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Abstract
Missing values may be present in data without undermining its use for diagnostic / classification purposes but compromise ap-
plication of readily available software. Surrogate entries can remedy the situation, although the outcome is generally unknown.
Discretization of continuous attributes renders all data nominal and is helpful in dealing with missing values; particularly, no
special handling is required for different attribute types. A number of classifiers exist or can be reformulated for this repre-
sentation. Some classifiers can be reinvented as data completion methods. In this work the Decision Tree, Nearest Neighbour,
and Naive Bayesian methods are demonstrated to have the required aptness. An approach is implemented whereby the entered
missing values are not necessarily a close match of the true data; however, they intend to cause the least hindrance for classi-
fication. The proposed techniques find their application particularly in medical diagnostics. Where clinical data represents a
number of related conditions, taking Cartesian product of class values of the underlying sub-problems allows narrowing down
of the selection of missing value substitutes. Real-world data examples, some publically available, are enlisted for testing. The
proposed and benchmark methods are compared by classifying the data before and after missing value imputation, indicating a
significant improvement.
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1 Introduction

Missing entries may appear in database records for many
reasons. Take, for example, the aspect of timeliness - data
is obtainable but not yet available; or consider the acquisi-
tion costs - data is generally valuable but can be dealt with-
out. Above all, there are case specifics - not all of the data
is required or some of it is unobtainable. This situation is
not only very common, but actually justifies the presence of
Missing Values (MVs) - data has all it needs, if someone is
only able to embrace its logic.

It is acceptable and, in fact, unavoidable to have MVs, espe-
cially in clinical practice, but presents a problem for outright

classification which is data based. Yet, hypothetically, these
values may be requisitioned. Even if values are illogical in
their positions on a particular record, appropriate entries can
be made to acknowledge this fact. In practical terms, MVs
can be substituted with some actual values from ranges per-
taining to their attributes. For example, it is routinely sug-
gested that numerical MVs can be entered by their attribute
mean. Even though this may distort data distribution and
cause class noise, the genuine bulk of the data should be
able to absorb the stress. However, any value or a combina-
tion of values will do well for this reason, perhaps random
ones even better. There is another wisdom in using means
for numerical attributes or modes for categorical attributes,
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and in relevant subsets sooner than all data – these estimates
of essential moments of data distribution are preserved in
MV substitution. Let us embark on this path, yet produce as
little noise as possible.

MVs in numerical data create a representation difficulty in
classification problems. Only if an attribute is, in fact, dis-
crete, for example, integer, some value outside its domain
can be used to denote MV. However, such an assignment of
a dummy value cannot be carried out as elegantly with con-
tinuous features. For instance, insertion of dummy data (e.g.
“999.999”) invariably distorts distance metrics underpin-
ning classifiers. Therefore, it is more appropriate and com-
mon practice to acknowledge MVs using binary (“yes/no”)
supporting attributes. This implies that MVs can then be
arbitrarily entered. However, no data mining algorithm ap-
plied directly to the data will be able to make a connection
between the principal and their supporting attributes. Con-
versely, no representation problem exists with all nominal /
discrete attributes where the “missing” value can be entered
as a designated category. Apart from universality of for-
mulation, this provides an additional rationale to discretise
continuous attributes in mixed attribute type domains. This
methodology is embraced in this work.

Conversion of a data mining method whereby it can do with-
out referencing MVs is sometimes possible but is unwar-
ranted. At the same time, there is a need for techniques
serving auxiliary purposes, such as comparison, many of
which are implemented into a software. A pre-processing
step which fits MVs out with surrogates offers a systematic
approach to the problem under these circumstances. Sim-
ple deletion of attributes and instances containing MVs is
hardly an alternative - the remaining information may be in-
sufficient to train a classifier. In fact, having too many of
attributes, instead of being helpful, is counterproductive for
instance deletion, despite ostensibly providing more data. It
is not difficult to imagine that this will cause a cumulative
effect under the “missing completely at random” scenario,[1]

even if only a small amount of information per attribute is
missing.[2]

MVs are often substituted by their attribute mode or mean,
depending on whether the attribute type is categorical or nu-
merical. By restraining change of other involved variables,
the mode or mean can be evaluated more specifically. In
ref.[3] we followed an approach having likeness of the one
known as the General Location Model[4] to set MVs in one
of the data examples. We argued that in mixed attribute type
domains categorical attributes naturally subdivide data into
clusters, that is, subspaces defined by different categories
have to be assumed infinitely removed from each other; and
used a small number of well defined, regarded influential
features of this type to set MVs in all other attributes by
mean or mode for each combination of values of the selected
attributes. Any MVs in the class attribute were set indepen-
dently from a single strongest, valued predictor. Other crite-

ria can also be applied when subdividing data. For example,
a dataset can be restructured into smaller sets, so as to min-
imize the impact of MVs. Latkowski and Mikolajczyk[5]

decompose data into subsets based on statistical properties
of the former. A restructuring approach that involves organ-
ising features into a hierarchy in consultation with experts
was advanced by Stranieri and Zeleznikow.[6]

Narrowing down the selection is a general method, but it
does not guarantee that classification is not disadvantaged
as the substitute values are subset dependent. However, this
variation does not seem to be as important for weak fea-
tures. Rahman and Islam[7] adapt the C4.5 algorithm from
ref.[8] for MV imputation. In their method MVs are entered
by classifying data with respect to any affected feature. The
same scheme involving the Naïve Bayesian classifier is ap-
plied in ref.[9] This may seem controversial as high pre-
cision can only be expected if the class and supporting at-
tributes are highly correlated, but this is not necessarily the
case in diagnostics. In fact, for the purpose of determin-
ing parameters of an assumed model of data distribution, an
analogous application of regressive imputation in the Ex-
pectation Maximisation (EM) and the Multiple Imputation
(MI) techniques by Rubin and colleagues,[1] suggests using
auxiliary variables for a closer projection of imputed val-
ues.[2] However, the question is also about how precise the
projected values need to be. Nevertheless, the focus on the
original classification problem is lost with this approach.

Different importance of selecting the correct value can be
illustrated on a data where a feature aligns strongly with
the class, so predictions can be made directly from values
of that feature. For example, the pre-diabetic condition in
non-diabetic patients can be assessed from the blood glu-
cose level alone. If such a dataset had MVs in other at-
tributes, arguably, they could be set arbitrary without con-
sequences. However, if the classification were attempted
without that feature, it might fail due to the added noise, if
not for weakness of the reduced feature-set. Hence, the as-
pect of class noise is critical, and it has a broader impact
if features are allowed to recombine. Proposed in the cur-
rent work techniques can be placed fairly into the category
of anti-noise measures, although not in an intrusive but eva-
sive form. We discuss the intrusive measures in ref.[10] In
that regard, using the paradigm of attribute space facilitates
reckoning; however, applying the notion is not straightfor-
ward in all-nominal / discrete data domains. Techniques,
akin developed in ref.[11] (Gamberger and Lavrač), should
instead be considered. The idea there is to generate deci-
sion rules via inductive logic programming, similar to rules
deducible from a decision tree, and verify their components
instance-by-instance. Instances that misconstrue many such
literals are then regarded foreign. With MVs in data, rules
are not rigid, so they can be varied to accommodate any
uncertain instances. Returning therefore to the opening ar-
gument, since an optimal decision tree relies on attributes
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that strongly correlate with the class, the impact of MVs in
these attributes should be examined in the first place. Fol-
lowing this principle, several data structures resulting from
different classifier designs are exploited in the current work
to guide the deduction of a subset from which MVs could
be selected.

