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Abstract
The problem of knowledge acquisition in animals is considered from the point of view of cybernetics. We show that all types
of animal behavior can be consistently explained on the basis of innate behavior programs and the creation of new behavior
programs is logically inconsistent. The hypothesis that all animal behavior is completely innate is proposed. As a possible
physical implementation of the storage of congenital programs, we considered quantum entanglement of biologically important
molecules. Experiments to test hypotheses are proposed.
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1 Introduction

Researchers believe that one part of the behavior of organ-
isms is innate and another part appears due to learning. As
a result of learning, animals acquire the knowledge neces-
sary to survive in a changing environment. However, the
mechanism of the learning process is still far from clear.

We consider the following issues: the cause of the process
of acquiring of knowledge; the programs for this process;
what these programs should include; the "ability to learn";
whether this is a universal ability; and whether this ability
can be formalized.

To answer these questions, we require a precise definition
of the terms that describe animal behavior. However, many
of the terms associated with behavior are not well defined.
Understanding the phenotypic plasticity of behavior led us
to new terms, which reflect the influence of the environment
on genes. However, these terms are also not well defined,
and the mechanism of plasticity is unclear.

However, many forms of behavior implicitly assume a pri-
ori information on the analyzed object. For example, when
considering and modeling decision-making in animals, re-
searchers implicitly assume that the images that surround
the animal are recognized. However, a new situation may
be not recognized. In this case, an adequate decision can-
not be made. For example, when fruit flies learn of some
smells,[1] researchers assume that the smells are registered
by receptors. However, registration and recognition are sig-
nificantly different operations. If the smell is registered and
recognized, some types of a priori programs can run in an
adequate given situation. However, if the smell is registered
by receptors, but not recognized (for example, the smell of a
new synthetic material), then we ask whether there are any
new programs adequate for the new situation.

With regard to conditioned reflexes, another question arises
when a stimulus accompanies a famous image. An animal
can fix this stimulus (e.g., its repetition over time), find reg-
ularities in its appearance (the task of clustering, which can
be performed without comparison to the standard), and then
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use this information as a switch for the implementation of
various aprioristic programs of behavior (i.e., to implement
the program or not). The question is whether a system can
create new programs in this case. We ask if a system can
form a new behavior in response to an unknown stimulus.

The problem of knowledge acquisition in animals is at the
intersection of multiple sciences. To answer these questions,
first, we are to use data from modern cognitive and biolog-
ical science of behavior and genes. Second, we are to use
mathematics based on proofs and the achievements of cy-
bernetics.

One issue is that cybernetics (information theory, control
theory, optimization methods, etc.) is often used to solve
several other problems, which are not focused on the prop-
erties of specific organisms. This issue is seen, for example,
when considering the concept of learning in terms of math-
ematics and technical systems or in terms of the behavioral
sciences. The underlying concepts and the axiomatic sys-
tem are significantly different. This issue complicates the
use of proof-based mathematics in real living systems. The
results of interpenetration (symbiosis) of the behavioral sci-
ences and cybernetics are results of fundamental importance
for understanding the behavior of living and technical sys-
tems.

Cybernetics historically arose as an attempt to unify math-
ematical descriptions of behavior in living and non-living
systems.[2] It includes the study of feedback, black boxes
and derived concepts, such as control and communication
in living organisms, machines and organizations. It focuses
on how to accomplish something (digital, mechanical or bi-
ological), processes information that reacts to it and may be
modified or changed. One of the key concepts of cybernet-
ics that can be considered is the notion of optimality. The
behavior of both living and technical systems is committed
to optimal (in some sense). The study of cybernetics con-
sists of figuring out what it is, to what extent and why it is
optimal for a wide class of systems.

Despite the fact that a number of attempts were made to use
system descriptions of living organisms,[2–4] there is now a
need for a systems approach to behavior (e.g., in the frame-
work of systems biology). This approach can be seen as a
new synthesis in the behavioral sciences. This new synthesis
must be based on the data of modern behavioral genetics and
phenotypic plasticity. This article is an attempt (based on a
systems approach) to answer the following question: does
the organism contain all of the programs for its future be-
havior after the individual development, or do the programs
arise (modified) as a result of learning and interaction with
the environment?

2 Learning, adaptation and knowledge ac-
quisition

We consider the relationship between the concepts of "learn-
ing", "adaptation" and "acquisition of knowledge" in living
and technical systems.

We note that part of the behavior of animals is definitely in-
nate, implemented without learning. However, this raises
the following question: what behavior is innate? The an-
swer is not so simple because, as noted in Ref.5 difficulties
arise during experimental determination of innate behavior.

Another part of behavior is associated with learning. There
are many definitions of learning. We present some of these
definitions.

Thorpe[6] defined learning as "a process consisting in the
appearance of adaptive changes in individual behavior as
a result of the acquisition of experience." Shettleworth[5]

defined learning as "earning, or equivalently memory, is a
change in state due to experience" but noted, however, that
this definition includes many nuances.

Because many of the definitions of "learning" are related to
the concept of "adaptation", the latter term also needs to be
defined.

The concept of adaptation has many meanings both in terms
of technical and living systems. We can state that all ani-
mal behavior is adaptive to a varying degree, i.e., aimed at
maximizing a "gain" by the organism. For example, this
gain can be represented, with other aspects being equal, in
the form of fastest goal achievement or the least cost of
any action, among others. In biological systems, adapta-
tion means adaptation of an organism to external conditions
during evolution, including morphological and behavioral
components. Adaptation can ensure survival in a particu-
lar habitat, resistance to abiotic and biological factors, and
success in competition with other species, populations and
individuals. The adaptive response of the organism is man-
ifested at the organ and tissue level, the behavioral level of
the organism and the population evolution level.

Subsequent modeling of artificial living systems followed
the path of building more adequate models of such systems
with a more detailed modeling of their interactions with the
environment. The special term "animat" was defined, which
is an artificial organism capable of adapting to the environ-
ment. A characteristic feature of adaptive behavior in the
modeling of different motion mechanisms is executed by the
effectors of different actions and the particular architecture
of the block of information processing and decision mak-
ing.[7–11]

Thus, adaptation is a general concept (which includes any
function of the organism, including homeostatic), but this
concept is not well suited to the problem in this paper be-
cause of its vagueness and imprecise definition.
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We now turn to the classification of animal learning. There
are several classifications of animal learning. For example,
according to Ref.12, learning can be identified as habitu-
ation, associative learning (conditioned reflexes of the first
type, trials and errors and the conditioned reflexes of the sec-
ond type), latent learning, insight-learning, or imprinting.

