www.sciedu.ca/air

Atrtificial Intelligence Research

2015, Vol. 4, No. 2

ORIGINAL RESEARCH

Supervised feature selection: A tutorial

Samuel H. Huang*

Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, United States

Received: January 6, 2015
DOI: 10.5430/air.v4n2p22

Abstract

Accepted: March 9, 2015
URL: http://dx.doi.org/10.5430/air.v4n2p22

Online Published: April 9, 2015

Supervised feature selection research has a long history. Its popularity exploded in the past 30 years due to the advance of
information technology and the need to analyze high-dimensional data sets. Research papers published during these years
were mostly from the machine learning and artificial intelligence community. The emphasis was largely on improving model
accuracy using empirical methods; whereas the issue of feature relevance was somewhat overlooked. Feature selection methods
were loosely classified as filters, wrappers, and embedded methods with little attention paid to their intricate details. This paper
provides a tutorial of supervised feature selection, on the basis of reviewing frequently cited papers in this area and a number
of classical publications from the statistics community. The objective of feature selection (either to improve model predictive
accuracy or to determine relevance for hypothesis generation) is presented and discussed in details. Various supervised feature
selection methods are classified using a detailed taxonomy. Guidelines for using feature selection methods in practice are
provided based on a comprehensive review of the performance of these methods. Issues that require further attention are also

discussed.
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1 Introduction

Feature selection, or variable selection, is an important re-
search subject in the general area of learning from data. It
arises from the need of determining the “best” subset of vari-
ables for prediction. Depending on the type of data, feature
selection can be classified as supervised, semi-supervised,
and unsupervised. A data instance (e.g., a patient potentially
having cancer) is characterized by a number of independent
variables (features), e.g., tumor markers (substances found
in the blood, urine, stool, other bodily fluids, or tissues of the
patient). It may also have a response variable (often called a
label), e.g., whether the patient has a benign or a malignant
tumor. If all the data instances in the data set have known re-
sponse values, the process of feature selection is called “su-
pervised”. If some data instances have known response val-
ues and the others do not, we are facing a semi-supervised

feature selection problem. If none of the data instances have
response values, the feature selection performed is call “un-
supervised”.

The majority of research efforts are in the area of super-
vised feature selection. Although recent activities focus on
classification, the problem originated from regression. Ac-
cording to M. Stone when discussing a paper!!! presented
by A. J. Miller to the Royal Statistical Society, R. A. Fisher
posed the problem of variable selection for regression in
1924. Progress has been made in the 1940s with limited
computing power available at that time. The rationale for
variable selection can be found in Hotelling.!?! The paper
also shed light on earlier approaches to solve this problem.
Research in this area gained substantial momentum starting
in the early 1960s due to increased computing power. The
majority of the early research work is carried out by statis-
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ticians and focuses on linear regression. A literature review
on variable selection for linear regression was conducted by
Hocking.m Since then, variable selection research has been
expanded to cover classification and clustering problems. It
attracted a diverse array of researchers from artificial intel-
ligence, machine learning, and data mining. As a result, the
term “variable selection” is replaced over time by the term
“feature selection”.

Over the past 20 years, a number of well-written review pa-
pers on feature selection have been published.*! How-
ever, these papers did not systematically discuss some is-
sues that are importance to beginners in this area, especially
those who are primarily interested in applications. Some
researchers advocated the selection of a feature subset that
leads to the highest model accuracy; whereas others argued
that the best feature subset is one that included the most rele-
vant and least redundant features. Are these two viewpoints
competitive or complementary? In a practical application,
should one strive to find a single feature subset that leads
to the best model accuracy or trying to find multiple feature
subsets for further consideration? Consider the case of iden-
tifying factors to assess the risk of patients who are suscep-
tible to a certain disease. This problem is treated by some as
selecting a subset of features to classify patients into a high-
risk group and a low-risk group. Suppose a feature subset
consists of age and gender resulted in a classifier with the
highest accuracy, say 74%; whereas another feature subset
consists of age and body mass index (BMI) resulted in a
classifier with a slightly lower accuracy, say 71%. The two
factors in the first feature subset are both non-modifiable,
whereas BMI in the second subset is modifiable. Therefore,
a clinician may be more interested in the second subset be-
cause she can advise a high-risk patient to take action, i.e.,
change BMI through diet or exercise, in order to reduce the
risk of succumbing to the disease.

From the literature review, it appears that the objective of
finding a single feature subset that can produce a model
with the highest accuracy when evaluated using available
data is overly emphasized in current feature selection re-
search. Different applications may call for different objec-
tives, which in term require different approaches for feature
selection. In addition, the commonly accepted practice of
classifying feature selection methods as belonging to filter,
wrapper, and embedded methods did not adequately discern
the characteristic of a particular method. This paper aims
to provide a detailed description of fundamental issues en-
countered in feature selection including feature relevance,
redundancy, the characteristics and performance of differ-
ent feature selection methods, and guidelines for selecting
appropriate methods for specific applications.

This paper is organized as follows. Section 2 discusses the
objective of feature selection. Section 3 investigates the is-
sue of feature relevance and looks into the relationship be-
tween feature relevance and model accuracy. Section 4 dis-
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cusses the notion of feature redundancy. Section 5 explores
the issue of identifying an optimal feature subset. Section
6 presents the taxonomy of feature selection methods. Sec-
tion 7 presents guideline for using feature selection methods
in practical applications. Finally, a summary is provided
in Section 8. In addition, supplementary information is in-
cluded in Section 9.

2 Objective of feature selection

It is generally understood that the goal of feature selection is
to determine the “best” subsets of features (or variables) for
conducting statistical analysis or building a machine learn-
ing model. However, the problem of feature selection is not
well defined. This fact was acknowledged by Hocking!®!
almost 40 years ago, when the author stated that “it is ap-
parent that there is not a single problem, but rather several
problems for which different answers might be appropri-
ate.” However, Hocking did not attempt to provide specific
answers in his paper. To determine if a consensus on the
objective of feature selection has been reached over the past
decades, we decide to find the most influential feature selec-
tion papers and see how they define the problem of feature
selection. The method for finding these papers can be found
in Section 9.1.

Saeys et al.!*! stated that “the objectives of feature selection
are manifold, the most important ones being: (a) to avoid
overfitting and improve model performance, ... (b) to pro-
vide faster and more cost-effective models and (c) to gain a
deeper insight into the underlying processes that generated
the data.” Objective (a) focuses on model accuracy; objec-
tive (b) is accomplished by selecting a small subset of fea-
tures; whereas objective (c) can be interpreted as focusing
on feature relevance. It appeared that model accuracy is of
the utmost importance to the majority of feature selection
researchers. In the most influential paper on the wrapper ap-
proach for feature selection, Kohavi & John!®! stated that the
task of feature selection is to find a subset of features such
that ... san induction algorithm that is run on data contain-
ing only these features generates a classifier with the highest
possible accuracy.” This is concurred by Jain & Zongker,!'!
where the authors stated that the goal is to select a feature
subset that “...performs the best under some classification
system.” Pudil et al.,!'!l not exclusively focusing on classi-
fication problems and aiming to find the best feature subset
with a predefined cardinality, stated that the main goal is to
select a feature subset “...without significantly degrading
the performance of the recognition system.”

Other researchers have a different emphasis, i.e., “focus-
ing on the most relevant features for use in representing
the data”.l’! Perhaps realizing that there are different foci
in feature selection, Liu & Yu!'?! offered a more general
definition of feature selection as “a process that selects a
subset of original features. The optimality of a feature sub-
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set is measured by an evaluation criterion.” Peng et al.,!!?!

being more specific, stated that “the optimal characteriza-
tion condition often means the minimal classification error.”
The authors also indicated that if a classifier is not speci-
fied, “...minimal error usually requires the maximal statis-
tical dependency...” and the task becomes “... selecting the
features with the highest relevance to the target class...”
Collins et al.'#! appeared to believe that model accuracy
and feature relevance are two sides of the same coin, when
they stated that feature selection ... can improve classifica-
tion performance by discarding irrelevant or redundant fea-
tures.” However, Kohavi & John!® indicated that these two
foci were not equivalent and provided several demonstration
examples. In the next section, we will show that this coun-
terintuitive claim is caused by the way feature relevance is
defined and the narrow focus on wrappers for feature selec-
tion.

3 Feature relevance

The notion of relevance was first studied in the philosophy
literature. The focus was on formalizing a concept of rel-
evance that would fit its commonsense notion. Keynes!!
provided a simple definition of irrelevance as follows: “hy
is irrelevant to x on evidence h, if the probability of = on
evidence hh; is the same as its probability on evidence h.”
Thus, the notion of relevance can be defined as:

h1 is relevant to = on evidence h if hq is not irrelevant to x
onh

Gardenfors, 10! focusing on the relevance between two sen-
tences, proposed six logical conditions to be fulfilled by an
appropriate definition of the relevance relation. Other re-
searchers have offered domain specific characterization of
relevance. For example, the use of conditional indepen-
dence to define irrelevance in belief networks.['”) In the
domain of feature selection, a number of researchers have
provided varying definitions of relevance.'®?° Kohavi &
John®! discussed these definitions and used an example to
show that they gave unexpected results. The authors ar-
gued that there was a need to distinguish strong relevance
and weak relevance in feature selection. Strong relevance
means a feature cannot be removed without loss of predic-
tive accuracy; whereas weak relevance means a feature can
sometimes contribute to predictive accuracy. They went on
to provide two additional examples, one intended to show
that relevance did not imply optimality and the other opti-
mality did not imply relevance. These examples were used
to support the authors’ claim that the objectives of maximiz-
ing model accuracy and identifying relevant features are not
equivalent.

There are two reasons why Kohavi & John made such a
counterintuitive claim. First, it has to do with the way fea-
ture relevance is defined. Second, it is because the authors
focused on model-dependent feature subset selection (wrap-
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pers). It is self-evident that the latter two examples rely on
the premise that a specific form of learning model has been
chosen (a monomial and a limited perceptron, respectively),
yet the functional form of the model is incorrect for the con-
cept to be learned. In fact, these two examples are ill-suited
to illustrate the relationship between feature relevance and
model accuracy. Rather, there are testimonies of the danger
of using wrappers for feature selection.

