
www.sciedu.ca/air Artificial Intelligence Research 2015, Vol. 4, No. 2

ORIGINAL RESEARCH

Heavy path based super-sequence frequent pattern
mining on web log dataset

Xinran Yu ∗, Turgay Korkmaz

Department of Computer Science, The University of Texas at San Antonio, San Antonio, Texas, USA

Received: January 20, 2015 Accepted: March 2, 2015 Online Published: March 12, 2015
DOI: 10.5430/air.v4n2p1 URL: http://dx.doi.org/10.5430/air.v4n2p1

Abstract
Mining web log datasets has been extensively studied using Frequent Pattern Mining (FPM) and its various other forms. Iden-
tifying frequent patterns in different sequences can help in analyzing the most common sub-sequences (e.g., the pages visited
together). However, this approach would not be able to identify general structures spanning over multiple sequences. In response
to understanding general structures, we introduce a new form of sequential pattern mining called super-sequence frequent pattern
mining (SS-FPM). In contrast to sub-sequences determined by FPM, SS-FPM determines the super-sequences that can contain
the common parts from different sequences. This can be useful in understanding the general behavior/flow of users in web usage
mining, classifying web pages and users, making predictions etc. In essence, finding frequent super-sequence patterns turns
out to be related to the well-known heaviest (longest) path problem in graphs, which is known to be NP-hard. Accordingly,
we transform a given sequential dataset into a sequence graph and formulate the problem as k-hop heaviest path problem. We
then propose an efficient heuristic called sequence matrix method using dynamic programming techniques. We compared our
method to the existing Heavypath method. The results show that our method is more efficient especially on large datasets.

Key Words: Super-sequence mining, Pattern mining, Web log dataset, Heavy paths

1 Introduction
Sequential pattern mining has been a popular research topic
due to its importance in many applications (e.g., shopping
basket analysis, bioinformatics, web usage mining and so
on) where data is given in the form of a set of sequences or
a long sequence.[1–4, 39] One form of the sequential pattern
mining is to find Frequent Patterns (FPM). It was first in-
troduced by Agrawal et al[1, 5] and was to analyze the item
sets that appear frequently in the customers’ shopping bas-
kets. As we review in the next section, researchers have
proposed many algorithms to this problem and investigated
various other forms of FPM. In this paper, we focus on in-
vestigating a new form of sequential pattern mining that we
call super-sequence frequent pattern mining (SS-FPM) and

the application of it on Web Log datasets. Various types of
sequential datasets can also be applied to accordingly.

A sequential dataset is a collection of sequence(s) of or-
dered elements or events.[6] As an example, let us consider
web log sessions in Table 1. Each web session is an or-
dered sequence of web clicks, i.e., two consecutive pages
AB means that a user first visited page A and then page B.
In this example, traditional FPM algorithms (e.g., Apriori,
downward closure) would identify AB and CD as the most
frequent sub-sequence patterns as they appear three times
in the dataset. Finding such frequent sub-sequences can be
helpful for analysing the most common structures and im-
proving the performance. For example, by analysing the
traversal patterns in a web server’s log, one can gather im-

∗Correspondence: Xinran Yu; Email: yxr_8011@163.com; Address: Department of Computer Science, The University of Texas at San Antonio,
San Antonio, Texas, USA

Published by Sciedu Press 1

www.sciedu.ca/air Artificial Intelligence Research 2015, Vol. 4, No. 2

portant information such as the most popular pages which
are likely to be visited together.[7]

Table 1: An example of web log sequences

Session Id Session Sequence

1 ABEB

2 BED

3 AB

4 AB

5 BCD

6 CD

7 CD

In contrast to finding the most common sub-structures,
we take a different approach and consider how to inden-
tify/analyse the underlying general structures among mul-
tiple sequences in the database. For example, suppose the
example in Table 1 is from a news web-site. To analyse
the general behaviour/flow of users (e.g., in what order the
users generally read the news items, do they follow the sug-
gested links or jump to different news etc.), we need to find
a relatively longer visiting sequence of pages that have re-
ceived the most clicks from different users. We call such se-
quences as super-sequences and the process of finding them
as super-sequence frequent pattern mining (SS-FPM). The
key distinguishing characteristic of super-sequences is that
they may contain several parts from different sequences.
For example, in the above sample dataset, the most fre-
quent super-sequence pattern with sequence length 4 would
be ABCD because the total number of occur-ring times of
AB, BC, and CD is 7, which is higher than that of any
other super-sequences with sequence length 4. This super-
sequence shows the popular flow of the visited news which
is from A to B then to C and then D. As we can see that only
analysing the frequent sub-sequences cannot give a flow like
super-sequence does. In addition to analysing general struc-
tures, web designers can use supper-sequence patterns to
predict future users’ behaviour and dynamically make rec-
ommendations in interactive learning and shopping sites.
For example, if new user visits news A and B, according
to the super-sequence found, C and D can be recommended.

In a closely related work,[8] the authors have analysed the
research filed revolution by considering heavy paths which
are similar to our super-sequences. The authors have con-
sidered a citation database where each citation relationship
from paper A to paper B can be viewed as a length 2 se-
quence. By associating each paper with its topic, they gen-
erated a network where the nodes are research topics and
the weight on an edge is the frequency of citations. Heavy-
paths (i.e., super-sequences) in such a graph capture strong
flows of ideas across topics. The authors in Ref.[8] also
considered heavy paths for music recommendation system
and itinerary recommendation system for visiting as many
as popular places of interest in a limited travel time.

Extracting super-sequences in a sequential dataset would
also be important in various other areas and applications
such as system call analysis, bioinformatics, social net-
works, etc. For example, biologists can better understand
the relationships between gene structures and functional
elements by determining the frequent super-sequences in
the DNA sequences[2] of closely related species. Also,
in protein association networks, super-sequences can help
seek the most related proteins.[40] Another example would
be malware detection,[9] where researchers analyse the se-
quence of system calls.[3, 10] By identifying frequent super-
sequence system call patterns from many program traces,
researchers can determine unusual sequence of calls that
might be invoked by malicious programs.