According to Ref.13, simple forms of learning that do not
require the formation of concepts are habituation, sensitiza-
tion and classical (Pavlov) conditioning.

The different definitions and classifications of animal learn-
ing raise the following questions:

What changes occur in the organism (neurons, genes) during
these types of learning? Does the organism really receive
new information as a result of learning, or do only existing
innate programs of behavior run during this process?

One of the problems arising in the study of animal behavior
is that changes to the animal that occur during the process
of learning are not always easy to register. Therefore com-
paring the properties of learning in such systems when the
device is fully known is useful. These are the properties
of the technical system. We consider several definitions of
learning in terms of artificial intelligence.

Herbert Simon defined "learning" as "any change in a sys-
tem, that allows it to perform better the second time on rep-
etition of the same task or on another task drawn from the
same population”.[14]

Computational learning theory focuses on the design and
analysis of algorithms for making predictions about the fu-
ture based on past experiences.[15]

The idea behind designing a learning system is
to guarantee robust behavior without complete
knowledge, if any, of the system/environment
to be controlled. A crucial advantage of re-
inforcement learning compared to other learn-
ing approaches is that it requires no information
about the environment except for the reinforce-
ment signal.[16, 17]

Learning is defined as any permanent change in behavior
as a result of past experience, and a learning system should
therefore have the ability to improve its behavior with time,
toward a final goal. In a purely mathematical context, the
goal of a learning system is the optimization of a functional
not known explicitly.[18]

There are some classes and models of learning.[19]

These definitions of learning have very specific advantages
for certain tasks and also possess a number of drawbacks.
First, these definitions for systems with invariable internal
structure and for systems whose structure can be changed
at will, must be different. If, for example, a man interferes

directly and actually creates another system instead of an
existing system, is this learning? Such a process obviously
has nothing to do with learning, but is related to another
domain. Therefore, we need to elaborate the types of inter-
action between an intelligent system and the environment.

Second, we do not know whether the ability of a system to
acquire new knowledge is considered learning or whether
the system always operates within a priori rules and the
commands given to it. Clearly, some types of learning are
not related to the acquisition of new knowledge and repre-
sent only a selection of system software from an a priori
existing list.

We will distinguish the concepts of "learning" and "knowl-
edge acquisition". First, we define the difference between
these concepts at an intuitive level and then further define
them more rigorously mathematically. Indeed, the acquisi-
tion of knowledge means more than just learning. Typically,
the acquisition of knowledge is associated only with humans
and some higher animals. Learning is a broader concept
inherent to both living and artificial systems. Learning is
a broader concept that is inherent to both living and artifi-
cial systems. Knowledge can be defined as familiarity with
someone or something, which can include facts, informa-
tion, descriptions, or skills acquired through experience or
education. It can refer to the theoretical or practical under-
standing of a subject.

We associate learning with the process of adapting the sys-
tem to the environment in the presence of a priori knowl-
edge (useful information) of the environment. We associate
acquisition of knowledge with the process, following the
emergence of an unrecognized environmental image. This
concept does not include preparation of the system and is
related only to giving the system information about the ex-
ternal environment through receptors, which results in the
system behavior becoming more adequate. A system that
acquires knowledge should behave as if adjusting to a cer-
tain environment based on specific algorithms.

We associate higher forms of learning (behavior) with the
acquisition of knowledge. We associate learning with adap-
tation based on a priori knowledge without receiving new
knowledge. A physical realization of a priori knowledge in-
cludes a priori programs that exist in the system prior to its
learning. With regard to animals, these programs are innate
behavior programs.

All modern systems of artificial intelligence are capable of
learning only in the presence of aprioristic knowledge (use-
ful information).

(1) Heuristic methods of problem solving are based on
aprioristic information about the object domain that
comprises the problem. The heuristics may prove to
be incapable of finding the solution altogether. This
limitation cannot be removed even in the best heuris-
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tics.[20] The key question is how the heuristics arise.
The theory does not answer the question of how we
can develop a new heuristic.

(2) The recursive search represents a natural method for
realization of such strategies of artificial intelligence
as the graph search. However, an exact objective
should be set for this method to be used. If objects
(even one object) are not defined, the recursive proce-
dure cannot be applied.[21]

(3) Production systems are used for conflict resolution.
In this case, the system requires an a priori standard
sample (pattern), which determines the possibility of
using the rules of production systems.[22]

(4) Expert systems rely on the same rules.[21] The core of
an expert system is a knowledge base, which contains
knowledge from a particular applied domain. Knowl-
edge in an object domain determines and updates an
expert database.[23] Can we possibly imagine a sys-
tem that acts as an expert for itself? This is obvi-
ously not possible because a code can be corrected
only when correct knowledge is known.

(5) Learning of neural networks[21] is based on the pre-
sentation of a priori preset training examples. Indeed,
learning of a neural network (with a teacher) implies
the assignment of relation weights between neurons,
which is realized in a special regime (but not in the
pattern recognition regime). In this case, the person
who assigns standard templates to this neural network
has aprioristic information about the object. In the
case of unsupervised learning, neural networks are
only capable of clustering information. In this case,
there is no recognition. As shown below, this mode
relates to conditioned reflexes. Another problem is
how to determine that the system has come to the cor-
rect decision.

(6) Recently, hybrid connectionist-symbolic systems
based on a synthesis of neural networks and sym-
bolic representation of knowledge[24–26] were pro-
posed. These systems help in the knowledge acqui-
sition in a variety of applications. However, the term
"knowledge acquisition" in such a system is used in a
different sense than in this article. In the frame of this
approach, "knowledge acquisition" means that with
help of this knowledge some useful task was solved
(for example, in medicine). Functioning of such sys-
tems a priori assumes that all characters (or simple
signals) or the words, written in a specific language,
are recognized by human or computer. In this sense,
they are innate. Wherein the problem of determining
whether the knowledge are innate to humans is not
considered.

Can an organism (a system) update the knowledge base it-
self and adapt to unforeseen circumstances? Brachman[27]

argues that there are systems that "know what they’re do-

ing". However, the scheme of such a system is based on
neural network learning, and the new qualities such a sys-
tem has compared with neural networks are unclear.