It is believed that if the common sense notion of relevance
as defined by Keynes!"! is faithfully adopted in feature se-
lection then there are no conflicts between the objectives of
maximizing model accuracy and identifying relevant fea-
tures. We first extend Keynes’ definition of relevance to a
set of features. Let F = { X, X5, - - - X, } denote the set of
features and Y denote the target concept to be learned. Let
S C F (i.e., S is a subset of F') and s be a vector of values
assignment to all features in S. Then

Feature X; is relevant to Y given S(X; ¢ S) iff there exists
some z;,y, and s for which P(S = s, X; = z;) > 0 such
that P(Y = y|S =5, X, = ;) # P(Y =y|S =s).

Note that the difference between this definition and defini-
tion 5 in Kohavi & John (1997) is the elements in S. In
Ref.,[® S is strictly defined as the set of all features except
X;,1e., S =F — X,. As aresult, S is determined for each
feature X; under consideration. Here, S could be any sub-
set of F that does not contain X;. This is in the spirit of
the traditional definition of relevance by Keynes!'”! where
no relationship was required between hypothesis h; (equiv-
alent to feature X;) and evidence h (equivalent to feature
subset S). The above definition is called the common sense
definition of feature relevance.

Now let us revisit example 1 in Ref.®] to see how the
notion of feature relevance defined here holds up. The
example, called correlated XOR, has 5 Boolean features,
X1, Xo, X3, X4, X5, where X4 = X5, X5 = X5. The tar-
getconceptis Y = X; @ X5. Note that this is equivalent to
Y = X @ X,. The truth table for this example problem is
shown in Table 1. Kohavi and John showed that all previous
definitions of feature relevance cannot produce reasonable
results (because they did not follow Keynes’s definition of
relevance). There are three different outcomes: (1) only X3
is relevant, (2) no features are relevant, and (3) all features
are relevant. This example is used to justify the creation of
the definitions of strong relevance and weak relevance. Fea-
ture X is strongly relevant, features X, and X4 are weakly
relevant, whereas features X3 and X5 are irrelevant.

Note that using the common sense definition of feature rel-
evance, one has to determine S. Without prior knowledge
there are two nature ways to define S for initial investiga-
tion: (1) S = ¢, and (2) S = F — { X, }. Note that this cor-
responds to sequential forward search (SFS) and sequential
backward search (SBS) for feature subset selection, respec-
tively. Given S = ¢, none of the features are relevant to Y.
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There is a logical interpretation — adding a single feature to a
model without any other features will not improve its accu-
racy to predict the target concept Y. Given S = F — { X},
only feature X is relevant to Y. Again, the interpretation is
logical — remove X; from a model with all the features will
lead to a lower predictive accuracy. In other words, feature
X is indispensible. Knowing this, we can set S = {X;}.
Given S = {X;}, we find that X is relevant and so does
X,4. However, given S = {X;, X5} none of the remaining
features are relevant; this is also true given S = { X, X, }.
We can thus draw the conclusion that there are two sets of
features that can be used to build a model with the highest
accuracy; namely { X, Xo}, { X1, X4}.

Table 1: Truth table for the correlated XOR problem

<
s
e
N
>
w
>
15
>
151
~

P Pk Rk, POOOoOOo
OO RrRrOoOOR R
O OFr OFr Ok
P P, OORRKROO
P ORroOoORror o
OO R R ELRRLROO

Granted, the notions of strong relevance and weak relevance
make sense. However, it is unnecessary to create these two
notions for the purpose of reconciling the objectives of max-
imizing model accuracy and identifying relevant features in
feature selection. Rather, it is sufficient to use the common
sense definition of feature relevance, where the relevance of
a feature is conditioned on the evidence of a feature subset
under consideration. This definition also has interesting im-
plications on search strategies for feature subset selection,
which will be discussed in Section 5. For now, the notion of
feature redundancy will be discussed.

4 Feature redundancy

In addition to feature relevance, feature redundancy is an-
other term that is often encountered in the feature selection
literature. There is a popular saying in feature selection that
“the m best features are not the best m features” because of
feature redundancy, which led to the minimum-redundancy-
maximal-relevance framework for feature selection.!'3 Fea-
ture redundancy is generally understood in terms of feature
dependency (or feature correlation). It is widely accepted
that two perfectly correlated features are redundant to each
other because adding one feature on top of the other will not
provide additional information; and hence, will not improve
model accuracy. Redundancy may also exist between two
independent (uncorrelated) features in the sense that the two
best independent features are not the best two features.?!}
On the other hand, Guyon & Elisseeff'>! used an example to
demonstrate that noise reduction may be obtained by using
features that are independent and are presumably redundant.
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The authors used another example to show that two highly
correlated features (with negative correlation), when com-
bined, improved classification accuracy than using any sin-
gle feature. Therefore, feature correlation cannot be equated
to feature redundancy.

Yu & Liu??! provided a formal definition of feature redun-
dancy using the definition of a feature’s Markov blanket by
Koller & Sahami!?}! and the notion of weakly relevant fea-
tures. Using the notations in Section 3, a feature subset S
is a Markov blanket for X;(X; ¢ S) if X, is conditionally
independent of F' — S — { X, }. Essentially, S subsumes not
only the information that X; has about the target concept,
but also about all of the other features. A weakly relevant
feature is redundant, given a feature subset S, iff it has a
Markov blanket within S. Based on this definition, the au-
thors developed a redundancy based filter (RBF), which is
an approximate algorithm, for feature selection. All fea-
tures are heuristically treated as relevant (on the evidence
that S = %o in the common sense definition of feature rele-
vance). RBF is then used to remove redundant features.

Yu & Liu’s formal definition of feature redundancy is condi-
tioned on a feature subset, meaning a redundant feature can-
not be determined in absolute terms. Note that the common
sense definition of feature relevance is also conditioned on a
feature subset. Therefore, to simplify the problem, it is not
necessary to distinguish a redundant feature from an irrele-
vant feature. After all, the purpose of identifying redundant
features is to remove them, which is the same as the purpose
of identifying irrelevant features.

5 Optimal feature subset

From the previous discussion, it is clear that the objective of
feature selection can be defined as finding a feature subset S
such that no features in F — S are relevant to Y (note that the
common sense definition of feature relevance is used here).
In other words, all the features in the subset are relevant
to the target concept, which implies that the feature subset
has a causal relationship with the target concept. Based on
this definition, it is possible to have multiple optimal feature
subsets. Refer to the correlated XOR example, there are two
optimal feature subsets; namely, { X7, X5} and {X, X4}.
It is also possible that there exist multiple optimal feature
subsets with different cardinality, in which case one should
strive to find the subset with the lowest cardinality (the prin-
ciple of parsimony). One may also want to identify all opti-
mal feature subsets if the objective is not merely prediction
but also include intervention, i.e., changing the values of
some features to get a different outcome (the cost of manip-
ulating different features may be very different).

Intuitively, there are two ways of searching for an optimal
feature subset; namely, starts from an empty set, or starts
from the full set. We have already seen that when starting
from an empty set, it is possible that no features are found
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to be relevant based on the common sense definition of fea-
ture relevance. In this case, no information is gained re-
garding the optimal feature subset. On the other hand, when
starting from the full set and if no features are found to be
relevant, we will know that the optimal feature subset has
a cardinality of less than n. In this case, we can randomly
remove a feature and continue the search. The question is
whether such a backward elimination process can lead us to
the optimal feature subset. Let S be the feature subset under
consideration, and I be the set of features within S(I C S)
that are found to be irrelevant. The question can be restated
as “which feature(s) in I should be removed from S so that
when no irrelevant features are found in S,it is guaranteed
that an optimal feature subset is found?”

Koller & Sahami!?! proved that if a feature X;(X; ¢ S) has
a Markov blanket in S, another feature X; (X, € S) also has
a Markov blanket in S, then X; also has a Markov blanket
in S — {X;}. This guarantees that a feature removed based
on the Markov blanket criterion will not be needed in the
optimal feature subset. If all the required probability dis-
tribution and conditional probability distribution functions
are known, then a backward elimination process based on
Markov blanket filtering will guarantee that an optimal fea-
ture subset can be found. However, there is no guarantee
that an optimal feature subset found this way will have the
lowest cardinality.

In real-world applications, probability distribution functions
are unknown and have to be estimated from data. This prob-
lem, commonly known as density estimation, is among the
most difficult problems in learning from data.’>* In a high-
dimensional space with sparse data, the probability distri-
bution functions cannot be accurately estimated. Therefore,
alternative measures have to be used to approximately de-
termine feature relevance. Commonly used measures are
correlation coefficient and entropy. The attempt of using
feature relevance to identify an optimal feature subset gives
rise to the class of feature selection algorithms called filters.

Filters select features using a preprocessing step indepen-
dent of any machine learning models (or induction algo-
rithms). Kohavi & John™®! stated that “the main disadvan-
tage of the filter approach is that it totally ignores the ef-
fects of the selected feature subset on the performance of
the induction algorithm.” The authors argued that the opti-
mal feature subset depends on the specific biases and heuris-
tics of the induction algorithm and advocated the use of
wrappers, which rely on evaluating the predictive accuracy
of a specific machine learning model for feature selection.
As previously mentioned, two examples were given to il-
lustrate the authors’ point of view. One example (exam-
ple 2) is the learning of a target concept f (X7, X2, X3) =
(X1 A X2) V X3 using a monomial, where X7, Xo, X3 are
Boolean features. In this case, the optimal feature subset is
{ X3}, which achieves a predictive accuracy of 87.5%. The
other example (example 3) is the use of a limited perceptron
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for classification, which requires a dummy (irrelevant) fea-
ture that always take the value of 1 (equivalent to the use of
an intercept term in regression).

Apparently, the monomial model in example 2 was not an
appropriate model. Example 3 is a bit of a stretch. It can be
easily argued that a constant-valued feature is not really a
feature because it has no effect on the variation of the target
concept. In addition, why use a limited perceptron when a
regular perceptron (which has a building-in dummy input)
can be used? Kohavi & John®! conceded that “we believe
that cases such as those depicted in example 3 are rare in
practice and that irrelevant features should generally be re-
moved.” In fact, one may use these two examples to argue
against wrappers for feature selection when the wrong ma-
chine learning model is used. On the other hand, if the goal
is to identify an optimal feature subset with respect to a cer-
tain machine learning model then it would be logical to con-
clude that wrappers are a better choice than filters for feature
selection. The question is whether a wrapper can guarantee
the finding of an optimal feature subset.