The SS-FPM problem is related to the heaviest (a.k.a. the
longest) path problem in directed graphs, which is known
to be NP-hard.[11] Accordingly, we first transform the given
sequential dataset into a sequence graph, and then search for
heaviest paths as patterns. More specifically, we are inter-
ested in finding all the k-hop paths ((k + 1)-length super-
sequence frequent patterns) that have a larger weight than a
given threshold. Note that k-hop heaviest path is the same as
(k + 1)-length super-sequence frequent pattern (SS-FP) and
we use these terms interchangeably in the rest of the paper.

In response to solving this new form of the heaviest path
problem in a directed weighted graph, we propose a se-
quence matrix method that basically uses some heuristics
and dynamic programming techniques to gradually compute
k-hop heaviest paths from the initial one-step sequence ma-
trix representing the underlying sequence graph and the (k-
1)-hop heavies paths computed in previous iteration. As we
discuss later in detail, the worst-case complexity of the pro-
posed sequence matrix method is O(kn4), where k is the
number of hops (length of the super-sequence) and n is the
number of nodes in the sequence graph . However, through
experiments in Section 5, we will show that the average run-
ning time of our solution grows more like a quadratic func-
tion of n rather than quartic function as in the worst-case.
We also show that it is significantly better than the running
time of the heavy path heuristic proposed in Ref.[8]

In addition to the above algorithmic contribution to solve
SS-FPM problem, we apply our solution to analysing some
actual sequential web log datasets and identify interesting
super-sequence patterns in these datasets. In this direction,
we specifically consider an actual web-log dataset called
BMS-WebView-1,[12] which consists of multiple sequences.

The remaining part of the paper is organized as follows.
In Section 2 we give related work in frequent pattern min-
ing area. We formally define super-sequence frequent pat-
tern mining (SS-FPM) problem and give the graph model in
Section 3. In Section 4 we present our proposed heuristic
method using dynamic programming techniques for solving
the SS-FPM problem. We then evaluate the performance

2 ISSN 1927-6974 E-ISSN 1927-6982

www.sciedu.ca/air Artificial Intelligence Research 2015, Vol. 4, No. 2

of our solution both compared to Heavypath method and
through experiments on actual web log dataset consisting of
multiple sequences in Section 5. Finally, we conclude this
paper and point out some issues for future research in Sec-
tion 6.

2 Related work
FPM is to seek frequently occurring patterns or relation-
ships in a large database. It was first introduced by Agrawal
et al[1] to analyse the item sets that appear frequently in
the customers’ shopping baskets. After the introduction
of their solution called Apriori algorithm, researchers have
proposed many new algorithms and improvements for the
same FPM problem while investigating its various other
forms as well. For example, Park et al. have tried to im-
prove Apriori using hashing technique,[13] Savasere et al.
used partitioning technique,[14] Toivonen et al. proposed
sampling approach.[15] In addition, researchers considered
other methods such as dynamic item set counting,[16] incre-
mental mining,[17] parallel and distributed mining[13, 17, 18]

and so on.[19] Researchers have also developed new algo-
rithms for the FPM problem such as FP-growth,[20] which
uses FP-tree to store the itemset association information,
and Eclat,[21] which uses an Equivalence CLAss Transfor-
mation method. Moreover, researchers have been studying
various other types of FPM problem including multilevel
and multidimensional association rules mining,[22] closed
frequent pattern mining,[23] colossal pattern mining,[24] se-
quential pattern mining,[5] graphs, trees and lattices min-
ing.[19]

Our work is related to sequential mining, where the frequent
item sets mining is extended with the consideration of or-
dered items. Specifically, sequential mining tries to find the
set of frequent subsequences in a given sequential dataset.
One of the first solutions to this problem was AprioriAll,[5]

which extends the similar techniques in Apriori[1] to find
frequent patterns in transactions of the customers. It gener-
ates candidate sequences by measuring the support of them
in passing over the database while using the downward-
closure property of sequential patterns.

A representative list of the well-known sequential min-
ing algorithms include Apriori-based GSP (Generalized
Sequential Patterns),[25] Pattern-growth based FreeSpan[26]

and PrefixSpan,[27] Vertical format-based SPADE[28] and
Constraint-based SPIRIT.[29] All of these solutions mainly
focus on the sub-sequence mining, which is to find the com-
mon part of all the sequences in a dataset. In our prob-
lem, we are looking for a general structure (i.e., the super-
sequence). The most frequent super-sequence is the one
with the largest total support of each consecutive length
two sequence which is a link in it. Although part of the
most frequent super-sequence may be the most frequent
sub-sequence, this is not necessary.

Finding supper-sequences is related to the heaviest (longest)
path problem, which is known to be NP-hard.[11] To cope
with the NP-hardness of the heaviest path problem, re-
searchers have proposed various approximation algorithms
or developed exact algorithms for specific classes of graphs.
Karger et. al proposed an approximation method for the
heaviest path in a graph using greedy algorithm.[30] Murat
et. al proposed probabilistic heaviest path problem.[31] Oth-
ers have considered solutions for specific type of graphs.
For example, researchers proposed heaviest path prob-
lems on directed acyclic graph,[32] interval graphs,[33] co-
comparability graphs,[34] ptolemaic graphs[35] and so on.
Most of these studies try to find the heaviest path starting
from a source without any constraints. In our case, we
are interested in any k-hop heaviest path whose weight is
greater than a threshold. A similar work has been done and
shown in Ref.[8] Their strategy is to use rank join method
and go through each edge with each possible expansion
from (k-1)-hop to k-hop. Since their work can find the accu-
rate top-N heaviest paths in a graph, it is very time consum-
ing. We will show some comparisons between our method
and theirs in the experiment section later.

3 Problem definition and graph model
In this paper, a sequential dataset is denoted by S =
{S1, S2, · · · , SN}, where Si = {w1, w2, · · · , wli} is a se-
quence of ordered elements or events (e.g., sequences of
web pages in Table 1). The union of all the events is
W = {w1, w2, · · · , wn}, (i.e., W =

⋃N
i=1 Si). Let p =

{w1, w2, · · · , wk} be a k-length super-sequence pattern (or
(k-1)-hop path). Let support (wxwy) be the total number of
occurrences of the sequence wxwy in S. Similarly, we can
define the support for a pattern p as follows:

support(p) =
∑k−1

i=1 support(wiwi+1)

We say p is k-length frequent if support(p) is greater than
a given threshold δ. We can now formally define SS-FPM
problem as follows:

Definition 1. Given a sequential dataset S, a sequence
length k, and a threshold δ, the Super-Sequence Fre-
quent Pattern Mining (SS-FPM) problem is to find the
set P = {p1, p2, · · · , pr}, where each pattern pj =
{w1, w2, · · · , wk} satisfies the following condition:

support(pj) =
∑

support(wiwi+1) > δ (1)

SS-FPM problem is actually related to the heaviest path
problem in a graph. So we transform a given sequential
dataset S into a sequence graph, which can be defined as
follows.