The problem of classification of new concepts based on a
Bayesian classifier is discussed in an article.[28] Learning is
considered to be a hierarchical process in which the unrec-
ognized object can be extracted into a separate class. How-
ever, the paper does not consider further actions with this
object. In this context, as is evident, this classification is
not knowledge acquisition because acquiring knowledge re-
quires the appropriate action in relation to this new object.

Article[29] correctly states that the theory of knowledge is
required. On the one hand, epistemology, which is the
branch of philosophy concerned with the nature and scope
of knowledge, exists; it is also referred to as the "theory
of knowledge". It questions what knowledge is, how it
can be acquired, and the extent to which knowledge perti-
nent to any given subject or entity can be acquired. On the
other hand, we need the mathematical theory of knowledge,
which includes objective criteria and modeling. Researchers
assume that such a theory can be established on the basis of
mathematical logic. We note the importance of the concept
of information entropy with respect to the assessment of the
information contained in various statements. We note that,
in this connection, mathematical logic only works with cer-
tain concepts. In this logic, the acquisition of new mecha-
nisms was not included. The relation between information
and knowledge will be discussed below (see 5.1).

Often, the acquisition of knowledge is associated with the
concept of "intelligence". There are many definitions of "in-
telligence". For example, Gottfredson[30] defines this con-
cept:

A very general mental capability that, among
other things, involves the ability to reason,
plan, solve problems, think abstractly, compre-
hend complex ideas, learn quickly and learn
from experience. It is not merely book learn-
ing, a narrow academic skill, or test-taking
smarts. Rather, it reflects a broader and deeper
capability for comprehending our surround-
ings—"catching on," "making sense" of things,
or "figuring out" what to do.

Article[31] notes that intelligence is difficult to define, but
we can select intelligence formally based on the information
with which it works. Intelligence is a feature for upgrading
information with higher-level knowledge (knowledge about
knowledge). However, if the knowledge of knowledge ex-
ists in the system a priori, then this secondary knowledge
is not new, but is derived based on the laws of logic. The
alternative is that the primary knowledge was not complete
(that is, there is only partial knowledge about any subject
that could somehow be replenished). However, in this case,
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the way secondary knowledge is obtained is unclear.

Thus, the mechanisms of research, upgrading, and granula-
tion of knowledge are not fully defined despite awareness of
the need to examine them. Can we possibly write an a priori
computer program that realizes all of these actions?

Another important aspect of learning, the creation of new
behavior programs (in addition to the already existing a pri-
ori or innate programs), is needed to more adequately re-
spond to the recognized situation. This aspect could occur
by either logical analysis or any interaction with the envi-
ronment (the trial and error method).

Therefore, we combine these two aspects in the term
"knowledge acquisition": the creation of new behavior pro-
grams for known or new environments, which allows the
system to behave more appropriately. Thus, the review of
the concepts of learning, adaptation and knowledge acqui-
sition in living and technical systems allows us to reach the
following conclusions:

(1) Classification of learning is useful in a number of
applications, but does not answer some fundamen-
tal questions. Classification of learning and behavior
needs to be based on more precise definitions, such as
pattern recognition and a priori information.

(2) Part of animal behavior is innate and performed on
the basis of innate behavior programs. In technical
systems, this corresponds to a priori programs that are
initialized prior to the start of the learning process.

(3) The higher forms of animal and human learning nat-
urally associate with the term "acquisition of knowl-
edge." However, the mechanism of knowledge acqui-
sition remains unclear. In particular, the adaptation of
the organism to the new environment is unclear.
The last conclusion is a principal idea in this article
and will be discussed in section 4. We consider the
basic forms of learning in terms of recognition tasks
so that we can understand which of them only need in-
nate behavior programs and which cannot be reduced
to such programs.

3 Pavlov conditioning, plasticity and learn-
ing

3.1 Pavlov conditioning and the task of clustering

As already noted above, some types of simple learning
can be attributed to habituation, sensitization and classical
(Pavlov) conditioning. These elementary forms are found in
most animals, including those with simple nervous systems.
Pavlovian conditioning[32] is a form of learning in which
the conditioned stimulus comes to signal the occurrence of
a second stimulus known as the unconditioned stimulus.
A stimulus is a factor that causes a response in an organ-
ism. The conditioned response is the learned response to

the previously neutral stimulus. The unconditioned stim-
ulus is usually a biologically significant stimulus, such as
food or pain, that elicits a response from the start. The con-
ditioned stimulus usually produces no particular response at
first, but it elicits the conditioned response after condition-
ing. Classical conditioning differs from operant or instru-
mental conditioning, in which behavior emitted by the sub-
ject is strengthened or weakened by its consequences (i.e.,
reward or punishment).[33] We show that from the point of
view of cybernetics, such forms correspond to the problem
of clustering (cluster analysis), which does not require the
recognition of a new object. Innate programs are sufficient
for its solution.

Extensive literature is devoted to Pavlovian conditioning,
and research in this field is ongoing (see, e.g., the Rescorla-
Wagner model[34, 35]). A distinctive feature of the Pavlovian
response is that the external stimulus, which produces the
conditioned reflex, may not be recognized by the animals.
Indeed, many of the stimuli[51] are artificial signals that an-
imals do not find in nature. However, the formation of a
conditioned reflex only requires the signal to be registered
by the receptors of the animal and stored in memory. In this
case, the reflex is to find regularities in the time (spatial)
appearance of objects.

Obviously, from the point of view of cybernetics, Pavlo-
vian conditioning corresponds to the problem of clustering.
Cluster analysis is the problem of partitioning a given sam-
ple of objects (cases) into subsets called clusters. Each clus-
ter is composed of similar objects, and objects of different
clusters are significantly different. Clustering refers to the
task of statistical analysis, as well as to a wide class of un-
supervised learning problems. There are many clustering
methods used in different areas (for example[36–39]).

The problem of recognition (classification) is different from
the problem of clustering. One of the important stages of the
recognition problem is comparing the observed object with
a priori defined standards.

The classic statement of the problem of pattern recognition
is a given set of objects that need to be classified, i.e. each
object needs to be assigned to a class. Information about the
classes is presented a priori (there is a set of objects – sample
– the class membership of which is known). In neural net-
works, this problem corresponds to learning with a teacher;
membership of certain images (standards) to the classes is
determined a priori.