Wrappers require a search strategy to explore feature sub-
sets and an evaluation function to measure the goodness of
a subset. Cross-validation accuracy is commonly used as
the evaluation function. There is consensus that finding the
optimal feature subset is a combinatorial problem, which re-
quires a complete search strategy in order to guarantee that
an optimal feature subset is found. Note that a complete
search does not mean an exhaustive search, for example, the
branch and bound algorithm for finding the best subset of
m features.[>>! However, a brand and bound search requires
that the evaluation function is monotonic. In addition, it still
has a high computation complexity and is impractical for
problems involving more than 30 features.!'!! Therefore, in
real-world applications other non-complete search strategies
must be used. Readers are referred to Ref.”) for a summary
of feature selection methods based on three types of search
strategies; namely, complete, heuristic, and random. Heuris-
tic and random search strategies, combined with different
evaluation functions, have been shown to produce good re-
sults in a reasonable amount of time.[3 112!

Suppose a complete search is feasible, the ability of a wrap-
per to find an optimal feature subset still requires the fol-
lowing idealized setting:!*!

“(a) the analyst has data on a large number of potential
variables which include all relevant variables and appro-
priate functions of them plus, possibly, some other extrane-
ous variables and variable functions and (b) the analyst has
available “good” data on which to base the eventual con-
clusions.”

J. B. Copas provided a theoretical analysis of the probability
of finding the correct subset of p features (with a causal re-
lationship with the response variable) in linear least square
regression.!!! The analysis showed that when the population
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multiple correlation R is 1 (indicating a perfect model fit —
the model is correct and the data is noise-free) then the op-
timal feature subset can always be found. When R is high
(e.g., R = 0.8) and the cardinality of the optimal subset is
low (e.g., p = 5) there is still a fairly high probability (close
to 90%) of finding the optimal feature subset irrespective of
the number of total features. However, when p increases
(e.g., p = 10) the probability of finding the optimal feature
subset decreases quickly as the number of total features in-
creases even when R is high. When R is small, “the situ-
ation is hopeless, with the selected subset almost certainly
being wrong.”

We can infer form the analysis by Copas that the wrapper
approach for feature selection can produce good results only
when (1) all relevant features are available and their num-
ber is small, (2) the correct (or suitable) machine learning
model is used, and (3) the data contains little noise. These
conditions are not easy to satisfy in real-world applications.
Therefore, Copas is skeptical of the practical value of fea-
ture subset selection based on model accuracy and professed
that “It has been said: ‘If you torture the data for long
enough, in the end they will confess.” Errors of grammar
apart, what more brutal torture can there be than subset
selection? The data will always confess, and the confes-
sion will usually be wrong.” The skepticism is echoed by R.
L. Plackett, who stated that “If variable elimination has not
been sorted out after two decades of work assisted by high-
speed computing, then perhaps the time has come to move
on to other problems.”!!!

6 Feature selection methods

In the mid-1980s, a third class of feature selection algo-
rithms, called embedded methods, emerged. While filters
select features independent of any machine learning models
and wrappers wrap the feature selection process around a
specific model, embedded methods incorporate feature se-
lection as part of the process in building a specific model.
The broad classification of feature selection methods into
filters, wrappers, and embedded is commonly accepted in
the literature. However, this classification does not provide
a detailed enough reference framework and the designation
of filters and wrappers could cause confusion. For example,
filters are often said to be computationally more efficient
than wrappers, which is not always true. Saeys et al.”*! dis-
tinguishes two types of filters; namely, univariate and multi-
variate. Univariate filters are basically feature ranking meth-
ods that conduct a pair-wise analysis of the dependency be-
tween each feature and the target concept. Features with
dependency measures (correlation coefficient, information
gain, etc.) below a certain threshold are eliminated. This
type of filters has O(n) computation complexity and is cer-
tainly efficient. On the other hand, multivariate filters such
as FOCUS?"! uses an exhaustive search strategy and can
hardly be said to be computationally efficient. Another ex-
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ample is that wrappers are often said to be able to find fea-
ture subsets that lead to better model accuracy compared
to filters. However, multivariate filters that use consistency
measure combined with an appropriate search strategy also
produced feature subsets that can be used to build models
with very high accuracy.?%!

One may notice that the only difference between a consis-
tency measure-based filter and a wrapper is the evaluation
function. While inconsistency is a model-independent eval-
uation function, a wrapper uses cross-validation accuracy of
a specific machine learning model as the evaluation func-
tion. Model-independent evaluation functions can be com-
bined with any search strategies for feature subset selection.
Such filters are more similar to wrappers than to univari-
ate filters. In fact, Dash & Liu™! classifies feature selection
methods into 15 categories based on the combination of 5
types of evaluation measures (distance measure, informa-
tion measure, dependency measure, consistency measure,
and classification error rate) and 3 types of search strategies
(heuristic, complete, and random).

A more detailed taxonomy of feature selection methods is
depicted in Figure 1. First, one should distinguish feature
selection methods based on their outcomes. The outcomes
of feature ranking methods are the degrees of dependency of
individual features with respect to the target concept. The
outcomes of subset selection methods are feature subsets
that are relevant to the target concept. The outcomes of em-
bedded methods are predictive models built using certain
feature subsets. Note that the objective of subset selection
methods is to identify a feature subset. These methods may
or may not produce a specific model associated with the fea-
ture subset. On the other hand, the objective of embedded
methods is to produce a predictive model. Features remain
in the model are a byproduct of the modeling process.

Supervised Feature Selection

Feature Ranking Subset Selection Embedded

Pair-wise Simultaneous  Configuration Evaluation Build-in

Correlation

. Model-specific Pruning
Uncertainty

. Regularization
Hypothesis Test <

L Model-independent
Discriminative Power

Figure 1: Taxonomy of feature selection methods

Feature ranking methods can be classified into two cate-
gories: (1) those that are based on pair-wise dependency
analysis of individual features, and (2) those that simulta-
neously rank all the features. Pair-wise ranking methods
evaluate the degree of dependency between each feature and
the target concept, one feature at a time. A number of dif-
ferent criteria have been used to conduct pair-wise depen-
dency evaluation. These criteria are classified into four cat-
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egories: (1) correlation, (2) uncertainty, (3) hypothesis test,
and (4) discriminative power. Criteria in the first category
are based on the measures of correlation between the feature
and the target concept, e.g., Pearson’s product-moment cor-
relation coefficient.?®! Criteria in the second category are
based on uncertainty measures used in information theory,
i.e., entropy. The most well-known criterion is probably in-
formation gain,m] which measures the reduction of uncer-
tainty about the target concept when the value of a feature
is known. Note that uncertainty-based criteria are applica-
ble only to discrete features and target concepts. Continu-
ous features need to be discretized in order to apply these
criteria. Criteria in the third category are based on statis-
tical hypothesis test, in which the p-values of the resulting
tests are used to rank features. They are generally applied to
discrete target concepts; whereas the features can either be
discrete or continuous. A typical example is the use of Chi-
squared test to determine if the target class is independent of
a discrete feature. Another example is applying t-test to de-
termine if the target class is independent of a continuous fea-
ture by comparing the difference in means of samples that
are associated with different class labels. The forth category
covers criteria that evaluate the discriminative power of a
feature. Examples include the use of single-variable mod-
els to determine the error or area under the ROC (receiver
operating characteristic) curve resulted from each feature.

Pair-wise feature ranking methods have the lowest compu-
tational complexity and are suitable for data preprocess-
ing. In certain applications, such as whole-genome SNP
(single-nucleotide polymorphisms) association studies that
involve several hundred thousand features, these methods
are commonly used to reduce the number of features to a
more manageable size before other feature selection meth-
ods are applied. However, the nature of pair-wise feature
ranking methods prevents them from identifying interacting
features that as a group can be used to predict the target
concept, but individually have no detectable dependency re-
lationship with the target concept, e.g., XOR type problems.
Simultaneous feature ranking methods have the potential to
overcome this problem. These methods, exemplified by the
Relief algorithm,%! calculate relevance weights for all the
features at the same time by looking into their joint rela-
tionship with the target concept. The Relief family of algo-
rithms, i.e., ReliefF for dealing with multiclass problems!*!!
and RReliefF for dealing with regression problems,*?! have
been found to be effective in detecting conditional inde-
pendencies.*3!  Note that feature ranking methods based
on principal component analysisi*¥ may be viewed as si-
multaneous feature ranking methods. However, their ability
to identify interacting features has yet to be systematically
studied.

Feature subset selection methods can also be classified
into two categories; namely, those that exploit correlations
among the features and those that do not. Belonging to

28

the first category are subset configuration methods that an-
alyze both feature-target concept correlation and feature-
feature correlation in order to configure a feature subset.
The result is a feature subset without any indication of
achievable model predictive accuracy. Representative meth-
ods are Markov blanket filter,[?3] correlation-based filter,!>!
fast correlation-based filter,””! and minimum-redundancy-
maximal-relevance framework.['3l Note that the max-min
method!®%! also belongs to this category, but it was found to
suffer from serious drawbacks.*”!

The second category covers subset evaluation methods that
determine the goodness of feature subsets in terms of their
achievable model predictive accuracy in order to iden-
tify the best subset. The evaluation criteria can be clas-
sified as model-specific and model-independent. Model-
specific subset evaluation methods are equivalent to wrap-
pers. These methods use the cross-validation accuracy of a
specific machine learning model as the evaluation criterion
and produce a predictive model along with the selected fea-
ture subset. On the other hand, model-independent subset
evaluation methods use criteria derived based on the charac-
teristics of the data and do not produce a predictive model.
These criteria include inconsistency rate,”®! inference cor-
relation,*® and minimum expected cost of misclassifica-
tion.?°! Note that the classification quality criterion used
in rough set based feature selection!*®*?! is equivalent to
inconsistency rate. Feature subsets selected using model-
independent evaluation methods are said to be unbiased to-
ward a particular model, which enables them to be used by
a variety of machine learning algorithms. However, it may
be more appropriate to use an instance-based learning algo-
rithm (such as k-nearest neighbor) because these methods
favor a smaller subset of features with complicated function
over a larger subset admitting simple rules.!?%!