Definition 2. A Sequence Graph is a directed weighted
graph G = (V,E), where V = {w1, w2, · · · , wn} and
E = {e1, e2, · · · , em}. Each edge ei connects wa and wb if

Published by Sciedu Press 3

www.sciedu.ca/air Artificial Intelligence Research 2015, Vol. 4, No. 2

there is a consecutive sequence wawb in any sequence in S.
The weight of edge ei is set to support(wawb), which is the
total number of occurrences of consecutive sequence wawb

in all sequences in S.

According to this definition, we can easily construct the
sequence graph for a given sequential dataset. For exam-
ple, the sequence graph for the sequential dataset in Table 1
would be as shown in Figure 1. We use the adjacency ma-
trix, which we call the initial one-step sequence matrix, to
represent the sequence graph. Since there are n elements in
the set of all sequences, the sequence matrix would be n×n.
For example, the sequence matrix for the above graph would
be as in Figure 2.

Figure 1: The sequence graph for the sequential dataset in
Table 1

The sequence matrix denoted by M1 can directly be com-
puted from the given sequential dataset S. For this, we first
set M1[wi][wj] to 0 for every wiwj . We then go through
each sequence Si and add one toM1[wi][wj] for eachwxwy

in Si.

The reason for using the notation M1 is to indicate that
M1[wi][wj] actually represents the support of 1-hop path (2-
length sequence) from wi to wj In the rest of the paper, we
will continue to generalize this notation as Mk to store the
supports of the k-hop heaviest path ((k+1)-length most fre-
quent super-sequence). Note that Mk[wi][wj], not the path
from wi to wj . The actual k-hop paths will be stored in a
hash table, as we discuss later in detail.

Figure 2: The sequence matrix for the sequence graph in
Figure 1

We assume that the super-sequences are simple paths (e.g.,
sequential patterns without duplications). The dataset may
have duplicates such as the first entry in Table 1. But when
we search for a frequent super-sequence, we do not con-
sider loops since the path may not be able to get out of
the loop. So the frequent super-sequences got from the se-
quence graph are simple paths.

4 Proposed sequence matrix method for
SSFPM

In this section we are going to give the details of our solution
that computesMk and determine the heaviest paths (i.e., the
most frequent super-sequence patterns). To determine the
(k+1)-length most frequent super-sequence patterns, we ac-
tually try to compute all the k -hop heaviest paths whose
total weights are greater than a given threshold. For this, we
mainly use dynamic programming techniques to gradually
compute the matrix Mk from M1 and Mk−1 and we call
this method the sequence matrix method. As we discussed
in last section, M1[i][j] is the support of the 1-hop heaviest
path (direct link) from node i to node j. On the other hand,
for k > 1, Mk[i][j] is the support of the k-hop heaviest path
starting with sequence ij rather than being the weight of a
path from i to j.

The formula is given below:

Mk[i][j] = M1[i][j] +Mk−1[j][maxC] (2)

where maxC is the column index of the maximum value in
row j.

In addition, we maintain a hash table Hk that stores k-hop
heaviest paths ((k + 1)-length frequent super-sequences)
starting with ij. So the keys in Hk are [ij] for all the non-
zero elements in Mk while the values are the k-hop heaviest
paths starting with the corresponding ij. Here there can be
multiple paths starting with the sequence ij that have the
same weights. In our heuristic algorithm, we choose one ar-
bitrarily. Actually, this may cause missing the actual heavi-
est path. However, our experiments show that the difference
is not significant, and thus we keep our current algorithm
to choose one path. Nevertheless, at the cost of increas-
ing computational and space complexity, one may simply
extend our solutions to store multiple paths with the same
weight and with the same starting sequence in the hash ta-
ble. The formula that computes the hash table Hk is:

Hk[XY] = concat(H1[XY], Hk−1[Y · · ·Z]) (3)

where Hk−1[Y · · ·Z] has the maximum weight in Hk−1
starting with Y .

We will now illustrate the details of the proposed solution
through an example. We then give its pseudo code and anal-
yse its computational complexity. Specifically, we will con-
sider the sequence graph in Figure 1 and illustrate the pro-
cess of getting k-hop heaviest paths ((k + 1)-length frequent
super-sequence patterns) when k is 3. So, we need to grad-
ually calculate M3 and H3. First, let us generate H1. This
can easily be done by using the non-zero elements from the
original one-step sequence matrix M1. Resulting keys and
1-hop paths in H1 will be as shown below:

4 ISSN 1927-6974 E-ISSN 1927-6982

www.sciedu.ca/air Artificial Intelligence Research 2015, Vol. 4, No. 2

H1 =

Key Value

AB <AB>

BC <BC>

BE <BE>

CD <CD>

EB <EB>

ED <ED>

We then compute M2 by using M1 twice as follows. For
each i and j, we first search the largest value in row j of M1
and identify its column index as maxC. We then simply
compute M2[i][j] by taking the summation of M1[i][j] and
M1[j][maxC]. If M1[i][j] is 0, we keep it 0 in M2[i][j],
which means we do not have a path starting from ij. Also,
if the maximum in row j of M1 is 0, we again set M2[i][j]
to 0, which means that there is no outlet from node j.

Now we are going to explain why we need to check if there
is a 0. When M1[i][j] is zero, there is no visits on page j
after page i. Thus, there is no need to calculate the super-
sequence path starting with ij in the sequence. Similarly,
when the largest value on row j is zero, there is either no
outlet in the (k-1)-sequence matrix for page j or they could
generate a circle if we keep adding pages in the path. Thus,
we set the corresponding Mk[i][j] to zero. In summary, if
either one of these conditions is true, then we cannot find
a k-hop path starting with ij; thus, we set Mk[i][j] to 0.
Accordingly, the resulting M2 will be as shown in Figure 3.