2 Related work
Junninen et al.[12] used linear and cubic spline interpolation
in conjunction with neural networks for MV imputation in
time series data. Generally, in a multivariate context a rela-
tionship existing between attributes can be exploited. Wang
and Rao,[13] Zhang et al.[14] evaluated approaches using ker-
nel imputation. Tseng et al.,[15] Zhang et al.[14] combined
clustering and regression. More generally, a model of data
can be fit to a sample even though in the presence of MVs,
as in the EM and MI techniques previously mentioned.[1]

Many statistical software packages implement EM and MI:
SPSS, SAS, to name a few.[16] In using the software one
should keep in mind that the data distribution is often as-
sumed to be multivariate normal. If this is not the case, it
is sometimes possible to impose a transformation to that ef-
fect, at least in respect of individual variables. An account
of available software facilitated modelling using MI in dia-
betes studies is given in ref.[17]

Despite regarded as “state of the art”, EM and MI tech-
niques are computationally very intensive, especially MI,
which is rather a statistical experiment featuring an impu-
tation method. Apart from the design, the biggest contrib-
utor to the problem is the multitude of model parameters
as their number is dependent on the number of problem di-
mensions and can grow explosively with model complex-
ity.[2] Therefore, only models involving a modest number
of variables can be realistically evaluated. The quest for
using a large number of parameters has yet to be substan-
tiated with the amount of data available; otherwise, there
may be a dramatic loss of precision of statistical inference
- a phenomenon known as the “curse of dimensionality”.[18]

Above all, complexity alone does not define the model qual-
ity. The model should also be descriptive of the data. This
is inherently difficult to achieve because of a paradox in the
formulation of the analytics exercise: on one hand, one can-
not readily frame a question of interest without knowing
what data is available, and on the other, one cannot iden-
tify what data is required without knowing the question of
interest. The modelling requires a substantial amount of in-
genuity, but as the saying goes, “art does not always pay”.
Particularly, where response and explanatory variables are
involved, the response should match the explanatory set. In
classification problems the correspondence of independent
attributes to the class at least is implicit in the formulation.
Farhangfar et al.[9] survey imputation methods in classifica-
tion.

While relatively well studied,[1, 4] MVs in data continue to

perplex data mining practitioners, attracting monographs in-
tended to bridge the gap, such as the texts by Enders,[2] Car-
penter and Kenward.[19] Molenberghs and Kenward[20] af-
ford a vast exposition of imputation methods in clinical tri-
als.

Cheng et al.[21] use linear interpolation in gene expression
analysis, which is a specialized area of research that can-
not be placed into the categories of regression or classifi-
cation. It is characterised by scarcity of data, and no clear
distinction exists between instances and attributes. How-
ever, the data has some redundancy that can be exploited.
A technique of bi-clustering in the instance-attribute space
is used as the instrument to find localities where a higher
precision of machine entered values can be achieved. Impu-
tation and bi-clustering is performed one after the other in
iterative manner until convergence. This processing mode
resembles the one by Tseng.[15]

Most known MV imputation techniques treat numerical and
categorical attributes differently, causing disarray when both
types are present.[2]

3 Classifiers from nominal data
Classifiers from nominal / discrete data provide insight into
how to deal with attribute value omission. Also, having ob-
tained substitutes for MVs, a vehicle for result verification is
required. In this section we adapt the Decision Branch (DB)
and the Nearest Neighbour (NN) approaches for classifica-
tion of nominal data and recall the Naive Bayesian (NB)
method. A well-informed introduction to classification in a
wider context of machine learning and data mining is found
in the book by Kononenko and Kukar.[18]

3.1 Decision trees

The tree induction algorithms iD3, C4.5, C5 advanced by
Quinlan[8] partition data in the form of a tree where branches
are represented by values of a particular selected attribute.
We will assume that all data is readily nominal/discrete. A
complication arises when the attribute in question is con-
tinuous, requiring discretization at each node where the at-
tribute is selected. Class value of a leaf node is statistically
determined. An optimal tree is formed by selecting a fea-
ture that delivers the highest Information Gain (IG) for sub-
sequent subdivision of data in a particular node. Partitions
of high class mix are split earlier into separate branches in
the course of tree induction. Here, we pursue a simpler ver-
sion of the classifier where no model of data is ever learned
but the leaf required by a test instance is directly evaluated
each time by mining through the training set. This variety
of decision tree is described next.

Algorithm 1: Decision Branch

Step 1. (Initialization). Set a minimum size for a sample to
make inferences from.
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Step 2. (Direction). Select a feature among features avail-
able for a particular test instance with the highest IG in de-
scribing data contained in the current leaf (the end node of
the branch). Initial selection is carried out from all data ex-
cluding test instances, that is, the training set.

Step 3. (Propagation). Select the subset of data defined
by the test instance best feature value. Check whether the
number of instances in the new leaf is no less than the set
minimum. Repeat recursively from Step 2 if it is not. Keep
the shorter branch if it is.

Step 4. (Generalization). Evaluate the biggest class in the
leaf and compare to the test instance. If the branch cannot
be grown at all, rely on class prior probabilities at the root.
Update classification accuracy for the test set. The accu-
racy for a particular class is the mean number of successes.
Repeat from Step 2 until all test instances are streamed.

Details about training and testing sets, and techniques for
classification accuracy calculation can be found in ref.[18]

or other introductory texts.

Feature selection at the direction step of the algorithm is
based on IG, a criterion, which measures mutual informa-
tion between any two features. In the given context one of
the attributes is always class. It is categorical; therefore, if
the other feature is continuous, it is convenient to have it dis-
cretised. At the same time, IG relies on probabilities which
can be estimated from frequencies, and so discretization is
purposeful again. IG is applicable to all data, or any part of
it, and measures how the class is influenced by a chosen fea-
ture, or vice versa - the higher IG, the stronger the influence.
IG uses Entropy H - a quantity representing the average in-
formation contained in a feature. Three features participate
in this calculation: the class, the attribute in question, and a
joint feature of the two. With this in mind, Information Gain
IG for class c and feature f is then simply:

IG(c, f) = H(c) +H(f)−H(c× f),

where × denotes the Cartesian product of value sets. En-
tropy H ≥ 0 for any feature f is obtained as follows:

H(f) = −
∑n

i=1 P (f = vi) · log2 P (f = vi),

where P stands for probability, and log2 P (f = vi) is the
morsel of information; vi, i = 1 · · ·n is a particular value of
feature f present in a subset of data the formula applies to.
Ref.[18] has more on the notions of Entropy and IG.