Both subset configuration and subset evaluation methods re-
quire a certain search strategy. Subset configuration meth-
ods exploit feature-target concept correlation and feature-
feature correlation to guide the search process. The search is
typically more efficient than subset evaluation methods that
in theory need to explore the entire 2n feature subset space.
However, because no indication of achievable model predic-
tive accuracy is obtained, the selected feature subset needs
to be passed to a machine learning algorithm for final eval-
uation.[*3' An alternative is to create a number of sequential
feature subsets and then use a particular machine learning
algorithm to evaluate these subsets in order to identify the
smallest subset with the highest prediction accuracy.[']

For subset evaluation methods, Liu & Motodal*4 provided
a comprehensive summary of different search strategies that
were classified as complete search, heuristic search, and
nondeterministic search. Note that the feature subset space
can be arranged as a graph with 2n nodes, where each node
represents a subset and an edge represents the containment
relationship that adds or subtracts a feature.!”-8 Therefore,
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standard graph search techniques can be used to explore the
feature subset space. To completely search through the en-
tire feature subset space, breadth-first search or depth-first
search can be used. If the evaluation function is monotonic,
then the brand-and-bound algorithm!?)! can be used to avoid
exhaustive search while maintaining the ability to find the
optimal (with respect to the evaluation function) feature sub-
set. An improved version of the algorithm was developed
by Yu & Yuan,®! which is able to skip some unnecessary
searches. It has been demonstrated that when the evaluation
function is non-monotonic, branch and bound based feature
selection still provided good results.*) However, as pre-
viously mentioned, complete search strategies have a high
computational complexity and is impractical for problems
involving a large number of features.

Unlike time-consuming complete search strategies, heuris-
tic search strategies trade off optimality for search effi-
ciency. There are many heuristic search strategies. Kohavi
& John!®! found that best-first search works much better than
hill-climbing in feature selection. Beam search, an exten-
sion of best-first search (or a limited version of breadth-first
search), has also been used. Simpler heuristic search strate-
gies include SFS (start from the empty set and add one fea-
ture at a time) and SBS (start from the full set and remove
one feature at a time). These strategies are usually faster but
suffer from the “nesting effect”, i.e., an added feature can no
longer be removed and a removed feature can no longer be
added. To overcome this problem, the plus-1-minus-r search
was proposed.’l Pudil et al.'!l argued that there is no
theoretical way to determine the values of 1 and r to find
the best feature subset. The authors proposed the floating
search strategy that dynamically changes the number of fea-
tures added or removed at each step.

Heuristic search strategies are prone to get stuck in lo-
cal minima. Nondeterministic search strategies are used
to overcome this problem. Examples include genetic al-
gorithms,*®% randomized hill-climbing,’” Las Vegas al-
gorithm, ! estimation of distribution,?! simulated anneal-
ing,13 ant colony optimization,'®* and particle swarm op-
timization.[*”! These search strategies are likely to produce
different results in different runs because they use random-
ized initial conditions and/or randomized search parameters.
Note that when using subset evaluation methods, one may
also use an evaluation function that includes the minimiza-
tion of the number of features. For example, Wang et al.[0]
used the weighted sum of the classification quality and the
number of features as an evaluation function.

Embedded methods can be further divided into three cate-
gories. The first are models with a build-in mechanism for
feature selection, represented by decision tree models such
as classification and regression tree,>>! ID3,?°! and C4.5.55¢!
The second are pruning methods that train a model with all
features and then attempt to remove some of the features by
setting the coefficients associated with these features to 0
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while maintaining model performance. Examples include
optimal brain damage (OBD) for deleting the weights of
neural networks,’”! recursive feature elimination using sup-
port vector machine (SVM),®! and nearest shrunken cen-
troids for clustering.[*! The third are regularization models
with objective functions that minimize fitting errors and in
the meantime force the coefficients to be small. Features
with coefficients that are close to 0 are then eliminated. Ex-
amples including the lasso (least absolute shrinkage and se-
lection operator) that constrain the sum of the absolute val-
ues of the coefficients to be less than a user defined valuel®”!
and models that add the [,,-norm of the coefficients as a
term to be minimized simultaneous with the model fitting
errors.!®!) Note that embedded feature selection attempts to
select features and determine model parameters simultane-
ously. This is a non-convex optimization problem and find-
ing the globally optimal solution is difficult. Several meth-
ods aiming to improve the quality of the solution have been
proposed recently.[6:63]

The majority of feature selection methods were developed
based on heuristics. Recently, attempts have been made to
develop theoretical basis to guide feature selection. Yang
& Hu!® established a theoretically optimal feature selec-
tion criterion called “discriminative optimal criterion.” Song
et al.l%! viewed feature selection as a dependency maxi-
mization problem and showed that several feature selection
methods aimed to solve this problem. On the other hand,
Brown et al.[! viewed feature selection as a conditional
likelihood maximization problem and showed that informa-
tion theoretical feature selection methods are approximate
iterative maximizers. Zhao et al.l®”! observed that several
feature selection methods implicitly measure sample simi-
larity and proposed a unified “similarity preserving” frame-
work for feature selection.

In the era of big data, the size of many data sets increases
dynamically. Feature selection methods are typically based
on a batch learning mode. When the size of a data set in-
creases, these methods have to be applied repeatedly, which
is time-consuming. To overcome this drawback, incremen-
tal feature selection methods have been developed.%®! An-
other characteristic of big data is missing data values. In
other words, some data instances may not contain the full
set of features. Feature selection methods for dynamically
increasing and incomplete data sets have also been pro-
posed.10%:70]

7 Guidelines for applying feature selection
methods

For a novice practitioner in feature selection, the decision
to be made is usually the selection of a particular feature
selection method. The method is then applied to the entire
dataset at hand. The features selected are then reported. If
the feature selection method also produces a model (when
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wrappers or embedded methods are used) then the model
accuracy is also reported; otherwise (when filters are used),
the selected features are then used to build a model using
the entire dataset and the model accuracy is reported. Such
an approach often leads to inflated model accuracy and the
selected features are almost always not optimal, unless the
data sample size is large, the total number of features is
small, and the model accuracy is close to 100%.

An experienced practitioner will use a cross-validation strat-
egy when selecting features.!®! This strategy is commonly
used for the purpose of model validation. It involves the
partitioning of the data set at hand into k complementary
subsets. Then, k-1 subsets (called training set) are used to
select a feature subset. The model built using this selected
subset is then tested on the remaining data subset (called
testing set). The accuracy is recorded. This process is re-
peated k times on different testing sets. The averaged ac-
curacy is reported as k-fold validation accuracy. Using this
strategy, a more accurate estimation of predictive accuracy
can be obtained. However, the problem is that the selected
features in each round are not always the same. If the pur-
pose of feature selection is to build a more robust predictor,
this strategy is acceptable because one can use an ensemble
of models with different features for prediction or use all the
features selected in different rounds to build another model.

Some researchers believe that cross-validation may still pro-
duce biased estimation of model accuracy. Therefore, a
dual-loop cross-validation strategy was proposed.I’!! First,
the entire data set is partitioned into m complementary sub-
sets. Then, m-1 subsets are used for feature selection us-
ing cross-validation. A predictor is then built (as previously
mentioned) and tested on the remaining subset (testing set).
The accuracy is recorded. This process is repeated m times
in different testing sets. Presumably this would give an un-
biased estimation of model accuracy to better compare dif-
ferent feature selection methods.

For researchers who want to develop new feature selection
methods, cross-validation and dual-loop cross-validation are
a must to justify the effectiveness of the developed methods.
However, for practitioners whose interest is to distinguish
useful features from irrelevant features, the question is two-
fold: (1) which method (among those discussed in Section
6) to use? and (2) should cross-validation and dual-loop
cross-validation be used?

To answer these questions, a literature review on the per-
formance of different feature selection methods were con-
ducted (see Section 9.2). Apparently, not a single feature
selection method is universally superior to the others. To
determine which feature selection method to use and how
to use it, one should first determine the purpose of feature
selection and then study the characteristics of the data set at
hand.

If one is more interested in the causality of features without
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explicit consideration of model predictive accuracy (e.g.,
studying risk factors for a certain disease) then feature rank-
ing methods should be used. Further, if one is only inter-
ested in the main effect of a feature, then pair-wise rank-
ing methods are the best; otherwise, simultaneous feature
ranking methods should be used. Cross-validation and dual-
loop cross-validation are not applicable to these methods.
Under this circumstance, if one is overwhelmed by the
number of features selected then feature subset configura-
tion and model-independent feature subset evaluation meth-
ods should be used. We do not recommend using cross-
validation (to avoid confusion) in conjunction with these
methods because model accuracy is not a concern. Of
course, the selected features will need to be studied further,
either using randomized control trials or justified based on
subject matter knowledge.

If one’s purpose is to build a robust predictor and does not
care much about feature causality, then model-dependent
feature subset selection methods and embedded methods
should be used. Cross-validation is a must for both meth-
ods when accessing model accuracy. For model-dependent
feature selection methods, if the number of data samples
is large (with respect to the total number of features) then
dual-loop cross-validation should be used to provide a more
unbiased estimate of model accuracy. Note that dual-loop
cross-validation does not apply to embedded methods be-
cause no feature subsets were explicitly evaluated. Model-
independent feature subset selection methods and feature
subset configuration methods can also be used under this
circumstance. They should be used on the entire dataset to
select a particular feature subset. Different models can then
be built using the selected feature subset and the accuracy
accessed using cross-validation.

If one is both interested in feature causality and model ac-
curacy, then the problem is more complicated. Refer to the
analysis conducted by J. B. Copas in Section 5, unless the
underlying data set is nearly noise free, all the causal fea-
tures are included, and the total number of features is not too
large, no feature selection methods would satisfy the need.
The only solution is to identify multiple feature subsets (us-
ing feature subset selection methods or embedded methods)
for subsequent evaluation using additional data sets. How
many feature subsets should be identified remains an open
research question.

Prior knowledge of the underlying data set can also be used
to determine which feature selection method is appropriate.
If it is known that the data set contains interacting features
(features individually do not provide useful information but
jointly can be used to determine the target concept, e.g., the
XOR problem), then pair-wise feature ranking and subset
feature configuration methods should not be used. If there
are redundant features that one wish to exclude, then the one
should use feature subset selection methods and embedded
methods, because feature ranking methods are incapable of
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detecting redundant features. If there are correlated features,
the situation is more complex. Again, feature ranking meth-
ods are not able to detect feature correlation and will al-
ways select all of these features if there are relevant to the
target concept. One would think that feature subset config-
uration methods that explicitly consider feature correlation
would be the best for such data sets. However, as pointed
out by Freeman et al.,”? such methods (e.g., minimum-
redundancy-maximal-relevance) may not work well if the
correlation between features is higher than the correlation
between the feature and the target concept. Therefore, one
should use feature subset evaluation and embedded meth-
ods.