Figure 3: The 2-sequence matrix for the sequence graph in
Figure 1

While we generate M2, we can derive the corresponding
hash table H2 and make sure that the paths in hash table
will not have loops. After computing M2[i][j], we check if
it is 0 or not. If it is not 0, then we copy the value of the
key [jmaxC] in H1 to [ij]’s value in H1 after the first ele-
ment. For example, the new value in H2 for key [AB] will
be <ABE>. This is obtained by copying <BE> to <AB>
after A since M1[B][E] has the largest value on row B. Ac-
cordingly, the resulting H2 will be as follows:

Key Value

AB <ABE>

BC <BCD>

BE <BED>

EB <EBC>

H2=

From H2 we can see that 3-length super-sequence patterns
are ABE, BCD, BED and EBC with the supports of 5, 4, 3
and 2, respectively. Note that we did not choose EBE as a
2-hop path since it has a loop. We keep track of the paths
and check if there is a loop when a path is extended with a
new node. If so, we ignore that node and consider the next
node.

Finally, M3 is going to be computed by using M1 and M2
as follows. For each i and j, we first search the largest value
in row j of M2 and identify its column index as maxC. We
then simply compute M3[i][j] by taking the summation of
M1[i][j] and M2[j][maxC]. Accordingly, the resulting M3
will be as shown in Figure 4.

Figure 4: The 3-sequence matrix for the sequence graph in
Figure 1

For H3, since M2[B][C] has the largest value on row B,
we copy the value of [BC]: <BCD> to the value of [AB]:
<ABE>, starting from the second element. Consequently,
we obtain <ABCD> and save it in H3 with the key value of
[AB]. Using the same process, we also obtain <EBCD>. As
a result, H3 will be as follows:

Key Value

AB <ABCD>

EB <EBCD>
H3=

In summary, we computed ABE as the 2-hop heaviest
path (3-length most frequent sequence) by combining 1-hop
heaviest paths AB and BE from M1 in Figure 1. Since AB
has the support of 3 and BE has the support of 2, the sup-
port of ABE will be 5. Continuing this way, we determined
ABCD as the 3-hop heaviest path (4-length most frequent
super-sequence) with the support of 7. We can now present
the above steps in a pseudo code form, as shown in Algo-
rithm 1.

Published by Sciedu Press 5

www.sciedu.ca/air Artificial Intelligence Research 2015, Vol. 4, No. 2

Algorithm 1 Sequence Matrix Algorithm Computing k-hop
Longest Path

Algorithm 1. Sequence Matrix Algorithm Computing k-hop Longest Path

Input: M1, Mk-1, and Hk-1
Output: Mk and Hk
for 1 i n do
 for 1 j n do
 if M1[i][j] 0 then

Find maxC such that
Mk-1[j][maxC] Mk-1 [j][l] for 1 l n
while there is a loop in the new path do
Mk-1[j][maxC] = 0,
Find maxC such that
Mk-1[j][maxC] Mk-1[j][l] for 1 l n
end while

 if Mk-1[j][maxC]! = 0 then
 Mk[i][j] = M1[i][j] + Mk-1[j][maxC],
 update hash table Hk
 else
 Mk[i][j] = 0
 end if
 end if
 end for
end for

4.1 Accuracy analysis of sequence matrix algorithm

When there are multiple same weights links existing for
length k+1 super-sequences, our solution will miss some
super-sequences, e.g., if there are 2 most frequent super-
sequences starting from ij, we will only get one of them.
This can also mislead the most frequent length k+1 super-
sequence. There is also another assumption in this algorithm
which is that the heaviest hop-k paths are distributed evenly
for all the paths starting with any two nodes’ permutation.
This is because we can find at most n2 top-N paths no mat-
ter what number is k. So any two nodes’ permutation can
only contribute to one possible heaviest path. Now we will
show that for searching top-N heaviest paths, two of these
paths come from one single two-node as starting edge is in
small probability.

In a directed weighted graph with n nodes and m edges,
each node has m/n edges in average. Suppose we are
searching for top-N hop-k paths. The number of possible
hop-k paths is Pm

k = m!/(m−k)!. The number of possible
paths starting from link ab is (m/n)k−1. Suppose there are
two hop-k paths that are both started with ab and they in the
top-N hop-k path-set, the probability is:

Prob = (m/n)k−1/(m!/(m− k)!) (4)

If the graph is dense, this number can be very small, e.g.,
searching a hop-5 heavy path in a 10 node graph with 50
edges, the probability is

Prob = (54)/(50×49×48×47×46×45) ≈ 1/(25000000)
(5)

which is very small. This shows that using our sequence
matrix method has large chance to get most of the top-N
heaviest paths.

In conclusion, as we mentioned at the beginning of this sec-
tion, our solution can find the most frequent super-sequence
with length k+1 starting from ab with small probability of
errors when the weight on each link is different from each
other.

4.2 Time complexity analysis of sequence matrix
algorithm

In Algorithm 1, if there are n nodes in the graph, it computes
the n × n matrix Mk by performing the above mentioned
operations on two n × n matrices, namely M1 and Mk−1.
The actual paths are stored in a hash table Hk by extend-
ing the paths in Hk-1 while making sure that there will be
no loops in them. To compute each element Mk[i][j], the
heuristic algorithm obtains the maximum in row j ofMk−1,
which costs O(n), and checks if the new path starting with
ij would have a loop, which costs O(k). If there is a loop,
the heuristic algorithm ignores that path and finds another
maximum until it finds a path without a loop. In the worst
case, the heuristic algorithm may end up checking all the el-
ements in row j, which costs O(n). So, for each element ij,
the heuristic algorithm would perform O(n(n + k)) opera-
tions, resulting in overall complexity ofO(n4 +kn3). Since
we are interested in simple paths, k will be less than n and
thus the worst-case complexity of the heuristic algorithm for
a given k will be O(n4). Since we gradually compute Mk

by calling the heuristic algorithm k times, the overall worst-
case complexity of our solution will be O(kn4). However,
in practice, since the sequence graphs are sparse and the ma-
trix Mk storing the weights of the heaviest k-hop paths gets
more and more zero elements as the k increases, we would
not need to find maximum or search for loops in paths for
every element in the matrix. This results in reasonable av-
erage case complexity, as we demonstrate through experi-
ments in Section 5.