3.2 Nearest neighbourhood

The NN algorithm in this study is an adaptation for nominal
data of the well-known k-NN technique.[22] It uses the Ham-
ming loss for a distance function in the pseudo-space of data
attributes.[18] The loss, which normally counts disagreement
of attribute values between two instances being compared,
is weighted by IG to make the space metric conform better
to the data.[23, 24] In the capacity of distance function the

Hamming loss is also known as overlap metric.[24]

Weight setting in the distance formula is intended, generally,
to reduce the influence of irrelevant attributes by making
distances in their directions shorter. The pseudo-distance for
nominal attribute space can then be expressed as follows:

d(p1, p2) =
∑n

i=1 gi · δ(v1
i , v

2
i ); gi = IGi∑n

i=1
IGi

;

δ = 0, v1
i = v2

i ; δ = 1, v1
i 6= v2

i .

where p are data points in comparison; g are feature weights
set by IG; v are feature values in instances p; i = 1 · · ·n is
feature index; and δ is the Kronecker’s symbol to express in-
cidence of two entities (although here 0 and 1change sides).

Algorithm 2: Nearest Neighbour

Step 1. (Initialization). Calculate IG for each feature to
use as weights in the pseudo-distance formula. Adjust the
weights to add to unity. Set parameter k - the number
of closest instances drawn to establish class statistics for
the neighbourhood of any test instance. Set a precision
for distance calculations. The maximum distance for the
pseudo-space is unity with the weighted Hamming loss.
This makes using the same precision for different neigh-
bourhoods throughout the space more consistent. By lim-
iting the precision very similar instances are not neglected,
which makes sampling more fair under the presumption of
small sample size.

Step 2. (Sampling). Draw k closest instances to a current
test instance (or having class assigned for the first time).
Set radius of the neighbourhood by the furthest neighbour.
Draw all instances in the neighbourhood within the radius
according to the set precision.

Step 3. (Classification). Obtain the closest class to the
test instance from mean distance statistics for classes with
equally highest representation in the neighbourhood. Con-
test the class of the test instance and recalculate the accu-
racy. Repeat from Step 2 for each test instance.

One can see a similarity between the NN and DB classifiers
and appreciate why weighting attributes by IG may work
well. The result is largely determined by the top ranking
attribute or having the highest weight in both approaches.
The next attribute selected by DB may be further down the
list than the second attribute due to redundancy. Away from
the root of a tree, selection of attributes is driven by local
considerations, whilst any particular neighbourhood keeps
using globally assessed weights. The impact on results in ei-
ther case is reduced due to reduced influence of subsequent
choices; and both approaches have their weaknesses: NN
approximates local weights with global weights, and DB
loses certainty when successively selecting strongest fea-
tures from the sample which gets smaller and smaller. How-
ever, while the NN concept is easily amenable to conversion
to a tree structure, a pair of closest instances is not necessar-
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ily found in the same leaf or even on the same branch.

3.3 Naive Bayesian

NB is a classical method for nominal data, widely used
despite the requirement of attribute independence, given a
class.[25, 26] A presumption of this would be naive, gener-
ally. However, a simplification, which the conditional in-
dependence of attributes allows for, makes effectively more
data available.

Given evidence x an optimal classifier should select class ci

with

P (ci|x) > P (cj |x),∀j 6= i,

that is, the highest posterior probability. According to the
classic formula attributed to Bayes

P (c|x) · P (x) = P (x|c) · P (c),∀c.

Therefore, the alternative formulation of the minimum error
rate decision rule is

P (x|ci) · P (ci) > P (x|cj) · P (cj),∀j 6= i,

while P (x) > 0 cancels out. Because of the conditional
independence

P (x|c) = P (x1|c) · P (x2|c) · · · · · P (xn|c),∀c,

where xk, k = 1 · · ·n, are the attributes of x.

3.4 From real to nominal

A practical aspect associated with the application of classi-
fiers from nominal / discrete data is discretization of real-
valued attributes. A discretization method proposed by
Yang and Webb[26] focuses on data abundance in any in-
terval. The scheme is an interpretation of the conventional
equal frequency method. The marginal probability density
function in this method has a stepwise substitute. From
this perspective, the predictions are more precise if more in-
tervals subdivide the value range. These two contradicting
aims have to be brought into a balance. Fixing the frequency
at a certain level, according to ref.,[26] is the answer.

There is only an informal account in ref.[26] of how the
Fixed Frequency discretization is to be performed. The
method is evidently subdividing all attributes into the same
number of intervals. The equal frequency is outwardly a
simple concept, but handling of repeating values requires
optimization to fulfil one of the prerequisites that the fre-
quency across intervals has to be as even as possible, par-
ticularly to guarantee highest individual frequencies. Our
realization of this “even”, sooner than “equal”, frequency
concept is described next. We choose this method because
it is easily implementable and has proven its utility in vari-
ous applications.

Consider set A consisting of m points aj ∈ A ⊂ Rn, j =
1 · · ·m (m ≥ 2). Having all attributes continuous in this
representation, the algorithm discretises them in turn. The

following steps apply to a current attribute i ∈ 1 · · ·n. It is
assumed that each attribute values are sorted in an increas-
ing order: ai

j ≤ ai
j+1, j = 1 · · ·m− 1. An important caveat

to all this is that, while attribute values are real numbers,
they can be mapped to integers due to limited precision data
is generally known with, so no data point can be assumed
unique.

Algorithm 3: Even Frequency Discretization

Step 1. (Initialization). Choose the target number of inter-
vals, same for all attributes, ho > 1. Initially each distinct
value occupies its own interval. Set the number of inter-
vals h > ho accordingly and calculate the mean frequency
f = m/h.

Step 2. (Repartition). Find a pair of adjacent intervals so
that their combined frequency is closest to f . If h > ho

merge the intervals, and have h← h−1 and f recalculated.
Reiterate until h = ho. The mean interval frequency can
only increase in the repartition.

Step 3. (Adjustment). For each pair of connecting inter-
vals adjust the boundary between them so that their frequen-
cies were as close to each other as feasible without split-
ting repeating values. The mean interval frequency does
not change in the adjustment. Reiterate until no further im-
provement is possible.

The repartition step addresses mainly the requirement of
sufficiently high interval frequency and to a lesser extent
the equality of frequencies between intervals. The adjust-
ment step strives to resolve this inadequacy, and can also
be applied over a random subdivision. However, advance
repartitioning provides a good starting point.