8 Summary

The history of feature selection research can be traced back
to R. A. Fisher in 1924. Early research works were con-
ducted mostly by statisticians. These works typically in-
volve statistical theories. In the past 30 years, a large num-
ber of researchers from machine learning and artificial intel-
ligence communities developed a variety of feature selection
methods based on information theory and heuristics. These
methods were largely evaluated experimentally. The con-
sensus was that no feature selection method is universally
superior to others. This consensus certainly makes sense.
However, it was derived based on empirical analysis that fo-
cused on model accuracy obtained through cross-validation.
Reunanen!’®! has shown that cross-validation might not be
the best approach to evaluate model accuracy. It was sug-
gested that independent test data sets should be used for
evaluation. Although this suggestion was made over 10
years ago, it has yet to gain traction in the feature selec-
tion research community. One may speculate that should
this very reasonable suggestion be widely adapted, conclu-
sions from most published papers could have been very dif-
ferent. Specifically, it would not be unreasonable to suspect
that the problem of selecting features that overfit the data is
quite common. In fact, as discussed in Section 5, theoreti-
cal analysis by J. B. Copas showed that in most real-world
settings, the probability of finding the right feature subset is
very low.

One may doubt the conclusion drawn from J. B. Copas’
analysis, based on the fact that in many real-world datasets
feature selection did produce models with higher accuracy
compared to models built using all the features. However, a
model with high accuracy does not necessarily require that
the features used are the right ones, especially when the ac-
curacy is evaluated using cross-validation instead of using
an independent testing data set. In fact, it is common that
for the same data set, different researchers selected different
feature subsets that achieved similar model accuracy. Be-
cause for these real-world datasets one do not know the right
feature subsets, it is impossible to verify the ability of fea-
ture selection methods to uncover the casual relationship be-
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tween features and the target concept. One has no choice but
to use model accuracy (or generalization ability to be pre-
cise) as the performance measure. Under this circumstance,
wrappers (model-specific subset evaluation methods) were
recommended as the best choice if computation complex-
ity is not an issue. However, few researchers compared the
performance of wrappers with that of embedded methods,
which use all the features during the model building process
but employee various techniques to improve model gener-
alization ability. It is very likely that embedded methods
could perform on par with, if not better than wrappers, es-
pecially if an independent testing data set is used to evaluate
model accuracy.

In many real-world applications, model accuracy is not the
only concern. Rather, one may be more interested in iden-
tifying the causal relationship between features and the tar-
get concept, i.e., finding the right feature subset. Granted,
without any subject matter knowledge and without conduct-
ing randomized control trials, one can only infer correla-
tion, not causal relationship, from data. In fact, establishing
causal relationship cannot be achieved using data analysis
alone. Rather, data analysis can only be used for hypothesis
testing or hypothesis generation. Feature selection is often
used in analyzing data sets for hypothesis generation. Be-
cause the probability of finding the right feature subset is
low, it would be prudent to identify multiple feature subsets
as candidates for follow-up studies utilizing subject matter
knowledge. In fact, many medical researchers prefer the
use of pair-wise feature ranking methods based on hypoth-
esis test and retain all individual features that are deemed
statistically significant. These features are investigated fur-
ther using a combination of subject matter knowledge and
additional data collection. From the literature it is evident
that feature selection researchers focus heavily on model ac-
curacy and overlook the issue of hypothesis generation. In
terms of feature selection for improved model accuracy, sig-
nificant research progress has been made. However, there
are two critical issues that need further attention:

e One should not overly rely on cross-validation to eval-
uate model accuracy. A more objective approach is to
use an independent testing data set. item More at-
tention should be paid to embedded methods for fea-
ture selection. When evaluating the usefulness of a
selected feature subset, one should use models built
using embedded methods as a benchmark for com-
parison.

In terms of feature selection for hypothesis generation, fur-
ther research is needed in the following areas:

e Generation of multiple feature subsets for follow-up
studies. It is very likely that a causal feature subset is
not the best feature subset in terms of model accuracy.
In addition, with multiple feature subsets redundant
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features can be retained, which may serve as useful
alternatives for decision making.

e More emphasis should be placed on feature ranking
methods. These methods identify a prioritized list of
features that is conducive to follow-up studies. Si-
multaneous feature ranking is a promising area for
further research. Although the Relief family of algo-
rithms can deal with feature interaction, they cannot
explicitly identify the set of interacting features. It is
necessary to develop a method that can identify sets
of interacting features that should be investigated as a

group.

9 Supplementary information

9.1 Method for finding the most influential feature
selection papers

A SCOPUS (http://www.scopus.com) citation search
was conducted on March 16, 2014 using the term “feature
selection” in article title, which turns up a total of 7,302 pa-
pers. Among these papers, 108 have at least 50 citations.
The average number of citations per year was calculated for
each of these papers as [total citations]/2014 — [year pub-
lished]. There are 36 papers with at least 20 yearly cita-
tions. The yearly citations of these papers are sorted and
plotted in Figure 1. The top 4 papers have over 100 yearly
citations. The next 8 papers have more than 50 yearly cita-
tions. The 13th most frequently cited paper has 47.6 yearly
citations; whereas the 14th has only 33.7 yearly citations.
Therefore, we decided to focus on the top 13 papers. One of
these papers is actually about feature detection, not feature
selection; thus, this paper was excluded in our review. The
citation information of the remaining 12 papers is summa-
rized in Table 2.

Table 2: The top 12 most frequently cited feature selection

papers
Total Yearly
Auth Yi
uthor ear Citations Citations

1. Guyon, A. Elisseeff 2003 3,157 287.0
R. Kohavi, G. H. John 1997 2,652 156.0
H. Peng, F. Long, C. Ding 2005 1,399 155.4
Y. Saeys, I. Inza, P. 2007 769 109.9
Larranaga
H. Liu, L. Yu 2005 738 82.0
R. T. Collins, Y. Liu, M. 2005 538 508
Leordeanu
A. L. Blum, P. Langley 1997 1,016 59.8
G. Forman 2003 649 59.0
P..Pudll, J. Novovicova, J. 1994 1145 573
Kittler
A. Jain, D. Zongker 1997 898 52.8
M. Dash, Liu H 1997 878 51.6
C.-L. Huang, C.-J. Wang 2006 381 47.6
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Figure 2: Sorted yearly citations of frequently cited feature
selection papers

9.2 Performance analysis of feature selection meth-
ods

A number of researchers have evaluated the performance
of different feature selection methods. The earliest study
is probably that of Mucciardi & Gose**! where the authors
studied 7 techniques for feature selection on an electrocar-
diograms (EKG) dataset with 157 features and 9 classes.
These techniques belong to feature ranking and feature sub-
set configuration methods, summarized as follows:

(1) Probability of error: features are ranked based on the
expected probability of error (POE), which is the frac-
tion of patterns that are misclassified using a single
feature. This technique belongs to pair-wise feature
ranking using discriminative power.

Average correlation coefficient: This is a feature sub-
set configuration method. The first feature chosen is
the one with the smallest POE. The second feature
chosen is the one that has the smallest correlation co-
efficient with the first feature. The third feature is cho-
sen such that its average correlation coefficient (ACC)
with the first two features is the smallest. Subsequent
features are chosen based on the smallest ACC de-
fined above.

Sequential: This is also a feature subset configuration
method. Instead of using ACC, the feature to be added
to a feature subset is the one that best discriminate the
two most confused classes by the current feature sub-
set.

Eigenvector analysis: strictly speaking this is a not
a feature selection but a feature transformation tech-
nique. Principal component analysis is used to cre-
ate new features by linearly combining the original
features. The new features are ranked based on their
eigenvalues.

Incomplete Eigenvectors: original features that make
small contributions to the eigenvectors in the above
mentioned principal component analysis are dropped
from each eigenvectors when computing new fea-
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tures. This is a feature transformation technique ap-
plied to a selected subset of features.

Property weighting by eigenvector component: the
average absolute weight of the original feature over
the first 35 eigenvectors is used for feature ranking.
This technique can be viewed as a simultaneous fea-
ture ranking method.

Weighted sum: features are ranked according to a
weighted sum of their POE when used alone and their
ACC with the current feature subset. It is slightly
more sophisticated than the second technique, but is
still a feature subset configuration method.

(6)

)

Nested feature subsets (based on an ordered list of features)
were used in a clustering decision rule for classification.
The error rates produced were compared with that obtained
when the features were ordered randomly. It was found that
each of the 7 techniques resulted in lower error rates com-
pared to randomly ordered features. In addition, ACC was
found to be a much stronger criterion than POE alone, indi-
cating the usefulness of feature subset configuration.

Kononenko!”*! studied various criteria for ranking discrete
(multi-valued) features. The author focused on the bias of
these criteria caused by the number of values of a feature.
The majority of the criteria are uncertainty related includ-
ing information gain,*”! information gain ratio,!*”! distance
measure, ! J-measure,[’® average absolute weight of evi-
dence,!””! Gini-index,!®! and relevance measure./’8! Relief
was also used as an individual feature evaluation criterion.
It was reformulated as a function of a coefficient highly cor-
related with the Gini-index called Gini’. Gini’ was also
used as a ranking criterion. In addition, Kononenko intro-
duced an evaluation measure based on the minimal descrip-
tion length principle!’®! called MDL’. Other than these un-
certainty related criteria, two hypothesis test criteria were
studied; namely, chi-square statistic and G statistic. The
findings are summarized as follows:

e Information gain, J-measure, Gini-index, and Gini’
have a linear bias in favor of features with higher
number of values. The relevance measure has a sim-
ilar behavior except that its value increases less than
linearly with the number of values.

e Information gain ratio, distance measure, and Relief
have exponential bias against features with higher
number of values. Interestingly, for features that are
irrelevant, these three criteria exhibit bias in favor of
features with higher number of values. The bias be-
havior of Relief is logarithmic; whereas that of infor-
mation gain ratio and distance measure is linear.

e MDL’ is biased against features with higher number
of values. For irrelevant features, the value of MDL’
is always negative.

e The behavior of average absolute weight of evidence
is unstable. It seems to be somewhere between the
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relevance measure (for irrelevant features) and MDL’
(for informative features).

e Chi-square statistic was found to be unbiased. How-
ever, Kononenko noted that Chi-square statistic can-
not distinguish less informative features from more
informative features because their p-values are indis-
tinguishable (all take the value of 1) due to computa-
tion precision.

e G statistic was found to favor irrelevant features with
higher number of values. However, Kononenko stated
that this behavior contradicted that observed in an ear-
lier study by White and Liu.!®”! The author noted that
this contradiction is likely due to the limited scenar-
ios studied. Note that G statistic has the same prob-
lem as Chi-square statistic with respect to informative
features.