5 Experiments and results
For the experiments, we have two parts. In the first part,
we compare the accuracy of our sequence matrix method as
well as their actual running time with the Heavypath algo-
rithm, which is the name used in Ref.[8] for seeking top-N
heaviest paths in a graph. In the second part, we use an ac-
tual web log dataset consisting of multiple sequences (ses-
sions) and analyse the supper-sequence patterns in it. All of
the experiments are run on 2.40 GHz Intel Xeon CPU with
24GB memory.

5.1 Accuracy of sequence matrix method and the
running time comparison with existing heavy-
path algorithm

Heavypath algorithm is proved to be able to find the accu-
rate top-N paths given a number N. We used Cora (http://
www.cs.umass.edu/_mccallum/data) as the real world

6 ISSN 1927-6974 E-ISSN 1927-6982

http://www.cs.umass.edu/_mccallum/data
http://www.cs.umass.edu/_mccallum/data

www.sciedu.ca/air Artificial Intelligence Research 2015, Vol. 4, No. 2

graph data and generated a 70-node graph as was shown in
Ref.[8] We also generated six synthetic directed weighted
graphs of 100 nodes with 100 edges, 200 edges and 300
edges randomly distributed between two nodes. The length
k of the seeking path is ranging from 2 to 3 (the running time
for longer length takes huge amount of time using Heavy-
path) for Cora dataset and 2 to 7 for the synthetic dataset.
Figure 5 to Figure 8 shows the results.

In Figure 5 we can see that the sequence matrix method
runs much faster than the Heavypath method while they can
both get the correct heaviest path in the graph. In Figure 6,

Heavypath runs a little bit faster than our sequence matrix
method, but as the graph getting denser, the running time
for the Heavypath algorithm increases faster, while our al-
gorithm still keeps almost the same running time as shown
in Figure 7 and Figure 8 . This is because that as the number
of edges increases, it takes more time to go through each
edge in the rank join strategy to expand a path, while our
method is based on the matrix which is only related to the
number of nodes in the graph. Also, in our sequence matrix
method, as the length k grows, the matrices that are going to
be calculated are going to contain more 0s, which takes less
and less time each round of adding up an edge to the paths.

Figure 5: The comparison of the running time and the heaviest path weight on Cora Dataset

Figure 6: The comparison of the running time and the heaviest path weight on 100-node 100-edge dataset

Figure 7: The comparison of the running time and the heaviest path weight on 100-node 200-edge dataset

Published by Sciedu Press 7

www.sciedu.ca/air Artificial Intelligence Research 2015, Vol. 4, No. 2

Figure 8: The comparison of the running time and the heaviest path weight on 100-node 300-edge dataset

Figure 9: The comparison of the total weight of the top-N
heavy paths found

To test our matrix method’s accuracy, we also searched the
heaviest path using both of the methods. The results are
shown in Figure 6 (b), Figure 7 (b) and Figure 8 (b). We can
see that our algorithm almost has the same accuracy as the
Heavypath algorithm. Heavypath can find top-N heaviest
paths, while our method can return a set of paths with larger
weight than a given threshold. This means that if given a
threshold δ, and the number of returned heavy paths is large
or equal to N, there is a chance that N of these paths can be
the top-N paths. To test the ability of our method seeking

the top-N heavy paths, we did experiments on the two algo-
rithms to find the top-2 to top-5 paths. Here the way to seek
top-N heavy paths of using sequence matrix method is that
we need to try some threshold numbers to get one that can
return more than N heavy paths, and then from these paths
pick the top-N heaviest. To show the accuracy, we compare
the total weight of the N paths found by using the two meth-
ods to get two groups A and B of top-3 heavy paths. Then
calculate the total weight of the paths in A and B respec-
tively. The results are shown in Figure 9. We can see that
our algorithm has very high accuracy.

From the experiment we can see that the sequence matrix
method is more efficient and can give relatively accurate
result. For the next experiment on real-world dataset, we
are going to use it as the method to find the frequent super-
sequences.

5.2 Super-sequence pattern analysis on web log
dataset

The actual web log dataset that we use is called BMS-
WebView-1 (BMS_WebView-1 has been used as datasets
n KDDCup 2000 competition and can be downloaded from
The Data Mining Forum: http://forum.ai-direcotry
.com). It contains several months of clicking stream data
from an E-commerce website. As discussed in Section 1, the
web log data is transformed into a set of sequences. Each se-
quence is a session showing a sequence of web pages visited
by a user. The details on web log pre-processing are out of
the scope of this paper and the details can be found.[12, 37, 38]

In BMS-WebView-1, there are 59602 sessions and 497 web
pages in it. For simplicity, we give each web page an ID
starting from 0 to 496.

In Figure 10, we show the number of sequences (paths) that
we found with visiting numbers (total weight) from 2000 to
5000 and the sequence length (k) varies from 5 to 10. Sim-
ilarly, Figure 11 shows the number of sequences that have
visiting numbers from 5000 to 8000 and the sequence length
goes from 12 to 20. Both figures confirm that, as expected,
our algorithm finds more paths under the same visiting num-

8 ISSN 1927-6974 E-ISSN 1927-6982

http://forum.ai-direcotry.com
http://forum.ai-direcotry.com

www.sciedu.ca/air Artificial Intelligence Research 2015, Vol. 4, No. 2

bers as the sequence length increases. This is due to the
fact that the total weight of a path increases as the sequence
length increases.

From Figure 10 and Figure 11, we can see that there are a
lot of paths (e.g., close to 30000) when path length is rela-
tively long and visiting threshold is relatively small. Instead
of such commonly appearing many paths, it would be use-
ful to focus on the small number of paths having a relatively
large weight (Nummer of visiting). For example, in this data
set, one should closely analyse the 6-length paths with vis-
iting numbers larger than 2200, or the 10-length paths with
visiting numbers larger than 4000.