Thus, the fundamental difference between the problem of
clustering and the problem of recognition (classification) is
that the problem of clustering only pertains to the proximity
between objects under investigation (in some sense); the an-
alyzed objects are not known. The system cannot make an
adequate decision concerning an object.

The elaboration of a conditioned reflex with respect to the
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unrecognized image is possible because the animal needs a
proper response to the primary stimulus, but not to this new
stimulus. This stimulus is recognized, and a reaction to it is
innate.

This basic difference is connected by a paradox, which will
be reviewed in section 4.1.

Thus, the implementation of the Pavlovian reflexes requires
innate behavior programs.

Habituation and sensitization can be represented as special
cases of conditioned reflexes. For these programs, innate
programs are sufficient. Besides the response to a stimu-
lus, an innate program includes a condition such as "if the
stimulus is repeated n times, do not respond to it." The ori-
gin of this condition is obvious; the origin is due to the cost
decrease in cases in which the reaction is not necessary.

What happens in the new environment? Will the organism
only confuse the new environment with an old environment?
Can the animal develop new programs for this environment?

3.2 Plasticity and learning

There are two prior opposing theories linking behavior and
genotype. In one theory conditionally called "behaviorism",
the important role of genes was denied. However, there was
another trend ("genetic determinism") that stated that genes
completely determine behavior.

At present, these extreme views have not been confirmed.
The study of the individual development of an organism
shows that in different environments, the same genotype
may be expressed differently. The conclusion is that the
phenotype and behavior of an animal depend not only on
genes but also on the environment.[40, 41]

However, as shown by experiments, identifying the genes
responsible for specific aspects of behavior (e.g., learning)
is difficult. For example, Glanzman[42] notes that the pres-
ence of molecular pathways is not sufficient to understand
learning. Examples of Aplisia and Drosophila behavior
showed that molecules such as GABA and glutamate are as-
sociated with neuronal plasticity. However, by themselves,
molecules cannot provide a detailed explanation of behavior
without consideration of neural networks. "The take-home
lesson from the two studies discussed here is that knowledge
of the key molecular players does not provide a short cut to
understanding memory and cognition".[42] This conclusion
can be attributed to other organisms and behaviors.

Thus, the organism can change its phenotype in response to
changes in the environment (phenotypic plasticity). If we
consider behavior, the special case of this phenotypic plas-
ticity can be considered as neuroplasticity, changes in con-
nections between neurons as well as the strength of synaptic
contacts (synaptic plasticity) under the influence of experi-
ence. Many of the mechanisms of synaptic plasticity are

common in vertebrates and invertebrates.[42]

Noble[43] examined the relationship between different levels
of causality in the cell. In his view, the genes do not rep-
resent a program because many properties of the organism
(cells) can be realized only at the higher systems level.

Questions about the relationship between genes and behav-
ior (in particular, the acquisition of knowledge) are the prin-
cipal problems addressed in this article. To what extent can
we speak about the behavior program in relation to the ani-
mal? We consider these questions in more detail.

We first discuss the question of what can be called a pro-
gram. Of course, in the context of this problem, we are not
considering a program written in a computer language. The
term "program" should be understood to be any sequence of
actions, written in any language, that with the given initial
data and other things being equal, the external conditions
lead to the same result. We must keep in mind that calcula-
tion errors are a natural consequence of any program (com-
puter or based on other principles of calculations). In this
sense, any physical process described by the equations, e.g.,
based on the conservation laws, can be considered by the
program. We also emphasize that the program need not be
linear (the flow of information goes in one direction only -
from the input to the result). In many cases (living and tech-
nical systems), there are complex program structures, and
under certain conditions, the programs can run in a com-
pletely different way. To understand the program as a math-
ematical expression pattern, we use the principle of deter-
minism as a basis for modeling systems.

The principle of determinism in this case can be understood
to be a regular behavior for the same external conditions.
This natural behavior occurs in animals (including the case
of learning). In fact, this natural behavior simply coincides
with the scientific method because the basis of science is
repeatability (within errors) of experimental results.

In this sense, the plasticity of neural systems, phenotype
and behavior means only one thing: there must be a reg-
ularity of system behavior at the molecular level. Under the
same external conditions and neuronal states, certain con-
nections between adjacent neurons, strengthening of certain
synapses, specific phenotype, and behavior, among others,
are formed.

Data on neuroplasticity (synaptic plasticity) are often inter-
preted to mean that the synaptic contacts and, therefore, the
entire nervous system should be able to adapt to arbitrary
situations. The plasticity acts in some sense as a basis for
receiving knowledge about the environment. However, this
statement is incorrect because obtaining information from
the environment at the stage of recognition (at the molec-
ular level or above) is still inevitable. If the neuron (or a
set of them) has no a priori molecular response to a certain
reaction, then the answer that follows is not necessarily ap-
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propriate. Moreover, the presence of an unknown substance
(or just a new conformation of a known substance) is likely
to lead the network of molecular reactions to chaos.

Thus, the plasticity of the organism in all its forms (pheno-
typic, synaptic, etc.) is the least complicated but, neverthe-
less, is also the set of aprioristic programs. Only in this way
can the system provide an adequate response to an external
signal.

Another question here is how much of this information is
needed for the formation of such a complex plasticity and
where the information originates. We must separate two es-
sentially different processes: morphogenesis (ontogenesis)
and learning. We will consider the second process, meaning
that the organism is already formed. Consideration of the
mechanisms of morphogenesis (ontogenesis) is beyond the
scope of this article.

Another objection to the analogy between the brain and
a computer program is a famous thought experiment by
Searle, the Chinese Room. Searle[44] argues that the brain’s
mind (especially the human mind) is not a computer pro-
gram because a computer does not understand what is it do-
ing, but the brain does. If some instructions that we receive
are written in a language foreign to us, then we do not un-
derstand what we are doing if we run them. However, such
a statement is incorrect because it implicitly assumes that
the computer does not recognize the images but only clus-
ters them (see above). In this sense, the "understanding" (for
living or technical systems) does not require anything other
than recognition. This operation can certainly be performed
by a computer. If we consider a living system or a com-
puter in terms of language, the "understanding" of a word
corresponds to the notion of "semantics." However, for the
internal computer language, it is clear that all words have
recognized meanings. For each word, certain action is per-
missible. Such a language exists at all levels of biological
organization, including the molecular level.[45]

In general (especially for a man), "understanding" is a more
general term than "recognition", because the analyzed ob-
ject is always in some context (cultural, historical, etc.).
However, if we consider the "understanding" in the narrower
sense of the word (understanding leads to an adequate so-
lution of the problem), in this approximation we can con-
sider "understanding" and "recognition" as the same term.
Thus, both the processes of recognition ("understanding")
and clustering can occur in living and technical systems that
are based on computer programs.