4 Escaping missing values
It is sometimes possible to get around MVs by altering how
the classification algorithm is implemented. This ability
also holds clues to substituting MVs with surrogates. Tran-
sition to all categorical attributes assists the imposition of
the required change, as it is often possible to apply by-
coordinate moves in the algorithm. However, the general
method is given by a mode of classifier implementation
known as the “short memory”, or the “lazy learning mode”,
whereby learning is preformed anew for each test instance.
All previously described algorithms are implemented this
way in the current work, which is clarified below.

The IG criterion is utilized in the DB and NN classifica-
tion methods. The criterion involves two discrete attributes.
This can be viewed as if instances having MVs in either of
the two attributes were withdrawn for the purpose of a par-
ticular calculation. On the top of this, the DB method will
simply have to choose features for which values are known
when propagating a branch.

In the case of NN the situation is very different because

26 ISSN 1927-6974 E-ISSN 1927-6982



www.sciedu.ca/air Artificial Intelligence Research 2015, Vol. 4, No. 1

whole instances have to be matched, irrespective of absence
of MVs. The notion of nearest neighbourhood is defined in
terms of closest instances, and so one should be able to cal-
culate distances between instances, even if not all attribute
values are known. If this were possible, instances should be
treated as less reliable, the more attribute values are miss-
ing, and applicable to a pair, the two instances should be re-
garded further apart. Calculation of distances in the pseudo-
space of categorical attributes is based on match or no match
of values. The probability of a mismatch in absence of some
values when comparing two instance records in a given po-
sition has to be assumed high since the match is only one of
all possible events. Making this a rule endows the distance
calculation with the desired property.[9]

The “adaptation” of NB is that it facilitates the by-
coordinate processing. The calculation is simply based on
the probability by class for any particular attribute value.
So, only class dependent subsets data defined by the value
are involved. When classifying, attributes with no values in
the test instance are simply not taken into account.

The discretization poses no problem at all since all attributes
are individually treated. Any MVs are simply skipped.

5 Dummy surrogates
As we set to use nominal data only, MVs are easily entered
as a special category. However, just by doing so, the prob-
lem is not solved but replaced with another one of dealing
with noise. By using the special notation all noise is shifted
to “missing” values. This guarantees correctly estimated
probabilities for existing values if they are all genuine. In-
put from the dummy values is all-incorrect; however, it is
sometimes possible to assume that their relative frequencies
are, if misleading, then negligible, and not in favour of any
particular class, that is, MVs are rare and random enough.

Uninformative ballast

Although it is a common practice to delete incomplete in-
stances or attributes, this cannot be recommended as a gen-
eral method, because only the training set can be dealt with
in this way but not the test set. In addition, deletion of in-
stances in the training set may distort the data distribution,
and deletion of attributes may undermine legibility of the
data, especially if presence of MVs is regarded admissible.
However, the deletion of instances and attributes can be used
to remove a redundant, systematic component in the MV
pattern. Any remaining MVs can then be ignored. Because
instances and attributes are both involved, a consideration
should be given to which incomplete layer of the two to
nominate for deletion and when. To minimize the impact
a pre-processing step is proposed as follows.

Algorithm 4: Incomplete Information Dismissal

Step 1. (Infogain). Compute IG from available values for
all features. Set a target for data reduction in terms of re-

moved values, missing or not, relative to the size of origi-
nal data (instances times attributes), which is a number, as-
sumed small, between 0 and 1 .

Step 2. (Layers). Based on IG conveyed by individual val-
ues, calculate the amount of information contained in indi-
vidual instances and attributes - layers of the data. A miss-
ing entry contributes no information.

Step 3. (Prospecting). Choose a layer containing the least
information per value. To bridge between instances and at-
tributes, select a matching sample comprising several in-
stances or attributes, whichever number is currently bigger,
satisfying the least information per value criterion.

Step 4. (Dismissal). Exclude the least informative layer
from the data. Check the reduction rate. If the targeted min-
imum is achieved - quit, else - reiterate from Step 2.

A side effect of this algorithm is that it deletes attributes,
whether incomplete or not. Indecisive overall, a feature may
impart a substantial discriminatory power in a subset of data.
So, complete attribute or not - same risks are taken. At the
same time, the pre-processing doubles as a feature selection
step.[3, 18]

6 Filling-in the blanks
A high redundancy of features in diagnostic domains sug-
gests the “missing at random” scenario[1] whereby substitu-
tion of MVs from available data is always feasible. The sub-
stitution is possible if the classifier re-profiled for data entry
has the ability to train and generalize without actually ac-
cessing MVs. It has to be able to classify any new instance
in order to determine an appropriate subset of the training
data, the substitutes can be evaluated from. Surely, the class
is the main factor of subdivision. However, not all of the
classifier training set must be labelled. This is reminiscent
of modus operandi of Online Algorithms.[27, 28] Upon arrival
of a new instance it is classified and added to a pool of crit-
ical instances, or the memory of the algorithm, where it is
held unless subsequently it becomes clear it has to undergo
a revision or be discarded as unreliable or redundant. The
gist of the above is that class-unallocated instances are still
valuable. This illuminates two distinct stages in the surro-
gate value entry. Firstly, MVs will have to be substituted
in instances labelled for class. Secondly, the classifier will
have to be trained on labelled instances and the class at-
tribute set for not labelled instances by generalization. Any
MVs in instances formerly without a class label can then be
set from pertinent subsets of all data. Both stages will nec-
essarily be iterative so changes could spread. The first stage
applies to the labelled instances only and the second stage
to all instances.

6.1 Contextual data completion by mode

Our algorithm performs completion and classification at
the same time of any test instance by substituting attribute
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modes for MVs from a sample of training data, which a clas-
sifier of choice queries to make the prediction. It is an itera-
tive process of tuning instance records in turn to the remain-
der of the file that requires at least one valued instance per
attribute per class. MVs are substituted from the subset hav-
ing the same class as the test instance within the extracted
sample. The first entry in a MV position is made regard-
less of whether the predicted class label is that of the test
instance. The introduced value is only modified if subse-
quently the instance class becomes incorrectly predicted. If
the test instance is not labelled, the embedded classification
algorithm is used to assign the value. The iteration ends
when the surrogate values stop changing or a limit for num-
ber of cycles is reached. The algorithm intends to produce
the best possible array of substitute values within the classi-
fier bias. However, substituted values in any given position
on a record may differ for different classifiers. The absolute
accuracy is implicit for the training set, yet the rule attain-
ing this accuracy is unknown. Different classifiers approxi-
mate this rule differently. The selection of data a classifier
makes has to be broad enough to include instances which
are able to source a value for at least one MV. Less optimal
classifier parameter settings are resorted to, when this is not
possible. NB queries all data, and so the template for deter-
mining MVs is always in place. The sample consulted by
classifier in the case of DB is a leaf and in the case of NN a
neighbourhood where the test instance resides.

