm
and linear regression with feature subset selection outper-
formed the other models, but artificial neural networks and
support vector machines did not perform well. The results

also show that feature subset selection enhances model per-
formance, especially for linear regression.

In future work, it will be beneficial to replicate this study for
the industrial context. Moreover, in this study, feature subset
selection is combined only with the multi layer perceptron
artificial neural network and linear regression, and it would
be useful to combine feature subset selection with the other
algorithms as well. Also, the performance of our proposed
estimation model could be improved by making further re-
finements in terms of including parameter optimizations for
each machine learning algorithm. A parameter-optimized
model would consider the entire parameter space in an at-
tempt to find the best combination of parameters for the ma-
chine learning method before estimating the effort for the
specific dataset.
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