The relationship between the brain and mind (mind-body
problem) is an unsolved question. A mind is the set of
cognitive faculties that enables consciousness, perception,
thinking, judgement, and memory - a characteristic of hu-
mans, but which also may apply to other life forms. Whether
the mind is somehow separate from physical existence, de-
riving from and reducible to physical phenomena, such as

neurological processes, or whether the mind is identical
with the brain or some activity of the brain? The mind–body
problem in philosophy examines the relationship between
mind and matter, and, in particular, the relationship between
consciousness and the brain.

Because changes within the organism and its interactions
with the environment are crucial when considering knowl-
edge acquisition and learning, these interactions should be
defined more strictly. For the processes of knowledge acqui-
sition and learning, the interaction of the organism and envi-
ronment must be performed only through recognition. The
organism obtains all the information about the environment
through its senses. Furthermore, this information is subject
to recognition, after which the organism decides what to do
in the current situation. However, in principle, an organism
can interact with the environment in another way - prepara-
tion. The structure of the system can be directly changed by
acting on it from the outside (not through the senses). This
method is widely used in engineering systems: for example,
a computer user has the ability to replace any part of a sys-
tem, which creates a different system. However, this method
is not related to learning and knowledge acquisition (as in
this case another system learns); in addition, this method
does not occur in living systems. Thus, the preparation of
the system will not be considered further.

As a rule, the ability of animals and humans to form
concepts, generalize, and adapt to arbitrary environments,
among others, are ascribed to higher forms of learning.
These properties are often associated with the concept of
"intelligence." Researchers believe that animals and human
beings are capable of this type of learning.

We associate higher forms of behavior to the acquisition of
knowledge (see above). We assume that for such behavior,
innate programs are not sufficient. In this case, a more rig-
orous mathematical treatment of this behavior will be given
below.

Thus, accounting for what we discussed about the learning
of animals and the behavior of artificial intelligent systems,
we can distinguish two classes of behavior (see Table 1):

Table 1: Two classes of behavior
 

 

Behavior based on innate 

programs (А) 

Behavior with knowledge 

acquisition (В) 

Includes conditional and 
unconditional reflexes, as well as 

the simplest forms of learning 

Includes learning experiences 
(interactions with other animals), as 

well as the logical conclusion of 
new concepts 

An animal (Intelligent system) 
meets a recognized object. This is 

accompanied by the running of 
innate programs. An unrecog- 

nized object can only trigger 
innate programs. An adequate 
response to the unrecognized 

object is impossible. 

An animal (Intelligent system) 

meets an unrecognized object and 
begins to respond to it adequately 

as a result of the acquisition of 
knowledge.  
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Let us consider a formal mathematical model of the behav-
ior of type B and show that this behavior is either reduced
to A or is logically inconsistent.

4 The knowledge acquisition paradox and
hypothesis on instinctive behavior

4.1 The knowledge acquisition paradox and No
Free Lunch Theorem

We formally consider the situation in which the organism
meets a new unrecognized object and show that adequate
behavior in this case (type B behavior) is contradictory.

The object in the field of view of the organism (artificial
systems) is not recognized. Therefore, for an adequate re-
sponse to this situation, the organism (system) should have
algorithms to adequately respond to the uncertainty of a situ-
ation in advance. There must be an algorithm that is optimal
(in a certain a priori sense) for all tasks.

However, the No Free Lunch Theorem claims that such an
algorithm is impossible. During the 1990s, the No Free
Lunch Theorems for the processes of search and optimiza-
tion were proven.[46] The essence of the No Free Lunch
Theorem is that there can be no universal algorithm that is
effective for all functions.

The optimization problem is the basis of any decision mak-
ing task. In any case, people (animals) seek the optimal so-
lution. However, there are limitations for optimization. One
of these basic results is the NFLT. The problem of search
and optimization, according to Ref.46, can be described us-
ing the fundamental matrix, whose columns are problems
that need to be optimized and the strings are optimization
strategies.

The essence of this theorem is that there is no optimization
procedure that gives the best solution for all problems or
even all of the examples of the particular problem. An ex-
ample is the HOT (highly optimized tolerance) - the theory
of complex systems which states that the system resistant
to one disturbance can be fragile with respect to the others.
There are many applications of NFLT to security, complex-
ity, optimization, etc.[47]

Theorem establishes an equivalent level of optimization of
algorithms by averaging the results of all problems. We can
say that it is a black box optimization, i.e., "Optimization
scenarios where one does not know the objective / fitness
function to be optimized, but can only work with samples of
that function".[47]

In particular, for optimization aprioristic knowledge plays a
key role:[48]

If we have no prior knowledge about the prob-
lem (column) we are trying to optimize, then
we must assume that all problems (columns)

are equally likely, in which case, we cannot a
priori expect any strategy (row) to perform any
better than any other.

In other words, "there exists no strategy (regardless of its so-
phistication) that can outperform all others on all problems,
or even on all instances of a particular problem, i.e., uni-
versal optimizers are impossible. Even humans, who some-
times seem to be capable of universal problem solving, are
bound by the No Free Lunch Theorem".

The connection between the No Free Lunch Theorem and
the problem of knowledge acquisition was described in an
article.[49] In Ref.49, the author noted that if there was a
universal algorithm for the acquisition of valuable new in-
formation, then this algorithm would contradict the No Free
Lunch Theorem. The algorithm for the acquisition of new
information could only work if the type of information the
system encounters is known a priori. However, if the in-
formation is known, then this information is not new and is
thus included in the system structure.

This contradiction was formulated by Melkikh[50] earlier as
the knowledge acquisition paradox. This paradox is the fol-
lowing:

If the information (image) is new, then it cannot be valuable
(cannot be used) because it is not recognized. If the infor-
mation (image) is recognized, the system has an etalon for
it (which existed prior to its presentation), and, therefore,
the information is not new. In both cases, the acquisition of
knowledge does not occur. In this case, can the organism
(artificial system) receive something new and useful? The
scheme of recognition for this case is shown in Figure 1.