Figure 10: Number of paths found for different lengths
(5-10) with different visiting numbers

Figure 11: Number of paths found for different lengths
(12-20) with different visiting numbers

For example, let us consider such distinguished paths to in-
vestigate if there is any weakest link, which has significantly
small number of visitings compared to other links in a fre-
quent super-sequence pattern. If there are any such links,
web designers can delete or regroup them. To identify such
links, we calculated the deviations of the distinguished paths
with length 3, 4 and 5. From Table 2, 3 and 4 we can see
that the number of paths significantly decreases as the vis-
iting threshold increases. Accordingly, we pick the visiting

numbers of 1000, 1500, and 2000 to get 18, 7, and 10 dis-
tinguished paths, respectively.

Table 2: The number of paths with length 3

Number of total visitings Number of paths found

>900 169

>1000 18

>1100 5

>1200 3

>1300 1

>1400 0

Table 3: The number of paths with length 4

Number of total visitings Number of paths found

>1400 9

>1500 7

>1600 5

>1700 4

>1800 2

>1900 1

>2000 0

Table 4: The number of paths with length 5

Number of total visitings Number of paths found

>1900 11

>2000 10

>2100 6

>2200 2

>2300 1

>2400 0

Figure 12 shows the ordered standard deviation for the 18
paths found (total visitings > 1000) in Table 2. We can
see that there are 3 paths with deviation less than 200 and
5 paths with standard deviation larger than 600. The rest
of the paths have standard deviation between 200 and 600.
After checking the path that has the smallest standard de-
viation, we found that the path has the web page sequence
<163, 0, 1>. The visitings for page 0 after visiting page 163
is 590 and then number of visitings to page 1 is 621. The
largest deviation exists in path <265, 281, 277>, where the
visitings are 48 and 953, respectively. Figure 13 shows the
ordered standard deviation for the 7 paths found (total vis-
itings > 1500) in Table 3. The smallest deviation exists at
the path with web page sequence <163, 0, 1, 97>. We can
see that it is the same path before but extended with web
page 97 and the visitings after page 1 to page 97 is 771. The
largest deviation exists in path <45, 2, 281, 277> and the
visitings are 877, 8, 953, respectively. Figure 14 shows the
ordered standard deviation for the 10 paths found (total vis-
itings > 2000) in Table 4. We found that the path that has
the largest standard deviation has the web page sequence

Published by Sciedu Press 9

www.sciedu.ca/air Artificial Intelligence Research 2015, Vol. 4, No. 2

<1, 45, 2, 281, 277> and the visitings are 193, 877, 8, 953,
respectively. This means that visitings on web page 281 af-
ter users visiting page 2 has only 8 times occurring in the
dataset. This is very few compared to other visitings in this
super-sequence. So the designer might want to remove page
281 or combine its content with page 277.

To analyse the super-sequences found we looked into the 6
length-5 paths found which has total visitings greater than
2100 and they are listed in Table 5 in the page IDs. From
the table we can see that the super-sequences mainly have
two centres, one is related to page 0, 1, 97 and the other one
is 45, 2, 281 and 277. We also looked into the top visited
single pages and the top frequent occurring length-5 sub-
sequences (each page in the sub-sequence occurs equal or
more than 50 times) they are shown in Table 6 and Table 7.

Figure 12: Visiting numbers standard deviation for length
3 paths with total visitings larger than 1000

Figure 13: Visiting numbers standard deviation for length
4 paths with total visitings larger than 1500

Figure 14: Visiting numbers standard deviation for length
5 paths with total visitings larger than 2000

Table 5: The 6 length-5 paths found with total vistings >
2100

Paths found Total visiting number

{0, 1, 94, 45, 2} 2407

{17, 163, 0, 1, 97} 2140

{44, 45, 2, 281, 277} 2128

{45, 2, 293, 281, 277} 2154

{163, 0, 1, 97, 176} 2285

{163, 164, 0, 1, 97} 2120

Table 6: The top 5 most visted webpages

Webpage ID Visiting numbers

5 1948

163 2009

45 2049

2 2268

1 2371

0 2797

97 3449

277 3612

35 3623

281 3658

Table 7: The top-6 most visited sub-sequences

Paths found Total visiting number

167,60,9,4,5 1252
73,167,60,9,4 999
163,164,0,1,97 2120
293,308,266,276,281 386
308,266,276,281,285 551
292,293,308,266,276 416

From comparing Table 6 and Table 5 we can see that al-
though page 5 and 35 are most visited single pages; they
are not appearing in the super-sequences. This can imply
that the pages connecting with 5 and 35 are spread out and
then the link linking them are with less weight that the
ones that can be selected as part of the super-sequences.
This also means that page 5 and 35 may be hubs in the
web page networks but not as the mainly behaviour flow
of the users. So they may just intermediate pages to con-
nect other pages. On the other hand from comparing Table
6 and Table 7 we can see that there is little overlap between
the super-sequences and the frequent sub-sequences. This
shows that frequent sub-sequences cannot reflect the prob-
lems that super-sequences can. For example, in Table 7,
although each sub-sequence as a whole appears relatively
frequent, where the weight on each link is between 20 and
30, they reflect the behaviour of a small amount of users. In
Table 5, the average weight on each link is around 500, al-
though some of the links may have a lot more visitings than
the other, it still contains a lot more users’ information than

10 ISSN 1927-6974 E-ISSN 1927-6982

www.sciedu.ca/air Artificial Intelligence Research 2015, Vol. 4, No. 2

just using sub-sequences. Through the super-sequences we
have better understanding of the users’ behaviour flow and
different trends of those behaviours.

6 Conclusion and future work
In this paper, we formulated a new form of sequential pat-
tern mining, namely SS-FPM. We then proposed a heuris-
tic sequence matrix method using dynamic programming
techniques which gave high accuracy with a reasonable run-
ning time. We compared our method to the existing Heavy-
path method in the experiment section and showed that our
method is more efficient. Although the sequence matrix
method can lose some of the actual paths during calculation,
it can still give reasonable results. Accordingly, we used the
matrix method to analyse actual web log dataset from a dif-

ferent perspective and found interesting facts based on the
identified super-sequences in these datasets.

In this paper, we only consider patterns without loops, in
our future research we would like to extend our algorithm
on finding super-sequence patterns with loops. In the future,
we would like to scale up our method on large datasets by
developing their distributed and parallel versions. We also
plan to apply our methods on other areas such as bioinfor-
matics and so on.