Dash & Liu!®! focused on classification problems and evalu-
ated the performance of a number of feature selection meth-
ods using three artificial datasets: (1) CorrAL with 32 in-
stances, binary classes, and 6 Boolean features, (2) Modi-
fied parity with 64 instances, binary classes, and 12 Boolean
features, and (3) Monk3 with 122 instances, binary classes,
and 6 discrete features. These datasets are relatively sim-
ple (low dimensionality, discrete features). Nonetheless, it
was clear that no single feature selection method is univer-
sally superior to the others. The authors recommended that
a feature selection method should be chosen based on data
set characteristics including data type, data size, and noise.
They listed five criteria extracted from data set characteris-
tics: (1) ability to handle different data types, (2) ability to
handle multiple (more than two) classes, (3) ability to han-
dle large dataset, (4) ability to handle noise, and (5) ability
to produce optimal subset if data is not noisy. A table was
presented describing the capability of 16 feature selection
methods based on these five criteria.

Freeman et al.l”?! studied the performance of 16 commonly
used filter measures (including feature ranking, subset con-
figuration, and model-independent subset evaluation meth-
ods) using 20 artificial and 20 real-world datasets. For the
artificial datasets, the number of features is between 2 to
6. For the real-world datasets, the number of features is
as many as 34. The authors concluded that appropriate fea-
ture selection measures are data set specific. They discussed
the applicability of these measures in terms of the following
data set characteristics: (1) whether the functional relation-
ship between the target concept and features is monotonic
or non-monotonic, (2) whether there is dependency among
the features (feature interaction), (3) whether features are
correlated, (4) whether there are redundant features, and (5)
whether there are noisy features.

A more comprehensive comparative study was conducted
by Hall & Holmes,!8!! where the authors used 18 data sets
of varying feature size and data instances to evaluate several
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representative feature selection methods. The methods are:

e information gain, a pair-wise feature ranking method

e ReliefF, a simultaneous feature ranking method

e correlation-based filter, a feature subset configuration
method

e inconsistency rate, a model-independent feature sub-
set evaluation method

e wrapper, a model-specific feature subset evaluation
method.

In addition, principal component analysis was used, which
is essentially a feature transformation method. Naive Bayes
and C4.5 were then used to build classification models. Note
that C4.5 can be viewed as an embedded feature selection
method. Thus, the study covers the majority of feature
selection methods. Again, the conclusion that no single
method is universally superior is confirmed. To choose an
appropriate feature selection method, the authors suggested
that one should (1) understand how each feature selection
method works, (2) understand the strength and weakness of
the modeling technique to be used, and (3) obtain as much
background knowledge of the data set as possible. Other
than this general guideline, the authors offered the follow-
ing specific recommendations:

e If model accuracy is the most important consideration
and computation speed is not an issue, then wrappers
should be used.

e Otherwise, correlation-based filter, inconsistency
rate, and ReliefF are good overall performers.

o Correlation-based filter is faster and chooses fewer
features; whereas ReliefF is superb in finding inter-
acting features.

Kohavi & John®! studied the performance of wrappers
(model-specific feature subset selection method) using 14
data sets with varying characteristics. ReliefF was used as
a benchmark. It was found that after wrapper feature selec-
tion, models built using ID3, C4.5, and naive-Bayes had sig-
nificantly improved accuracy on some of the data sets. On
real-world datasets, the wrapper approach was found to be
superior to ReliefF. This is likely due to the fact that the Re-
lief family of algorithms cannot detect redundant features,
as pointed out in Ref.] However, ReliefF was found to out-
perform wrappers on the m-of-n-3-7-10 artificial dataset,
which confirmed the unique ability of detecting feature in-
teraction by the Relief family of algorithms.

Note that subset evaluation methods, both model-specific
(wrappers) and model-independent, require a search strat-
egy. The study by Kohavi & John'®! indicated that best-first
search is preferable to hill-climbing search. Pudil et al.’s!!!!
showed that sequential floating search is a computationally
efficient strategy that produced very good results. Siedlecki
and Sklansky!*®! advocated the use of genetic algorithms.
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Jain & Zongker!'”! classified search strategies into four cat-
egories:

e deterministic single-solution methods, e.g., sequen-

tial search

e deterministic multiple-solution methods, e.g., beam
search

e stochastic multiple-solution methods, e.g., genetic al-
gorithms

e optimal methods, e.g., branch and bound

The authors applied a total of 14 search strategies, plus neu-
ral network node pruning (which is an embedded feature se-
lection method) to a 20-dimensional 2-class dataset. Based
on the results, they recommended sequential forward float-
ing search (SFFS) as the best choice due to its excellent per-
formance (comparable to that of optimal search methods)
and efficiency (much faster than optimal search methods).

A number of researchers studied different feature selection
methods for text classification. Text classification is a very
high-dimensional problem and the use of wrappers is time
consuming. Therefore, only feature ranking methods were
evaluated. Yang & Pedersen!®?! studied the performance of
5 feature ranking methods on a single data set. The study
by Forman®3! is more comprehensive, involving 12 feature
ranking methods on 19 multi-class datasets representing 229
binary text classification problem instances. In Ref.,[®?! in-
formation gain and chi-square statistic were found to be
most effective. This conclusion was partially confirmed by
Foreman as the author noted that the outperformance occurs
when the number of features used is restricted to less than
100. In addition, information gain outperformed chi-square
statistic at every feature size. Foreman also found that a
new ranking criterion, bi-normal separation, outperformed
others by a substantial margin in most situations (including
information gain at high number of features). The outper-
formance was more apparent in problems with high class
skew (imbalanced data sets where the number of one class
is significantly larger than that of the other class).

Another very high-dimensional problem is classification
based on gene-expression. Li et al.®¥ studied the com-
bination of different feature ranking methods with differ-
ent classification methods using 9 multi-class gene expres-
sion datasets. The top 150 genes were selected using
8 pair-wise feature ranking methods implemented in the
Rankgene software package.® These methods are in-
formation gain, towing rule, sum minority, max minority,
Gini index, sum of variances, one-dimensional SVM, and
t-statistics. Models were then built using J4.8 decision tree,
Naive Bayes, K-nearest neighbor, and 4 variants of SVM
(multi-dimensional). It was found that there are complex in-
teractions between feature selection and classification mod-
eling methods. The performance of decision tree was de-
graded after feature selection. Note that decision tree itself
has a build-in mechanism for feature selection (i.e., it is an
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embedded feature selection method). Using only top ranked
features to build a decision tree model can be viewed as tak-
ing away potentially useful features. This is likely the cause
of performance deterioration. On the other hand, feature
selection improved the performance of k-nearest neighbor
and Naive Bayes. Li et al. attributed this outperformance
to the reduction in noise and dimensionality. The perfor-
mance of SVMs was not uniform. In some datasets feature
selection improves their performance but in other datasets it
degrades their performance. Note that in the study by Ko-
havi & John,!®! feature selection did not always improve the
performance of Naive Bayes. Therefore, it is unclear under
which situation feature selection would improve the perfor-
mance of a specific classification model.

Note that most of the comparative studies use cross-
validation to estimate model accuracy. For feature ranking
and feature subset configuration methods, this estimate is
appropriate because the features are selected independent of
any specific models. However, for feature subset evalua-
tion methods, this estimate might yield biased results due
to overfitting. Reunanen’®! argued that for these compu-

tationally intensive feature selection methods, one should
use an independent data set to evaluate the performance
of the selected features. To prove this argument, the au-
thor compared two search methods, SFS and SFFS, using
l-nearest neighbor with leave-one-out cross-validation ac-
curacy (LOOCV) on 7 data sets. Each data set was sep-
arated into a training set and a testing set. Only training
sets were used in feature selection. When using LOOCV
on the training sets, feature subsets found by SFFS clearly
outperformed those found by SFS. Note that this is consis-
tent with the conclusion by Jain & Zongker!!”! that SFFS
is the best search strategy. However, when the testing sets
were used to evaluate the selected features, the outperfor-
mance disappeared. This study indicated that it is necessary
to use independent test data sets for performance evaluation
when comparing different feature selection methods. How-
ever, this performance evaluation method has yet to become
a common practice in feature selection research. Therefore,
one should be cautious when interpreting results from the
comparative studies discussed here, especially with respect
to feature subset evaluation methods.

References

[1] Miller AJ. Selection of Subsets of Regression Variables. Journal of
the Royal Statistical Society, Series A-G. 1984; 147(3): 389-425.
http://dx.doi.org/10.2307/2981576

[2] Hotelling H. The Selection of Variates for Use in Prediction with
Some Comments on the General Problem of Nuisance Parameters.
Annual of Mathematical Statistics. 1940: 11(3): 271-283. http:
//dx.doi.org/10.1214/aoms/1177731867

[3] Hocking RR. The Analysis and Selection of Variables in Linear Re-
gression. Biometrics. 1976; 32(1): 1-49. http://dx.doi.org/1
0.2307/2529336

[4] Saeys Y, Inaki I, Larranaga P. A Review of Feature Selection
Techniques in Bioinformatics. Bioinformatics. 2007; 23(19): 2507-
2517. PMid:17720704. http://dx.doi.org/10.1093/bioinfo
rmatics/btm344

[5] Guyon I, Elisseeff A. An Introduction to Variable and Feature
Selection. Journal of Machine Learning Research. 2003; 3(Mar):
1157-1182.

[6] Molina LC, Belanche L, Nebot A. Feature Selection Algorithms: A
Survey and Experimental Evaluation. Proceedings of the 2002 IEEE
International Conference on Data Mining. IEEE. New York, 2002:
306-313.

[7] Blum AL, Langley P. Selection of Relevant Features and Examples
in Machine Learning. Artificial Intelligence. 1997; 97(1/2): 245-
271.

[8] Kohavi R, John GH. Wrappers for Feature Subset Selection. Artifi-
cial Intelligence. 1997(1/2); 97: 273-324.

[9] Dash M, Liu H. Feature Selection for Classification. Intelligent Data

Analysis. 1997; 1(3): 131-156. http://dx.doi.org/10.1016/S

1088-467X(97)00008-5

Jain A, Zongker D. Feature Selection: Evaluation, Application, and

Small Sample Performance. IEEE Transactions on Pattern Analysis

and Machine Intelligence. 1997; 19(2): 15-158.