The flowcharts below outline how the data completion al-
gorithm is applied when powered by different classifier en-
gines (DB, NN or NB). The flowcharts are applicable to
any of the two stages discussed above with little variation.
Flow control constructs on these diagrams are as follows.
“Initialize” refers to setting of parameters for the embedded
learner and any preliminary actions. “First” and “Next” im-
ply setting of the pointer for the stage dependent subset of
incomplete instances. “Next” also asks whether all involved
instances have been processed. “Current” symbolizes the
beginning of the processing cycle for a particular incom-
plete instance. “InfoGain” shows where in the algorithm
IG is evaluated for features available at that time. Block
“Classify” applies to the subset where labels are unknown;
otherwise, the classification is performed for testing only.
“Select” refers to narrowing of the sample used for classifi-
cation to instances of the current instance class. “Substitute”
involves finding feature value modes in the selected data and
filling the original blanks in the current instance record with
the modes, where applicable. “Steady” checks whether the
substituted values have all stopped changing; if yes, then
“Quit” announces completion of a stage.

6.1.1 DB track

The outline of the technique involving DB appears in Figure
1. Using attribute modes for a particular class of data in a
leaf causes instances of that class to bunch. If one of the sub-
stituted values defines a node before the leaf, the next time

the branch is laid, the chance of correct identification of the
test instance increases. Not only is the majority of instances
transferred into a new leaf, other like instances are added. In
short, substitution of MVs with applicable modes strength-
ens the affected attributes, promoting some closer to the root
of the tree. Values of such an attribute then more diligently
separate data into classes by virtue of IG. It is not clear from
the chart, but the IG evaluation, classification and selection
is recursively repeated in the sequence a number of times,
causing the algorithm to slow down. As a trade-off, this
provides the necessary “contraption” by which the selection
can be easily adjusted to include particular class instances.

Figure 1: Flowchart of Decision Branch guided value
submission

6.1.2 NN track

The principal scheme of the NN served algorithm is shown
in Figure 2. Setting MVs by mode from data in the neigh-
bourhood shifts the test instance towards instances the mode
was obtained from, acting towards overall closer allegiance
of the test instance with its class. The neighbourhood is
stretched as required to include at least one instance of the
test instance class. This algorithm evaluates IG once per cy-
cle to metricise the space, which makes it much faster than
the DB variety.

Figure 2: Flowchart of Nearest Neighbour assisted value
submission
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6.1.3 NB track

Flow of the NB based data completion method is very simi-
lar to that of the NN variety in Figure 2. The only difference
is that no IG calculation is involved. This algorithm is the
simplest of all, subject to the same constraints as for NB
classification, and so is the fastest. Despite the strong as-
sumption of class-wise independence of involved features,
the theory behind NB is helpful in illustrating the validity
of substituting MVs with pertinent modes. Suppose for a
test instance x the only attribute with MV has index k. To
guarantee selection of class ci over any other by NB it has
to hold that
P (xk|ci)
P (xk|cj) ·

P (ci)
P (cj) > 1,∀j 6= i

The best selection of xk has then to

maximize P (xk|ci)
P (xk|cj)

The frequentistic approach to classification implies that for
the attribute to be a perfect predictor its attribute values have
to group by class. By this principle and in the view of at-
tribute independence, selection of a mode for the winning
class guarantees both, an increased probability in the nu-
merator and a decreased probability in the denominator. In-
deed, the selected value is then both: characteristic to class
ci and uncharacteristic to class cj ,∀j 6= i ; so it closely ap-
proximates the maximiser. To prevent the denominator from
turning into zero, it has to hold that no attribute is a perfect
predictor in respect of any value it takes; however, this is
wider than it needs to be. Hence, by selecting class modes
for all attributes with MVs, the instance class becomes reaf-
firmed.

6.1.4 Convergence

It can be easily seen that, if not for unknown class instances,
a single iteration is sufficient for the NB based algorithm
to converge when substituting MVs by class-wide attribute
modes. Substituting by mode strengthens that mode. In this
case there is a single cluster for each class. Different learn-
ers powering the principal scheme define different cluster
systems. Within a cluster, instances reciprocate in cross-
validation of their identity. As the mode spreads in the pro-
cess, clusters consolidate. Therefore, the algorithm has a
high propensity for convergence. In the case of NN, the use
of distances has a tightening effect on a cluster, acting to-
wards its isolation, and hence quick convergence to a unique
solution. For DB, convergence is complicated by the dy-
namic nature of IG causing the whole tree to restructure and
clusters within its leaves to change. Ideally, only a small
number of strongest features define the structure, and only
their IG change is of concern, but the sequence of their se-
lection is unimportant. At the same time, using the strongest
features selected by IG guarantees that classes do not dissi-
pate in clusters. However, small leaf sizes, set parametri-
cally, draw more structure defining features, their strength

diminishing with propagation of a branch. In addition, IG
evaluation, and so feature selection, becomes less reliable
and modes unsubstantiated, leading in some cases to indefi-
nitely continuing iteration switching back and forth between
several possible solutions. Hence, there is a limit in place to
make it stop. To conclude, an event of stochastic conver-
gence is contributed by both, the data and the learner, par-
ticularly the learner parametric set. Notwithstanding, the al-
gorithms applied in the current research did not iterate long,
let alone reached the stipulated limit for number of cycles,
when applied to examples discussed in the next section.

7 Simulation
In this section the proposed approach to data completion is
applied to three different diagnostic problems, and results
are evaluated through classification. Classification methods
are those earlier introduced: DB, NN and NB. They are also
components of the data completion principal scheme, giving
rise to three different strains of the proposed method. Thus
instantiated distinct methods and those used for benchmark-
ing, described next, provide specifically for the categorical
data representation, necessitating discretization of any con-
tinuous attributes by the Even Frequency method previously
described.

7.1 Benchmarking

Performance of the proposed NB, DB and NN based com-
pletion methods is tested against seven benchmark methods.
The first is to ignore MVs replaced with dummies, which
may work well if MVs are rare or irregular, as in the state af-
ter instances or attributes abundant with MVs are removed.
“Defaulting” MVs to most encountered, popular values of
their attributes is the second benchmark. The class attribute
can be dealt with in the same manner. The third benchmark
is classification skipping MVs. The methods are denoted
“Ignore”, “Default” and “Skip”, respectively, in the depic-
tion of results (Figures 3 & 4).