Figure 1: Scheme of the knowledge acquisition paradox.
Receptor – is a device by which the system receives
information about the environment; signal – is a physical
change in the environment that is registered by receptor;
etalon – is a standard with which the signal is compared
when it is detected; recycle bin - is the storage of
unnecessary information.

Melkikh[50] also considered a possible algorithm for creat-
ing new etalons for unrecognized images so that the system
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could perform adequate actions. This algorithm cannot be-
gin its work because for this it needs to know a priori to
which class an analyzed object belongs. This fact contra-
dicts the original assertion that the object is not recognized.

We need a formal mathematical formulation of the paradox.
However, we also need to find a connection between this
paradox and the random search method, which is widely
used in learning systems. Will the paradox retain its mean-
ing in this case? This question will be considered below.

To prove the inconsistency of adjustment to an unrecognized
situation, we construct a mathematical model of the process.
Regardless of the nature of the processes, all of them can be
divided into two classes: random and deterministic. Com-
binations of these two classes also exist. We consider deter-
ministic processes in this section, and the role of stochastic
processes in knowledge acquisition is discussed in section
5.

Consider the system (see Figure 2) with the following prop-
erties:

Figure 2: Scheme of the system structure

Property 1: The system contains internal independent
objects (words of the language) Q1 · · ·Qn. Operations
P1 · · ·Pm on objects are possible. Operations of new ob-
jects (operations) creation are not defined.

Property 2: The system has a receptor, which receives in-
formation about the state of the environment. The receptor
is capable of detecting objects q1 · · · qm. In this case, the op-
erations p1 · · · pk can be performed on the objects. The re-
ceiving signal is compared with the internal objects present
in the system (pattern recognition). The system compares
the internal and external objects of the language. Mathe-
matically, this comparison can be expressed in the form of
equivalence (equality) of any internal object to some of the
external objects.

Property 3: As a result of recognition (matching), some
of the internal operations on objects trigger effectors; the
system acts on the external environment. Every action is
evaluated with the function Φl(Qi, Pi) (gain). This value is

greater when the system is more successful. Without loss of
generality, we can assume that the system is designed so that
there is a maximum condition: Φl(Qi, Pi)→ max. The no-
tion of "equivalence" is closely connected with the gain and
represents adequate reflection of reality.

Property 4: The system has limited memory, which can
store the results of previous measurements or intermediate
operations.

As mentioned above, the operation of "preparation" will not
be considered in the context of this problem. In this case,
"preparation" refers to a physical effect on the organism
(system) from the outside; as a result of this effect, objects
and operations can be edited (deleted or created) (the sys-
tem’s physical structure may be changed). However, first,
the operation can only be performed by another organism
(system); second, this operation does not refer to the ac-
quisition of knowledge (we need to consider the problem
of learning in the larger system, including external system),
and third, for living systems these operations are not known.

We must emphasize that the class of systems considered is
very broad. This class includes both living and non-living
systems. Indeed, any control system (even a non-intellectual
system) uses this principle when receiving data. To further
work with these data, the system should compare some ref-
erence value to the measured value. This is how all living
organisms operate.

We consider the situation in which an image can be regis-
tered (measured) but not recognized. The system has no a
priori information about the image.

Then recognition scheme can be depicted as follows (see
Figure 3):

Figure 3: The recognition scheme

Let the image Ω appear to the organism (system) with the
properties 1-4, which can be described in terms of the ex-
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ternal language of receptors (registered). However, no ob-
jects from the internal language are relevant (in the sense
of equivalence) to external language objects, corresponding
to this image. Then, the effector cannot perform operations
and activities that would lead to the system obtaining a cer-
tain gain (payoff).

On the contrary, suppose that a universal translator from one
language to another exists, which can work with an unrec-
ognized image. However, in this case, this algorithm cannot
be run because condition to run it cannot be formulated.

Suppose that the operation of supplementing the list of op-
erations and objects with external alphabet phrases exists.
However, this operation is controversial because it can be
only performed if an external alphabet is part of the internal
alphabet. If the phrase is part of the internal alphabet, the
registered object is thus recognized, which contradicts the
initial claim.

From the point of view of pattern recognition and decision-
making, the next version of the statement is controversial:
"to create a new standard requires a new standard." If the
image does not correspond to the internal standard, the sys-
tem must create a new standard to make an adequate deci-
sion. However, its creation is self-contradictory because the
algorithm that creates the standards must know them in ad-
vance. The following table summarizes the problem state-
ment for the acquisition of knowledge in different branches
of science.
Table 2: Knowledge acquisition problem

 

 

 Recognition Automata Language 

Properties of 

the system 

System has 

etalons 

Automaton with 

equations is given 

Language 

with rules 
exists 

Definition of 

knowledge 
acquisition 

Adequate 
reaction to an 

unrecognized 
image  

A priori 
determined gain in 

an arbitrary 
situation 

Inference of 
new concepts 

that have 
semantic 

meanings  

Contradiction 

of knowledge 
acquisition  

An algorithm 
that creates 
new etalons is 

contradictory 
because it 

cannot start 
work  

In the equation of 

state, this gain is 
not defined. 
Change in the 

equation of state is 
also not defined 

(change of 
structure cannot be 

written in it) 

In an 

axiomatic 
system of 

language, 
creating new 

concepts is not 
defined  

 

 
Thus, based on logical analysis of the recognition and
decision-making by the system (organism), we reach the
following conclusion: all programs of behavior can only
be based on a priori defined internal objects and operations
on these objects. Only innate behavior programs of living
systems or a priori programs for technical systems are con-
sistent. In turn, a system cannot acquire knowledge in the
above sense (the synthesis of new behavior programs).

4.2 Knowledge acquisition and learning automata

M. L. Tsetlin was a founder of adaptive behavior modeling.
He proposed to simulate the behavior of organisms based on
the formalism of finite automata and coined the term "adap-
tive automaton".[51] A mathematical model of an adaptive
automaton can be represented as follows:

• an automaton represents an object, capable in each
time t = 1, 2, · · · to receive a limited quantity of sig-
nals S ∈ (S1, S2, · · · , SN ) and change depending on
its internal state;

• an automaton can produce a limited quantity of ac-
tions f ∈ (f1, f2, · · · , fK). The choice of action is
determined by the internal state of the automaton;

• an automaton has a limited quantity of internal states
ϕ ∈ (ϕ1, ϕ2, · · · , ϕm), where m is the memory ca-
pacity of the automaton.