Disclosure

An abridged version of this paper was presented in Work-
shop on Knowledge Management and Big Data Analyt-
ics(KMBA), to be held as part of the IEEE International
Conference on Big Data, Oct 6-9, 2013 at Santa Clara, CA,
USA.

References

[1] R. Agrawal, R. Srikant, et al. Fast algorithms for mining association
rules.” Proc. 20th Int. Conf. Very Large Data Bases. VLDB. 1994;
1215: 487-499.

[2] F. Sanger, S. Nicklen, A. R. Coulson. Dna sequencing with chain-
terminating inhibitors. Proceedings of the National Academy of Sci-
ences. 1977; 74(12): 5463-5467. http://dx.doi.org/10.1073
/pnas.74.12.5463

[3] S. A. Hofmeyr, S. Forrest, A. Somayaji. Intrusion detection using
sequences of system calls. Journal of computer security. 1998; 6(3):
151-180.

[4] B. Chikhaoui, S. Wang, H. Pigot. A frequent pattern mining ap-
proach for adls recognition in smart environments. Advanced Infor-
mation Networking and Applications (AINA). 2011 IEEE Interna-
tional Conference on IEEE. 2011: 248-255. http://dx.doi.org
/10.1109/aina.2011.13

[5] R. Agrawal, R. Srikant. Mining sequential patterns. Data Engineer-
ing. Proceedings of the Eleventh International Conference on IEEE.
1995: 3-14.

[6] J. Han, M. Kamber, J. Pei. Data mining: concepts and techniques.
Morgan kaufmann. 2006.

[7] R. Ivancsy, I. Vajk. Frequent pattern mining in web log data. Acta
Polytechnica Hungarica. 2006; 3(1): 77-90.

[8] M. Khabbaz, S. Bhagat, L. V. Lakshmanan. Finding heavy paths
in graphs: A rank join approach. arXiv preprint arXiv:1112.1117,
2011.

[9] N. Idika, A. P. Mathur. A survey of malware detection techniques.
Purdue University. 2007: 48.

[10] I. Sato, Y. Okazaki, S. Goto. An improved intrusion detecting
method based on processprofiling. Transactions of the Information
Processing Society of Japan. 2002; 43(11): 3316-26.

[11] E. L. Lawler. Combinatorial optimization: networks and matroids.
Courier Dover Publications. 2001.

[12] W. Bin, L. Zhijing. Web mining research. Computational Intelli-
gence and Multimedia Applications. 2003. ICCIMA 2003. Proceed-
ings. Fifth International Conference on IEEE. 2003: 84-89.

[13] J. S. Park, M.-S. Chen, P. S. Yu. An effective hash-based algorithm
for mining association rules. ACM. 1995; 24(2). http://dx.doi
.org/10.1145/568271.223813

[14] A. Savasere, E. R. Omiecinski, S. B. Navathe. An efficient algorithm
for mining association rules in large databases. 1995.

[15] H. Toivonen, et al. Sampling large databases for association rules.
Proceedings of the International Conference on Very Large Data
Bases. IEEE. 1996: 134-145.

[16] S. Brin, R. Motwani, J. D. Ullman, et al. Dynamic itemset count-
ing and implication rules for market basket data. ACM SIGMOD
Record. 1997; 26(2): 255-264. http://dx.doi.org/10.1145/2
53260.253325

[17] D. W. Cheung, J. Han, V. T. Ng, et al. Maintenance of discovered
association rules in large databases: An incremental updating tech-
nique. Data Engineering, 1996. Proceedings of the Twelfth Interna-
tional Conference on IEEE. 1996: 106-114. http://dx.doi.org
/10.1109/icde.1996.492094

[18] R. Agrawal, J. C. Shafer. Parallel mining of association rules.
Knowledge and Data Engineering. IEEE Transactions. 1996; 8(6):
962-969.

[19] J. Han, H. Cheng, D. Xin, et al. Frequent pattern mining: current
status and future directions. Data Mining and Knowledge Discov-
ery. 2007; 15(1): 55-86. http://dx.doi.org/10.1007/s1061
8-006-0059-1

[20] J. Han, J. Pei, Y. Yin. Mining frequent patterns without candi-
date generation. ACM SIGMOD Record. 2000; 29(2): 1-12. http:
//dx.doi.org/10.1145/335191.335372

[21] M. J. Zaki, S. Parthasarathy, M. Ogihara, et al. New algorithms for
fast discovery of association rules. in 3rd Intl. Conf. on Knowledge
Discovery and Data Mining. 1997; 20: 283-286.

[22] R. Srikant, R. Agrawal. Mining generalized association rules. IBM
Research Division, 1995.

[23] N. Pasquier, Y. Bastide, R. Taouil, et al. Discovering frequent closed
itemsets for association rules. Database TheoryICDT99. Springer.
1999: 398-416. http://dx.doi.org/10.1007/3-540-49257
-7_25

[24] F. Zhu, X. Yan, J. Han, et al. Mining colossal frequent patterns
by core pattern fusion. Data Engineering. 2007. ICDE 2007. IEEE
23rd International Conference on IEEE. 2007: 706-715. http:
//dx.doi.org/10.1109/icde.2007.367916

[25] R. Srikant, R. Agrawal. Mining sequential patterns: Generalizations
and performance improvements. Springer. 1996. http://dx.doi
.org/10.1007/bfb0014140

[26] J. Han, J. Pei, B. Mortazavi-Asl, et al. Freespan: frequent pattern-
projected sequential pattern mining. Proceedings of the sixth ACM
SIGKDD internationalconference on Knowledge discovery and data
mining. ACM. 2000: 355-359. http://dx.doi.org/10.1145/3
47090.347167