The next three methods illustrate the approach pursued in
ref.[7] for decision trees and in ref.[9] for the NB classifier.
Here, we expand it to include all aforementioned classifiers,
although in the more narrow context of all-nominal / dis-
crete data. The omnibus routine visits each attribute in turn,
evaluating any MVs by engaging a particular classifier (NB,
DB or NN) while using all other attributes (including the ac-
tual class) as predictors. This is possible because all three
classifiers have the ability to generalize in presence of MVs
in the training set. It is essentially the same approach as
in the third benchmark method, except that MVs are also
substituted with values predicted from the data with origi-
nal non-entries. Any MVs in the actual class attribute are
dealt with exactly in the same manner. The three methods
are tagged “Omnibus” NB, DB or NN, respectively, in the
graphical representations of results (Figures 3 & 4).
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The seventh comparison method descends from the NN va-
riety of the proposed completion method, which we ex-
tend to include the class attribute. This kind of handling
goes by the name of “Hot Deck”.[2] With this approach the
search becomes truly unsupervised and is performed in the
extended space of attributes where any MV is substituted
purely from considerations of pattern similarity, regardless
of the class. However, the space metric is the same as in
the NN method. It is normally assumed that class domains
are separable in the feature space, and in the extended space
they are even more so. A flowchart representation of this
algorithm would be the same as in Figure 2, except no clas-
sification is performed, and so the selection extends to all
sampled instances. The “Hot Deck” variety is titled accord-
ingly in the results (Figures 3 & 4), while the three alter-
native designs of our principal method of Contextual Data
Completion by Mode are marked “Context” NB, DB or NN,
respectively.

7.2 Data

Datasets used for the current evaluation are characterized in
Table 1. The DiScRi (Diabetes Screening Research Initia-
tive) data is a proprietary one, from research conducted at
Charles Sturt University, made available to the Federation
University Centre for Informatics and Applied Optimization
Health Informatics Laboratory. It represents a collection of
medical records containing information associated with di-
abetes and its complications. Other examples are sourced
from the UCI Machine Learning Repository,[29] publically
accessible via the Internet. The Horse Colic dataset offers
a veterinary example, to train a classifier on various live-
stock health indicators and to determine whether a partic-
ular lesion is surgical. The data is from McLeish and Ce-
cile, then of University of Guelph, Ontario, Canada. The
Secom dataset presents an industrial diagnostics example. It
features output from a system monitoring a semi-conductor
manufacturing process complete with a check on the items,
whether they are functional, and was made available by Mc-
Cann and Johnson. No dataset includes attributes that are ei-
ther unrelated to classification problems featured within, or
are single-valued, as shown. All examples in Table 1 com-
ply with the requirement that at least one value per attribute
per class has to be known.

Table 1: Dataset dimensions
 

 

Datasets 

Attributes  Instances  Values 

All Numerical 
Incomplete 
(%) 

 All 
Incomplete 
(%) 

 
Missing 
(%) 

DiScRi 97 54 64 824 100 31 

Horse 
Colic 

21 7 95 368 98 28 

Secom 475 474 89 1567 100 6 

 

Apart from Diabetes Mellitus (DM), the DiScRi dataset can
also be used to predict Cardiovascular Disease (CVD) or
Hypertension (HT). Attributes of the DiScRi dataset as is,
without featuring use of medication, however, give best sup-

port to DM, less support to HT, and only some support to
CVD. Attending to all problems simultaneously limits can-
didate values a particular MV may espouse, as the one nom-
inated has to be same for all problems. On this occasion,
our evaluation effort exploits the connection between DM
and HT but does not extend to CVD. A focused study of
the diagnostic problem, including all three components, was
conducted by us earlier,[30] where the data is discussed at
length.

7.3 Diagnostic domains

Class structure of the datasets is shown in Table 2. All
datasets have the control class, numbered 0, and the diag-
nostic class, numbered 1. It is common to call the classes
also normal / negative and abnormal / positive, respectively,
although a clarification is required depending on the con-
text. In the Horse Colic case what is regarded normal and
abnormal is, for instance, counterintuitive. Generally, how-
ever, a number of abnormal conditions may be targeted. For
instance, several pre-diabetic conditions and three subtypes
pertain to diabetes (gestational, type 1 and type 2 diabetes
mellitus). The chosen example focuses on Type 2 DM, so
it is Class 1; anything else is in Class 0. It is not unusual
for diagnostic domains that Class 0 is large, which is ev-
ident from Table 2, although where the class is only par-
tially known, the dominance of Class 0 is not obvious. This
exacerbates the difficulty of predicting abnormal instances,
because classifiers get insufficiently trained for the class of
diagnostic interest. For example, the NB classifier relies
substantially on prior probabilities in decision making. An-
other effect associated with diagnostic problems is that the
normal class - using the metaphor of attribute space - tends
to surround the abnormal. The diagnostic class concentrates
ideally about a single point, whereas the control, compris-
ing non-diagnostic instances of all sorts, has multiple con-
gregation points. This would represent a difficulty for the
NN classifier. For that reason diagnostic problems are also
known as One Class problems. Generally, correctly alerting
to an abnormal situation is more valuable than the oppo-
site. Thus, the size disparity and the “overhanging” effect
increase the costs of inaccurate predictions.

Table 2: Data subdivision by class
 

 

Problem 
Classes (%) 

Unknown 0 1 

Diabetes Mellitus 
Type 2 

0 74 26 

Hypertension 20 32 48 

Horse Colic 0 63 37 

Secom 0 93 7 

 

Kubat and Matwin[31] address the problem by one-sided se-
lection of the positive instances, that is, by disregarding
the negative instances close to the class boundary. This is
a proper approach as the actual instance numbers should
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not bear as heavily on classification, but somewhat differ-
ent problems are encountered from time to time, and there-
fore solutions continue to be actively sought. Yoon and
Kwek[32] go further by proposing under-sampling of the ma-
jority class throughout the dataset. Nguyen et al.[33] exercise
a more flexible approach, whereby the positive and negative
class sets are provisionally clustered before a classifier is
constructed, effectively balancing the data. Gonzalez-Reyna
et al.[34] in their traffic sign recognition problem apply tech-
niques that, instead of under-sampling of the majority class,
over-sample the minority class or do both, particularly the
technique by Chawla et al.[35] We proposed solving of the
imbalanced data problem by class noise reduction in ref.[10]

Despite being very class imbalanced, the Secom exam-
ple has many instances and attributes, posing a challenge
for quick evaluation. Therefore, only half of the dataset
in Table 1 was used. The representative sample was ob-
tained by drawing instances at random proportionally to
class sizes. This generic technique of data reduction ap-
proximately halved the number of all MVs at the same time.
We used another technique of this sort when condensing the
temporal information associated with patient visits - a pre-
cursor of the DiScRi data in Table 1.[30] About a quarter of
the original MV content was thus reclaimed.