Pudil P, Novovicova J, Kittler J. Floating Search Methods in Feature

Selection. Pattern Recognition Letters. 1994; 15(11): 1119-1125.

http://dx.doi.org/10.1016/0167-8655(94)90127-9

[10]

[11]

Published by Sciedu Press

[12] Liu H, Yu L. Toward Integrating Feature Selection Algorithms for
Classification and Clustering. IEEE Transactions on Knowledge and
Data Engineering. 2005; 17(4): 491-502. http://dx.doi.org/1
0.1109/TKDE. 2005 .66

Peng H, Long F, Ding C. Feature Selection based on Mutual In-
formation: Criteria of Max-dependency, Max-relevance, and Min-
redundancy. IEEE Transactions on Pattern Analysis and Machine
Intelligence. 2005; 27(8): 1226-1238. PMid:16119262. http://dx
.doi.org/10.1109/TPAMI.2005.159

Collins RT, Liu Y, Leordeanu M. Online Selection of Discrimina-
tive Tracking Features. IEEE Transactions on Pattern Analysis and
Machine Intelligence. 2005; 27(10): 1631-1643. PMid:16237997.
http://dx.doi.org/10.1109/TPAMI.2005.205

Keynes R. A Treatise on Probability. Macmillan, London, 1921.
Gardenfors P. On the Logic of Relevance. Synthese. 1978; 37(3):
351-367. http://dx.doi.org/10.1007/BF00873245

Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, San Francisco, 1988.
Gennari JH, Langley P, Fisher D. Models of Incremental Concept
Formation. Artificial Intelligence. 1989; 40(1-3): 11-61.

Blum AL. Relevant Examples and Relevant Features: Thoughts
from Computational Learning Theory. AAAI Fall Symposium on
Relevance. AAAI Press, Palo Alto. 1994: 14-18.

John GH, Kohavi R, Pfleger K. Irrelevant Features and the Sub-
set Selection Problem. Proceedings of the 11th International Con-
ference on Machine Learning. Morgan Kaufmann, San Francisco.
1994: 121-129.

Cover TM. The Best Two Independent Measurements are not the
Two Best. IEEE Transactions on Systems, Man, and Cybernetics.
1974; 4(1): 116-117. http://dx.doi.org/10.1109/TSMC. 19
74.5408535

Yu L, Liu H. Efficient Feature Selection via Analysis of Relevance
and Redundancy. Journal of Machine Learning Research. 2004;
5(Oct): 1205-1224.

Koller D, Sahami M. Toward Optimal Feature Selection. Proceed-
ings of the 13th International Conference on Machine Learning.
Morgan Kaufmann, San Francisco. 1996: 284-292.

[13]

[14]

[15]
[16]

(17]
(18]

[19]

(20]

[21]

[22]

(23]

35


http://dx.doi.org/10.2307/2981576
http://dx.doi.org/10.1214/aoms/1177731867
http://dx.doi.org/10.1214/aoms/1177731867
http://dx.doi.org/10.2307/2529336
http://dx.doi.org/10.2307/2529336
http://dx.doi.org/10.1093/bioinformatics/btm344
http://dx.doi.org/10.1093/bioinformatics/btm344
http://dx.doi.org/10.1016/S1088-467X(97)00008-5
http://dx.doi.org/10.1016/S1088-467X(97)00008-5
http://dx.doi.org/10.1016/0167-8655(94)90127-9
http://dx.doi.org/10.1109/TKDE.2005.66
http://dx.doi.org/10.1109/TKDE.2005.66
http://dx.doi.org/10.1109/TPAMI.2005.159
http://dx.doi.org/10.1109/TPAMI.2005.159
http://dx.doi.org/10.1109/TPAMI.2005.205
http://dx.doi.org/10.1007/BF00873245
http://dx.doi.org/10.1109/TSMC.1974.5408535
http://dx.doi.org/10.1109/TSMC.1974.5408535

www.sciedu.ca/air

Atrtificial Intelligence Research

2015, Vol. 4, No. 2

[24]

[25]

[26]

[27]

(28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

36

Cherkassky V, Mulier FM. Learning from Data: Concepts, Theory,
and Methods. 2nd Edition, John Wiley & Sons, Hoboken, 2007.
Narendra PM, Fukunaga K. A branch and bound algorithm for
feature subset selection. IEEE Transactions on Computers. 1977;
¢26(9): 917-922.

Dash M, Liu H, Motoda H. Consistency based Feature Selection.
Proceedings of the Forth Pacific Asia Conference on Knowledge
Discovery and Data Mining. Springer-Verlag, London. 2000: 98-
109.

Almuallim H, Dietterich TG. Learning Boolean Concepts in the
Presence of Many Irrelevant Features. Artificial Intelligence. 1994;
69(1/2): 279-305.

Pearson K. Notes on the History of Correlation. Biometrika, 1920;
13(1): 25-45. http://dx.doi.org/10.1093/biomet/13.1.25
Quinlan R. Induction of Decision Trees. Machine Learning. 1986;
1(1): 81-106. http://dx.doi.org/10.1007/BF00116251

Kira K, Rendell LA. A Practical Approach to Feature Selection. Pro-
ceedings of the 9th International Workshop for Machine Learning.
Morgan Kaufmann, San Francisco. 1992: 249-259.

Kononenko I. Estimating Attributes: Analysis and Extensions of
Relief. Lecture Notes in Computer Science. 1994; 784: 171-182.
http://dx.doi.org/10.1007/3-540-57868-4_57
Robnik-Sikonja M, Kononenko I. An Adaptation of Relief for At-
tribute Estimation in Regression. Proceedings of the Fourteenth In-
ternational Conference on Machine Learning. Morgan Kaufmann,
San Francisco. 1997: 296-304.

Robnik-Sikonja M, Kononenko I. Theoretical and Empirical Anal-
ysis of Relief. Machine Learning. 2003; 53(1/2): 23-69. http:
//dx.doi.org/10.1023/A:1025667309714

Mucciardi AN, Gose EE. A Comparison of Seven Techniques for
Choosing Subsets of Pattern. IEEE Transactions on Computers.
1971; ¢20(9): 1023-1031.

Hall MA. Correlation-based Feature Selection for Discrete and Nu-
meric Class Machine Learning. Proceedings of the Seventeenth In-
ternational Conference on Machine Learning. Morgan Kaufmann,
San Francisco. 2000: 359-366.

Backer E, De Schipper JA. On the Max-min Approach for Fea-
ture Ordering and Selection. Seminar on Pattern Recognition. 1977;
24.1.

Pudil P, Novovicova J, Choakjarernwanit N, et al. The Max-min Ap-
proach to Feature Selection: Its Foundations and Practical Potential.
Indian Journal of Pure and Applied Mathematics. 1994; 25(1/2): 71-
84.

Mo D, Huang SH. Feature Selection based on Inference Correlation.
Intelligent Data Analysis. 2011; 15(3): 375-398.

Huang SH, Mo D, Meller J, et al. Identifying a Small Set of Marker
Genes using Minimum Expected Cost of Misclassification. Artifi-
cial Intelligence in Medicine. 2012; 55(1): 51-59. PMid:22387186.
http://dx.doi.org/10.1016/j.artmed.2012.01.004

Wang X, Yang J, Teng X, et al. Feature Selection based on Rough
Sets and Particle Swarm Optimization. Pattern Recognition Letters.
2007; 28(4): 459-471. http://dx.doi.org/10.1016/j.patre
c.2006.09.003

Swiniarski RW, Skowron A. Rough Set Methods in Feature Selec-
tion and Recognition. Pattern Recognition Letters. 2003; 24(6): 833-
849.http://dx.doi.org/10.1016/S0167-8655(02)00196-4
Zhong N, Dong J, Ohsuga S. Using Rough Sets with Heuristics for
Feature Selection. Journal of Intelligent Information Systems. 2001;
16(3): 199-214. http://dx.doi.org/10.1023/A:1011219601
502

Hall MA, Smith LA. Feature Selection for Machine Learning: Com-
paring a Correlation-based Filter Approach to the Wrapper. Proceed-
ings of the 12th International Florida Artificial Intelligence Research
Society Conference. AAAI Press, Palo Alto. 1999: 235-239.

Liu H, Motoda H. Feature Selection for Knowledge Discovery and
Data Mining. Kluwer Academic Publishers, Norwell, 2000.

Yu B, Yuan B. A More Efficient Branch and Bound Algorithm
for Feature Selection. Pattern Recognition. 1993; 26(6): 883-889.
http://dx.doi.org/10.1016/0031-3203(93)90054~-Z

(46]

[47]

[48]

(49]

[50]

(51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

[61]

[62]

[63]

[64]

[65]

Hamamoto Y, Uchimura S, Matsunra Y, et al. Evaluation of the
Branch and Bound Algorithm for Feature Selection. Pattern Recog-
nition Letters. 1990; 11(7): 453-456. http://dx.doi.org/10.10
16/0167-8655(90)90078-G

Stearns SD. On Selecting Features for Pattern Classifiers. Third In-
ternational Conference on Pattern Recognition. IEEE, New York.
1976: 71-75.

Huang CL, Wang CJ. A GA-based Feature Selection and Param-
eters Optimization for Support Vector Machines. Expert Systems
with Application. 2006; 31(2): 231-240. http://dx.doi.org/1
0.1016/j.eswa.2005.09.024

Siedlecki W, Sklansky J. A Note on Genetic Algorithms for
Large-scale Feature Selection. Pattern Recognition Letters. 1989;
10(5): 335-347. http://dx.doi.org/10.1016/0167-8655(89
)90037-8

Skalak D. Prototype and Feature Selection by Sampling and
Random Mutation Hill Climbing Algorithms. Proceedings of the
Eleventh International Conference on Machine Learning. Morgan
Kaufmann, San Francisco. 1994: 293-301.

Liu H, Setiono R. A Probabilistic Approach to Feature Selection: A
Filter Solution. Proceedings of the 13th International Conference on
Machine Learning. Morgan Kaufmann, San Francisco. 1996: 319-
327.

Inza I, Larranaga P, Etxeberria R, et al. Feature Subset Selection
by Bayesian Network-based Optimization. Artificial Intelligence.
2000; 123(1/2): 157-184.

Meiri R, Zahavi J. Using Simulated Annealing to Optimize the
Feature Selection Problem in Marketing Applications. European
Journal of Operational Research. 2006; 171(3): 842-858. http:
//dx.doi.org/10.1016/j.ejor.2004.09.010
Sivagaminathan RK, Ramakrishnan S. A Hybrid Approach for Fea-
ture Selection using Neural Networks and Ant Colony Optimiza-
tion. Expert Systems with Application. 2007; 33(1): 49-60. http:
//dx.doi.org/10.1016/j.eswa.2006.04.010

Breiman L, Friedman JH, Olshen RA, et al. Classification and Re-
gression Trees. Wadsworth and Brooks, Pacific Grove, 1984.
Quinlan R. C4.5: Programs for Machine Learning. Morgan Kauf-
mann, San Francisco, 1993.