Published by Sciedu Press 11

http://dx.doi.org/10.1073/pnas.74.12.5463
http://dx.doi.org/10.1073/pnas.74.12.5463
http://dx.doi.org/10.1109/aina.2011.13
http://dx.doi.org/10.1109/aina.2011.13
http://dx.doi.org/10.1145/568271.223813
http://dx.doi.org/10.1145/568271.223813
http://dx.doi.org/10.1145/253260.253325
http://dx.doi.org/10.1145/253260.253325
http://dx.doi.org/10.1109/icde.1996.492094
http://dx.doi.org/10.1109/icde.1996.492094
http://dx.doi.org/10.1007/s10618-006-0059-1
http://dx.doi.org/10.1007/s10618-006-0059-1
http://dx.doi.org/10.1145/335191.335372
http://dx.doi.org/10.1145/335191.335372
http://dx.doi.org/10.1007/3-540-49257-7_25
http://dx.doi.org/10.1007/3-540-49257-7_25
http://dx.doi.org/10.1109/icde.2007.367916
http://dx.doi.org/10.1109/icde.2007.367916
http://dx.doi.org/10.1007/bfb0014140
http://dx.doi.org/10.1007/bfb0014140
http://dx.doi.org/10.1145/347090.347167
http://dx.doi.org/10.1145/347090.347167

www.sciedu.ca/air Artificial Intelligence Research 2015, Vol. 4, No. 2

[27] J. Han, J. Pei, B. Mortazavi-Asl, et al. Prefixspan: Mining sequential
patterns efficiently by prefix-projected pattern growth. Proceedings
of the 17th International Conference on Data Engineering. 2001:
215-224. http://dx.doi.org/10.1109/icde.2001.914830

[28] M. J. Zaki. Spade: An efficient algorithm for mining frequent se-
quences. Machine learning. 2001; 42(1-2): 31-60.

[29] M. Garofalakis, R. Rastogi, K. Shim. Spirit: Sequential pattern min-
ing with regular expression constraints. Proceedings of the interna-
tional conference on very large data bases. 1999: 223-234.

[30] D. Karger, R. Motwani, G. Ramkumar. On approximating the
longest path in a graph. Algorithmica. 1997; 18(1): 82-98. http:
//dx.doi.org/10.1007/bf02523689

[31] C. Murat, V. T. Paschos. The probabilistic longest
path problem. Networks. 1999; 33(3): 207-219. http:
//dx.doi.org/10.1002/(sici)1097-0037(199905)33:
3<207::aid-net7>3.3.co;2-z

[32] G. Fertin, H. M. Babou, I. Rusu. Algorithms for subnetwork min-
ing in heterogeneous networks. Experimental Algorithms. Springer.
2012: 184-194. http://dx.doi.org/10.1007/978-3-642-3
0850-5_17

[33] K. Ioannidou, G. B. Mertzios, S. D. Nikolopoulos. The longest path
problem has a polynomial solution on interval graphs. Algorithmica.
2011; 61(2): 320-341.

[34] K. Ioannidou, S. D. Nikolopoulos. The longest path problem is poly-
nomial on cocomparability graphs. Algorithmica. 2013; 65(1): 177-
205. http://dx.doi.org/10.1007/s00453-010-9411-3

[35] Y. Takahara, S. Teramoto, R. Uehara. Longest path problems on
ptolemaic graphs. IEICE transactions on information and systems.
2008; 91(2): 170-177. http://dx.doi.org/10.1093/ietisy/
e91-d.2.170

[36] X. Yu, T. Korkmaz. Super-sequence frequent pattern mining on se-
quential dataset. Big Data, 2013 IEEE International Conference on
IEEE. 2013: 52-59. http://dx.doi.org/10.1109/bigdata.2
013.6691783

[37] R. Cooley, B. Mobasher, J. Srivastava. Grouping web page refer-
ences into transactions for mining world wide web browsing pat-
terns. Knowledge and Data Engineering Exchange Workshop. Pro-
ceedings. IEEE. 1997: 2-9. http://dx.doi.org/10.1109/kde
x.1997.629824

[38] P. Pirolli, J. Pitkow, R. Rao. Silk from a sow’s ear: extracting us-
able structures from the web. Proceedings of the SIGCHI conference
on Human factors in computing systems: common ground. ACM.
1996: 118-125. http://dx.doi.org/10.1145/238386.238450

[39] Wu, Fei, Jayant Madhavan, Alon Halevy. Identifying aspects for
web-search queries. Journal of Artificial Intelligence Research.
2011: 677-700. http://dx.doi.org/10.1007/978-3-642-2
5631-8_23

[40] Yu, Xinran, et al. Heavy path mining reveals novel protein-protein
associations in the malaria parasite plasmodium falciparum. Bioin-
formatics and Biomedicine (BIBM), 2014 IEEE International Con-
ference on IEEE. 2014.

12 ISSN 1927-6974 E-ISSN 1927-6982

http://dx.doi.org/10.1109/icde.2001.914830
http://dx.doi.org/10.1007/bf02523689
http://dx.doi.org/10.1007/bf02523689
http://dx.doi.org/10.1002/(sici)1097-0037(199905)33:3<207::aid-net7>3.3.co;2-z
http://dx.doi.org/10.1002/(sici)1097-0037(199905)33:3<207::aid-net7>3.3.co;2-z
http://dx.doi.org/10.1002/(sici)1097-0037(199905)33:3<207::aid-net7>3.3.co;2-z
http://dx.doi.org/10.1007/978-3-642-30850-5_17
http://dx.doi.org/10.1007/978-3-642-30850-5_17
http://dx.doi.org/10.1007/s00453-010-9411-3
http://dx.doi.org/10.1093/ietisy/e91-d.2.170
http://dx.doi.org/10.1093/ietisy/e91-d.2.170
http://dx.doi.org/10.1109/bigdata.2013.6691783
http://dx.doi.org/10.1109/bigdata.2013.6691783
http://dx.doi.org/10.1109/kdex.1997.629824
http://dx.doi.org/10.1109/kdex.1997.629824
http://dx.doi.org/10.1145/238386.238450
http://dx.doi.org/10.1007/978-3-642-25631-8_23
http://dx.doi.org/10.1007/978-3-642-25631-8_23

	Introduction
	Related work
	Problem definition and graph model
	Proposed sequence matrix method for SSFPM
	Accuracy analysis of sequence matrix algorithm
	Time complexity analysis of sequence matrix algorithm

	Experiments and results
	Accuracy of sequence matrix method and the running time comparison with existing heavypath algorithm
	Super-sequence pattern analysis on web log dataset

	Conclusion and future work