7.4 Evaluation and comparison

Performance of the proposed data completion methods is
judged against benchmarks by diagnostic accuracy of con-
ditions within data. The results for the DiScRi DM and HT
problems are illustrated in Figure 3. Likewise, the results for
Horse Colic and Secom examples appear in Figure 4. The
charts are based on simple mean accuracy for Classes 0 and
1, that is, half-sum of the proportions of successes for test
instances of each class, known as balanced accuracy. Kubat
and Matwin[31] advocate using geometric mean of class ac-
curacies for the same purpose. Using means of either type
allows for a grand view of performance. For a better under-
standing, though, predictability of Class 0 is usually higher
than that of Class 1, in accordance with what was earlier
noted. If data-set or feature-set varies, or a different classi-
fier is applied to the imbalanced data, small loss in accuracy
for Class 0 usually means big gain for Class 1, and vice-
versa. A connotation of the balanced accuracy is that the
single indicator is sufficient and it would reflect only signif-
icant changes under the circumstances. The accuracy is esti-
mated via the leave-one-out cross-validation resampling,[18]

a technique commonly used when a comparison between
methods is involved. In all mentioned charts the accuracy is
plotted three times for each classification method: once for
full data (not to be confused with having all MV positions
filled) and twice for trimmed data. Reduced datasets result
from Incomplete Information Dismissal – the proposed pre-
processing. Fractions denoted as “half” and “third” refer to
targeted data reduction rates of at least 50% and 70%, re-
spectively.

Figure 3: Balanced accuracy applicable to DiScRi DM
(left) and HT (right) problems for different classifiers on
full data and two fractions of data content after completing
data using the array of methods

Figure 4: Balanced accuracy applicable to Horse Colic
(left) and Secom (right) problems for different classifiers
on full data and two fractions of data content after
completing data using the array of methods
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7.4.1 Full data

We present discussion of full dataset results first. It can be
observed that outcomes of the first two benchmark methods
of dealing with MVs are substandard in all presented prob-
lems. All examples clearly exhibit the attribute pattern of
inundation of data with MVs, rather than the instance one
- something inherent in diagnostic problems. Hence, we
could say that attributes abundant with MVs become pre-
dominantly irrelevant. In both cases classification relies on
attributes originally more filled with data and the results of
ignoring or defaulting are not much different. When, in-
stead, MVs are skipped, this has a bearing on precise estima-
tion of involved probabilities. However, the classifiers rely
on data that is contextually available, and so the attributes
inundated with MVs are largely left out. Unsurprisingly, the
results are only slightly better than for the two preceding
methods.

Omnibus NB, DB or NN data completion in all examples
offers only some improvement. It is difficult to comment on
the current results because they depend strongly on the num-
bering of instances and attributes in data since any strong as-
sociation between attributes should be assumed circumstan-
tial. Therefore, the margins are often insufficient to con-
fidently substitute a MV with a single label, rendering the
output semi-random. Perhaps for this reason Farhangfar et
al.[9] attempt to boost the result by filtering out infrequent
substitutes. Evidence of this indeed occurring is that no par-
ticular method among the three performs consistently bet-
ter than others. It can also be observed that when data is
reduced the second time the accuracy does not necessarily
degrade. Although, the last result may be due to stronger,
unadulterated ties between features and the class, existing
after many spurious influences were eliminated.

Predictability of either normal or abnormal outcomes in all
examples increases dramatically after completing the data
in accordance with the proposed method and regardless of
the engine used (DB, NN or NB). However, the Hot Deck
variety offers a “no-frills” alternative to any of the three
brands of the formal approach, adjusting for its reliability
and speed.

Performance of the NB based data completion method
stands out. The algorithm is not only faster but often more
accurate than the other two, DB or NN powered, which is at
odds with the basic nature of NB. For medical data this can
be linked to its structure: highly relevant attributes are in-
undated with MVs, while unimportant ones are largely not.
The situation is likely due to the high costs associated with
specialized testing. The breadth of mode selection in the al-
gorithm causes high contraction of data distribution in the
pseudo-space of attributes, that is, classes become identified
by the distinct feature modes. Thus, the data becomes more
compliant with the assumption of NB that attributes have
to be class-wise independent. When a problem is split, as is

the case for DiScRi DM and HT, MVs have to be identically
substituted in any part, and the surrogates arising from NB
may appear to be more centred than by other methods, so no
sub-problem is disadvantaged more than the other.

Across the board, the DB guided MV submission hardly
registers an advantage over the NB based one, although
room for improvement may be restricted due to data bias
and the predictability that is already high. Decision trees
are generally praised more for comprehensibility of learned
rules than for their accuracy. On the other hand, the DB
directed completion method is appealing for its design ren-
dering selection of substitutes more realistic. NN, as imple-
mented, is notionally similar to DB, so one should expect a
similar performance when the two are components in turn
of the proposed data completion scheme. However, the NN
assisted completion method, as observed, is notably behind
its counterpart. This may be so because NN adheres to the
data distribution closer than NB or even DB. So, instead of
neutralizing any negative impact of an entry in a MV posi-
tion, which is the primary objective, the completion method
harnessing NN sooner reconstructs data.

When comparing different completion methods one has to
make sure to discount evidence from a classifier that is also
the engine of a particular completion method. A qualifica-
tion is also required when not all data instances are class-
labelled. In particular, these instances are not taken into ac-
count when the Ignored and Skipped MVs benchmark meth-
ods are applied. Among the test problems we attempt, DiS-
cRi HT is the only example of this kind. All proposed in the
current work data completion methods show a much higher
accuracy on the DiScRi HT than on the DM problem, some-
thing to expect under the circumstances. For a better overall
view of performance of the data completion algorithms on
full datasets, it is also helpful to watch indicators for reduced
datasets, in the sense that they provide an extended sample
of results.

7.4.2 Trimmed data

We next analyse the results obtained for reduced datasets. It
can be observed that the attribute pattern of MV inundation
is prevalent in all examples, and perhaps this is common in
diagnostic problems. When targeting 50% or 70% reduc-
tion we obtain all instances intact except for the number of
attributes. Withheld attributes are either less informative or
have many MVs. Either way, trimming by 50% appears to
be safe for all featured problems, with results even better
in some cases compared to the full data. For the DiScRi
problems the results are almost unchanged. Some drop of
accuracy is observable in the Horse Colic example with any
method of data completion. This example has fewer features
by an order of ten compared to the other two datasets, and so
reduction of the feature-set has a much stronger impact. In
the Secom example there is a conspicuous change when the
data is classified with NB. Both classes get evenly predicted.

32 ISSN 1927-6974 E-ISSN 1927-6982



www.sciedu.ca/air Artificial Intelligence Research 2015, Vol. 4, No. 1

What was compounded by the imbalanced class situation
becomes resolved in the reduced attribute setting, which
is characteristic for NB since the dependence between at-
tributes is reduced as well. Other classification results for
the reduced Secom data are almost the same as for the full
data.