It is assumed that the automaton is in some environment and
that actions cause the automaton responses s for medium
C. These reactions, in turn, are inputs to the automaton be-
cause the automaton uses these signals to decide on further
actions. The simplest case is when all possible reactions
of the environment are perceived by the automaton as be-
longing to one of two classes, the gain (s = 0) or loss (s =
1). The appropriateness of the behavior of the automaton
in some environment is to increase the number of favorable
responses and to decrease the number of adverse responses.

The dynamics of the automaton are given by the equation
f(t) = F (ϕ(t)) indicating the dependence of its action
on its state ϕ(t) and stochastic matrix ‖aij(s)‖, i, j =
1, 2, · · · ,m, aij(s) is equal to the probability of transition
from state ϕ(t) = ϕi to state ϕ(t + 1) = ϕj under the
influence of the input s(t+ 1).

Determinate automata matrices ‖aij(s)‖ consist of zeros
and units. For two signals 0 and 1, it is enough to deter-
mine two such matrices, ‖aij(0)‖ and ‖aij(1)‖.

In a stationary random environment, we can determine the
expected value of a payoff, which is a measure of expedi-
ence of the behavior of the automaton.

The canonical equations for a deterministic automaton are
as follows:

ϕ(t+ 1) = Φ(ϕ(t), s(t+ 1)), f(t) = F (ϕ(t))

The first equation describes the change in the state of the au-
tomaton under the influence of the input variable s. The sec-
ond equation describes the dependence of the actions of the
automaton on its state. With respect to the behavior of the
organisms, the first equation can be compared with changing
of the nervous system (brain) of the organism under the in-
fluence of the information it receives from the environment.
The meaning of the second equation is the modification of
the behavior of the organism depending on its internal state.
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A stochastic automaton also has a finite number of states
and a finite number of actions. Actions of the stochastic au-
tomaton are fully determined by its state f(t) = F (ϕ(t))
and the state matrix ‖aij(s)‖ is stochastic, whereas aij(s)
is the probability of transition from the i-th state to the j-th
state at a given input variable s. It is obvious that determin-
istic automata are special cases of stochastic automata.

A Markov chain describes the operation of the automaton in
a stationary random environment.

The expected value W (Ω, C) of a payoff for automaton Ω
in a random environment C is determined as the average of
single payoffs. It is believed that the automaton has the ap-
propriate behavior in environment C if the expected value of
the payoff is larger than the payoff it will receive if it per-
forms actions with equal probability regardless of the envi-
ronmental states.

The simplest example of an adaptive strategy discussed in
Ref.51 is that the automaton maintains the action at a payoff
and changes the action at a loss. As a result of this strategy,
the average payoff of the automaton increases.

Varshavskii and Vorontsova[52] studied the behavior of
stochastic automata with changing structures. Initially, the
behavior of these automata is not appropriate, but upon
receiving environmental reactions, these automata change
their matrices and, consequently, the appropriateness of
their behavior increases.

The structure of the automaton is given by the ma-
trix ‖aij(s)‖ that defines the state transitions ϕ(t) ∈
(ϕ1, ϕ2, · · · , ϕm) for this or any other value of the input
variable s, and the equations f(t) = F (ϕ(t)) define the ac-
tion of the automaton depending on its condition.

In this case, the matrix of the state varies depending on the
values of the input variable. Mechanisms for these changes
may be different, but the state chosen from fixed and a priori
defined sets of states is common. Completion of these sets
through any mechanism is not determined. Accordingly, ac-
tions are also chosen from the set of possible actions. This
behavior occurs when we are dealing with computer pro-
grams: it is only possible to choose the program of behavior
from a priori existing programs.

In addition, if we consider that the automaton is found with
a new situation that is a new feature of the environment, it
is impossible to assert that the expectation of its payoff will
be greater than any aprioristic value. Any gain from a par-
ticular action will significantly depend on information re-
garding the environment that is received by the automaton.
Therefore, for unrecognized objects, gain cannot be deter-
mined, and it is impossible to draw any conclusion about
the evidential effect of the new image on the behavior of the
automaton.

What if this happens? Could an automaton acquire new
knowledge?

The foregoing implies that to solve the problem of knowl-
edge acquisition, the model of adaptive automata requires
clarification.

Learning automata represent a further development of the
concept of adaptive automata.[16, 18] In general, an advan-
tage of modeling learning using the theory of automata is
that the structure and operation of the automaton is com-
pletely defined mathematically. Challenges to the idea of
learning in relation to automata are definitely not associated
with the acquisition of knowledge. Indeed, because the state
of the automaton and its internal alphabet are completely
axiomatically (a priori) defined and not subject to comple-
tion or revision because the appropriate mechanisms are not
provided, the acquisition of new knowledge in this system
is impossible. The typical behavior of this automaton can
be characterized as an adaptation to random environments.
This applies to automata with variable structure[52] because
the changes apply only to the probabilities of various transi-
tions and not the structure itself.

To investigate the possibility of artificial systems acquiring
knowledge, we use the language of learning automata[16, 18]

as well as mathematical models of adaptive behavior.[53]

However, as mentioned above, because the learning automa-
ton is fully formalized and the new state is not defined, af-
ter the receiving of an unknown image this automaton will
not work. Therefore, we can unambiguously conclude that
based on the theory of learning, the acquisition of knowl-
edge by automata is impossible. However, because this
problem occurs in the simulation of artificial life, it is nec-
essary to expand the model of the learning automaton.

As an extension of the model, consider the following mech-
anisms by which the structure of the automaton can be
changed: the creation of new actions and states by exter-
nal operations such that it can make another automaton, the
creation of new actions and states for the automaton by a
universal algorithm of knowledge acquisition, and the cre-
ation of new actions and states for the automaton by a ran-
dom search or trial and error.