LeCun Y, Denker J, Solla S, et al. Optimal brain damage. In Touret-
zky DS (ed), Advances in Neural Information Processing Systems
II. Morgan Kaufmann, San Francisco. 1990: 598-605.

Guyon I, Weston J, Barnhill S, et al. Gene Selection for Cancer Clas-
sification using Support Vector Machine. Machine Learning. 2002;
46(1-3): 389-422.

Tibshirani R, Hastie T, Narasimhan B, et al. Diagnosis of Multi-
ple Cancer Types by Shrunken Centroids of Gene Expression. Pro-
ceedings of the National Academy of Science. 2002; 99(10): 6567-
6572. PMid:12011421. http://dx.doi.org/10.1073/pnas.08
2099299

Tibshirani R. Regression Shrinkage and Selection via the Lasso.
Journal of the Royal Statistical Society Series B. 1996; 58(1): 267-
288.

Vapnik V. Statistical Learning Theory. John Wiley and Son, New
York, 1998.

Tayal A, Coleman TF, Li Y. Primal Explicit Max Margin Feature
Selection for Nonlinear Support Vector Machines. Pattern Recogni-
tion. 2014; 47(6): 2153-2164. http://dx.doi.org/10.1016/j
.patcog.2014.01.003

Boubezoul A, Paris S. Application of Global Optimization Meth-
ods to Model and Feature Selection. Pattern Recognition. 2012;
45(10): 3676-3686. http://dx.doi.org/10.1016/j.patcog.
2012.04.015

Yang SH, Hu BG. Discriminative Feature Selection by Nonpara-
metric Bayes Error Minimization. IEEE Transactions on Knowledge
and Data Engineering. 2012; 24(8): 1422-1434. http://dx.doi.o
rg/10.1109/TKDE.2011.92

Song L, Smola A, Gretton A, et al. Feature Selection via Depen-
dence Maximization. Journal of Machine Learning Research. 2012;
13(May): 1393-1434.

ISSN 1927-6974 E-ISSN 1927-6982


http://dx.doi.org/10.1093/biomet/13.1.25
http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1007/3-540-57868-4_57
http://dx.doi.org/10.1023/A:1025667309714
http://dx.doi.org/10.1023/A:1025667309714
http://dx.doi.org/10.1016/j.artmed.2012.01.004
http://dx.doi.org/10.1016/j.patrec.2006.09.003
http://dx.doi.org/10.1016/j.patrec.2006.09.003
http://dx.doi.org/10.1016/S0167-8655(02)00196-4
http://dx.doi.org/10.1023/A:1011219601502
http://dx.doi.org/10.1023/A:1011219601502
http://dx.doi.org/10.1016/0031-3203(93)90054-Z
http://dx.doi.org/10.1016/0167-8655(90)90078-G
http://dx.doi.org/10.1016/0167-8655(90)90078-G
http://dx.doi.org/10.1016/j.eswa.2005.09.024
http://dx.doi.org/10.1016/j.eswa.2005.09.024
http://dx.doi.org/10.1016/0167-8655(89)90037-8
http://dx.doi.org/10.1016/0167-8655(89)90037-8
http://dx.doi.org/10.1016/j.ejor.2004.09.010
http://dx.doi.org/10.1016/j.ejor.2004.09.010
http://dx.doi.org/10.1016/j.eswa.2006.04.010
http://dx.doi.org/10.1016/j.eswa.2006.04.010
http://dx.doi.org/10.1073/pnas.082099299
http://dx.doi.org/10.1073/pnas.082099299
http://dx.doi.org/10.1016/j.patcog.2014.01.003
http://dx.doi.org/10.1016/j.patcog.2014.01.003
http://dx.doi.org/10.1016/j.patcog.2012.04.015
http://dx.doi.org/10.1016/j.patcog.2012.04.015
http://dx.doi.org/10.1109/TKDE.2011.92
http://dx.doi.org/10.1109/TKDE.2011.92

www.sciedu.ca/air

Atrtificial Intelligence Research

2015, Vol. 4, No. 2

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]1

[75]

Brown G, Pocock A, Zhao MJ, et al. Conditional Likelihood Maxi-
mization: A Unifying Framework for Information Theoretic Feature
Selection. Journal of Machine Learning Research. 2012; 13(Jan):
27-66.

Zhao Z, Wang L, Liu H, et al. On Similarity Preserving Feature Se-
lection. IEEE Transactions on Knowledge and Data Engineering.
2013; 25(3): 619-632. http://dx.doi.org/10.1109/TKDE. 20
11.222

Liang J, Wang F, Dang C, et al. A Group Incremental Approach to
Feature Selection Applying Rough Set Technique. IEEE Transac-
tions on Knowledge and Data Engineering. 2014; 26(2): 294-307.
http://dx.doi.org/10.1109/TKDE.2012.146

Shu W, Shen H. Incremental Feature Selection based on Rough
Set in Dynamic Incomplete Data. Pattern Recognition. 2014;
47(12): 3890-3960. http://dx.doi.org/10.1016/j.patcog.
2014.06.002

Wang J, Zhao P, Hoi SCH, et al. Online Feature Selection and Its
Applications. IEEE Transactions on Knowledge and Data Engineer-
ing. 2014; 26 (3): 698-710. http://dx.doi.org/10.1109/TKD
E.2013.32

Wessels LFA, Reinders MJT, Hart AAM, et al. A Protocol for Build-
ing and Evaluating Predictors of Disease State based on Microarray
data. Bioinformatics. 2005; 21(19): 3755-3762. PMid:15817694.
http://dx.doi.org/10.1093/bioinformatics/bti429
Freeman C, Kulic D, Basir O. An Evaluation of Classifier-specific
Filter Measure Performance for Feature Selection. Pattern Recogni-
tion. 2015; 48(5): 1812-1826. http://dx.doi.org/10.1016/j
.patcog.2014.11.010

Reunanen J. Overfitting in Making Comparisons between Variable
Selection Methods. Journal of Machine Learning Research. 2003;
3(Mar): 1371-1382.

Kononenko I. On Bias in Estimating Multi-valued Attributes. Pro-
ceedings of the 14th International Joint Conference on Artificial In-
telligence. Morgan Kaufmann, San Francisco. 1995: 1034-1040.
Mantaras RL. ID3 Revisited: A Distance based Criterion for At-
tribute Selection. Proceedings of the Fourth International Sympo-

Published by Sciedu Press

[76]

(771

(78]

(791

(80]

(81]

[82]

[83]

[84]

[85]

sium on Methodologies for Intelligent Systems. North Holland, Am-
sterdam. 1989: 342-350.

Smyth P, Goodman RM. Rule Induction Using Information Theory.
In: G. Piatetsky-Shapiro and W. J. Frawley (ed), Knowledge Dis-
covery in Databases. MIT Press, Cambridge, 1990.

Michie D. Personal Models of Rationality. Journal of Statistical
Planning and Inference. 1989; 25(3): 381-399. http://dx.doi.o
rg/10.1016/0378-3758(90)90083-7

Baim PW. A Method for Attribute Selection in Inductive Learning
Systems. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence. 1988; 10(6): 888-896. http://dx.doi.org/10.1109/3
4.9110

Li M, Vitanyi P. An Introduction to Kolmogorov Complexity and Its
Applications, Springer Verlag, Berlin, 1993.

White AP, Liu WZ. Bias in Information-based Measures in De-
cision Tree Induction. Machine Learning. 1994; 15(3): 321-329.
http://dx.doi.org/10.1007/BF00993349

Hall MA, Holmes G. Benchmarking Attribute Selection Techniques
for Discrete Class Data Mining. IEEE Transactions on Knowledge
and Data Engineering. 2003; 15(3): 1-16.

Yang Y, Pedersen JO. A Comparative Study on Feature Selection
in Text Categorization. Proceedings of the 14th International Con-
ference on Machine Learning. Morgan Kaufmann, San Francisco,
1997, pp. 412-420.

Forman G. An Extensive Empirical Study of Feature Selection Met-
rics for Text Classification. Journal of Machine Learning Research.
2003; 3(Mar): 1289-1305.

Li T, Zhang C, Ogihara M. A Comparative Study of Feature Selec-
tion and Multiclass Classification Methods for Tissue Classification
based on Gene Expression. Bioinformatics. 2004; 20(15): 2429-
2437. PMid:15087314. http://dx.doi.org/10.1093/bioinfo
rmatics/bth267

Su Y, Murali TM, Pavlovic V, et al. RankGene: Identification of
Diagnostic Genes based on Expression Data. Bioinformatics. 2003;
19(12): 1578-1579. http://dx.doi.org/10.1093/bioinform
atics/btgl79

37


http://dx.doi.org/10.1109/TKDE.2011.222
http://dx.doi.org/10.1109/TKDE.2011.222
http://dx.doi.org/10.1109/TKDE.2012.146
http://dx.doi.org/10.1016/j.patcog.2014.06.002
http://dx.doi.org/10.1016/j.patcog.2014.06.002
http://dx.doi.org/10.1109/TKDE.2013.32
http://dx.doi.org/10.1109/TKDE.2013.32
http://dx.doi.org/10.1093/bioinformatics/bti429
http://dx.doi.org/10.1016/j.patcog.2014.11.010
http://dx.doi.org/10.1016/j.patcog.2014.11.010
http://dx.doi.org/10.1016/0378-3758(90)90083-7
http://dx.doi.org/10.1016/0378-3758(90)90083-7
http://dx.doi.org/10.1109/34.9110
http://dx.doi.org/10.1109/34.9110
http://dx.doi.org/10.1007/BF00993349
http://dx.doi.org/10.1093/bioinformatics/bth267
http://dx.doi.org/10.1093/bioinformatics/bth267
http://dx.doi.org/10.1093/bioinformatics/btg179
http://dx.doi.org/10.1093/bioinformatics/btg179

	Introduction
	Objective of feature selection
	Feature relevance
	Feature redundancy
	Optimal feature subset 
	Feature selection methods
	Guidelines for applying feature selection methods
	Summary
	Supplementary information
	Method for finding the most influential feature selection papers
	Performance analysis of feature selection methods