Reduction yield in terms of MV numbers ratio in reduced
and full data is shown in Table 3. The yield depends strongly
on the MV pattern in the data, and therefore does not nec-
essarily resemble the targeted data reduction rate by 50%
or 70%. However, the yield is impressive in all examples,
allowing for taking a large number of MVs out of consider-
ation. Compared to trimming by 50%, trimming by 70%
makes the results almost invariably negatively budge, al-
though not by much. Nevertheless, the trade-off for the lost
accuracy is worthwhile.

Table 3: MV reduction yield (%)
 

 

Data Full Half Third 

DiScRi 0 34 68 

Horse Colic 0 58 82 

Secom 0 63 80 

 

7.4.3 Discussion

From the results charted in Figures 3 & 4 it is evident that
diagnostic predictions are better after data completion under
the proposed approach. While each classification method
has its own merits and demerits, our observation is that,
apart from better estimation of involved probabilities, data
completion effectively extends the feature-set. In Figure 5,
NN accuracy on full data is compared before and after com-
pletion by the DB powered method.

The NN classifier outperforms others. Despite this, choos-
ing NN for obtaining the overall picture of improvement,
exemplified by Figure 5, is of secondary importance. This
does not magnify the effect and ensures that the incomplete
data is not misrepresented. Indeed, only the difference in
results before and after completion is of interest. Of pri-
mary importance is the completion method, though, and the
DB based method does not appear to be the best. So, the
picture can be described as overall typical. Employing NN
for classification in this connection has another justification:
the classifier has to be different from the one used in the
completion method for the fairness of representation. On
the other hand, use of NB as the classifier or the engine of
completion method is theoretically limited.

However, the proposed method is consistently better with
any engine when comparing the state after completion to
the state before completion. To assert this requires a pic-
ture for the worst case scenario. Of what we know, data
completion with NN is more conservative than by DB or
NB, and the DB classifier is no better than NB. Note that
calculation of probabilities in NB is more elaborate than in

DB. The last consideration also applies to the NN classifier
where use of distances enhances estimation of probabilities,
purely frequency based in DB. To sum this up, exactly the
opposite satisfies the specification of an unfavourable out-
come. The corresponding accuracy chart is shown in Figure
6 where data completed to NN is classified by DB. Clearly,
the improvement is about the same as in Figure 5, if not the
accuracy.

Figure 5 draws on results for full data as plotted in the last
rows of Figures 3 & 4. Likewise, Figure 6 interprets results
in the middle rows of Figures 3 & 4. The darker, bottom
portion of each element in the two figures corresponds to the
Skipped MVs treatment when the classification algorithm of
choice is applied. The lighter, upper portion of any bar is the
projected gain of accuracy by the same classifier if missing
data is filled to the corresponding variety of the proposed
scheme. The middle section of the Secom element repre-
sents a correction, as further explained. In reading these
figures one should realise that the effective origin is located
not at 0% but at 50% accuracy rate due to the likely data
imbalance, reaching the level of stark contrast when Class 0
is fully authenticated and Class 1 not at all.

Figure 5: Improved predictability by NN of any outcome,
normal or abnormal, after DB guided MV submission in
full data

Data with many MVs is too flexible, so a high resulting ac-
curacy may be unwarranted. Although, a misrepresentation
may occur: the accuracy gain in the Secom case, as evident
from Figures 5 & 6, is actually not that large, if one observes
the Skipped MVs accuracy by NB in Figure 4 (first row, last
column). It improves after trimming, which explains nature
of the middle section of the chart element in Figures 5 &
6. Generally, with more classes specificity of MV substitute
values should increase. However, there are only two classes
in examples discussed in the current research. Some solace
can be found in the small size of the diagnostic class. Apart
from the classification bias, there is nothing else in the prob-
lem to focus the selection more. However, the circumstance
that the same data provides for different problems can be
exploited to greatly limit applicable surrogate ranges. Sub-
stituted MVs in linked constituent problems are expected
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to be identical. To make this applicable to the DiScRi DM
and HT problems, we staged a super problem where classes
are defined by Cartesian product of class value sets of the
components. Each combination of class values in the under-
lying problems corresponds to a class in the super problem,
thereby restricting the choices that are available for surro-
gate entry. Cartesian attribute products in classification were
made popular by Pazzani.[36]

Figure 6: Improved predictability by DB of any outcome,
normal or abnormal, after NN assisted MV submission in
full data

It is plausible that multiple attributes exacerbate the imbal-
anced situation pertaining to diagnostic data. This is due
to the “curse of dimensionality”,[18] the phenomenon ow-
ing to which data space becomes less populated, the more
dimensions it has. The minority class suffers more in this
transition. Conversely, the opposite should improve the sit-
uation. It is peculiar that the NB classifier was able to sense
the change and no other classifier could in the Secom ex-
ample. It came to the fore with any method of MV han-
dling, including the benchmarks, and kept getting better af-
ter more trimming. Surely, with many features removed the
theoretical applicability of NB has improved. Nonetheless,
the class numbers and associated prior probabilities in the
NB formula did not change. Unlike in other examples the
Secom data imbalance is very large. This requires a better
explanation and cannot be made from a single observation.
However, NB is expected to cope well with noise for the
wide net it casts, and this is a promising lead. In all other

examples the imbalanced situation is mild. It clearly gets
improved after data completion using the proposed meth-
ods, with no exception as to data, and the Secom example,
despite having the least rate of missing values, makes this
especially clear. This has to be credited to the main property
of the proposed methods whereby data becomes less noisy
through better accommodation of instances in their class do-
mains. The approach is completely different, though, from
the one pursued by us in ref.[10]

8 Conclusion
In this work we applied a number of techniques of missing
value imputation to some typical datasets from the domain
of diagnostics. The proposed methodology can be used on
data of any type via discretization of continuous attributes.
However, discretization is instrumental for getting around
missing values when classifying data, and so for data com-
pletion. As a consequence, the fitted values acquire the de-
sired subtlety. Indeed, no missing value can generally be
made exactly known. Often substitute values have little or
no impact on classification. The attributes containing them
may be of little relevance, or there are salient, well-defined
features predetermining the outcome. Likewise, a poten-
tially strong feature conveys little information when inun-
dated with missing values. A proposed pre-processing step,
which removes weak features, saves a lot of effort in dealing
with missing values. The purpose of missing value submis-
sion in this work is seen not as guessing of correct values
but removal of hindrance that incomplete data creates for
classification. The completion, as performed, intends to re-
veal data at its best within ability of a learner in its core.
The amount of missing values is sometimes huge, so the
data conformation may be far fetching. There seems to be
a “spectre” haunting the domain of diagnostics. Missing
value input calls for better framing. In this work a con-
voluted representation was exercised in one example where
several known diagnostic problems arising from the same
data were joined together by means of Cartesian product to
arrive at substitute values shared by all.
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