Based on the above, we consider a formal model for the pro-
cess of knowledge acquisition as follows:

ϕ(t+ 1) = Φ(ϕ(t), s(t+ 1)) (1)

f(t) = F (ϕ(t)) + ξ(t) (2)

s(t) = R(c(t)) (3)

ϕ(k + 1) = Ω(ϕ(t), c(t)) (4)
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ϕ(k + 1) = U(ϕ(t), s(t)) (5)

The first equation describes the change in the state of the
automaton under the influence of the input variable s. Now,
however, the input variable is not a state of the environment
but only the result of its recognition. The second equation
describes the dependence of the actions of the automaton on
its state. In this equation, ξ(t) is a random process.

The third equation describes the process of recognition and
represents the dependence of the input variable on the state
of environment. It may be that for some cases, the value
c=c* (unrecognized image) does not correspond to any
value of s. The fourth equation describes the generation of
new actions by another automaton Ω in a particular situation
that arises in the environment. It is assumed that automaton
Ω has its own structure and recognizes the state of the en-
vironment. For brevity, the equations describing the behav-
ior of automaton Ω have been omitted. The fifth equation
describes the generation of new actions by the automaton
through a universal algorithm.

As a result, at each step the automaton wins Wi which char-
acterizes the adequacy of the automaton, and the automaton
action program is structured to maximize this benefit.

Note that the proposed system of equations is the most com-
mon and does not have any restrictions in the description of
the known behavior of live and artificial systems.

The structure of the automaton is shown schematically in
Figure 4.

Figure 4: Structure of the learning automaton

We now define the acquisition of knowledge in accordance
with the proposed model.

Definition. This will be understood by the acquisition of
knowledge of such a process, followed by the emergence of
an environmentally unrecognized image c*, not including
preparation of the systems and only to provide the system
information regarding the external environment through re-
ceptors, which results in a behavior of the system that is esti-
mated to increase the expectation of winning at some preset

value of W0: W (c∗) > W0.

The assignment of the image to unrecognized objects indi-
cates that there is no prior information about the object.

Consider the first possible mechanism for knowledge ac-
quisition, the existence of a universal algorithm. As noted
above, the existence of a universal algorithm is refuted on
the basis of the No Free Lunch Theorem. Therefore, the ac-
tion ϕk+1 in the mathematical model is not defined, a priori
it does not match the payoff and it is impossible to assume
it will be either adequate or lead to payoffs. If this action
is defined, then the function ϕk+1 pre-exists in a list, which
was not used previously. This option leads us to an automa-
ton with a variable structure similar to that discussed above.
As previously noted, this automaton can learn but cannot
acquire knowledge.

The second possibility of knowledge acquisition by an arti-
ficial organism is related to its preparation or the change of
its structure due to an outside action. This possibility was
considered earlier. For external automata, there is a func-
tion that changes the structure of other automata, and the
conditions for this function and the possibility of newly cre-
ated properties of the automaton are also defined. Does this
partially solve the problem of knowledge acquisition? On
the one hand, as demonstrated earlier, these processes occur
very often in the preparation of computing and intelligent
systems and do not refer to learning, much less to knowl-
edge acquisition. On the other hand, both the automata can
be regarded as a single automaton, and for this single au-
tomaton, we can re-formulate the task of knowledge acqui-
sition. However, the problem in this case is reduced to the
original problem in that consideration of the entire system
only infinitely postpones the problem.

4.3 Hypothesis of innate behavior

Thus, we conclude that new behavior programs will not oc-
cur as a result of learning. The animal cannot adequately
respond to an unrecognized object. This conclusion leads to
the need for a new paradigm of animal behavior. We state
the main ideas of this paradigm:

(1) Innate programs of behavior are formed on the basis
of genes during ontogenesis (morphogenesis).
The process of formation of these programs is not ob-
vious because, for example, in an organism, there is
clearly a discrepancy between the information con-
tained in the genes and complexity of the nervous sys-
tem. However, the modeling of morphogenesis is a
separate problem and is not considered in this paper.

(2) As a result of receptors receiving signals from the en-
vironment, remembering and recognition occur.
Memory of the time or spatial distribution of the sig-
nals used by the organism to run a priori behavior
programs is the most adequate for the observed sit-
uation. If recognition is not possible (the appeared
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image is new), then either no a priori programs start
or the programs that correspond most closely (on the
tree of recognition) to the recognized image are run.

(3) At the presence of uncertainty in the environment or
errors of receptors aprioristic programs run only after
several repetitions.
Repetition can reduce random error in the registration
signal. This situation is largely similar to the decrease
of random error in measurements.

(4) Another response to the uncertainty of the environ-
ment is a trial and error method, which allows the sys-
tem to select the most appropriate aprioristic behavior
program.

(5) An interaction with another organism that transfers
the experience of one organism with the environment
(see items 2-4) to another is only possible if both the
organisms have the same a priori programs relating to
the present situation.

(6) High forms of behavior are contradictory. In partic-
ular, the system cannot create a new concept that is
adequate for the new situation.

(7) All programs of animal behavior are innate. For tech-
nical systems, they are aprioristic programs.

Thus, animal learning caused by uncertainty in the environ-
ment represents the method of choice for the a priori (innate)
program, which is most appropriate for a certain situation.
The new behavior program cannot be formed on the basis of
experience or interaction with other animals.

On the basis of the allegations made, we consider that, para-
doxically, the human (higher animals) is able to adequately
respond to images, which he and his ancestors have never
seen. How could such an ability arise from the process of
evolution? What does this ability represent?

How is this consistent, for example, with statements such
as "monkey learn sign language" (not to mention humans),
etc.? Can we assume that such language is innate? Can we
assume that any human language is innate?

To answer this and other questions, we discuss the features
of items 1-7 of the hypothesis in more detail and consider
possible experiments to verify our claims.

5 Discussion
5.1 Can new behavior programs arise from random

processes?

We have examined the deterministic processes of animal be-
havior and showed that the emergence of new behavior pro-
grams in such processes is contradictory. Now, we consider
random processes and show that the contradiction remains.

We consider algorithms of system actions when the recorded
image is not recognized (see Figure 5). One common algo-

rithm is a random search algorithm, which is widespread in
animal behavior. In the proposed model, an algorithm is
modeled using a random walk in the space of possible sys-
tem structures (automata). However, this raises the question
of how many systems exist, i.e., the dimension of the search
space. If the search space is unbounded, then the solution
could require infinite time. If the space is limited and the
a priori condition of the search is specified, then this pro-
gram can only be aprioristic. During the search among the
possible objects and operations, the set in which the search
is conducted must first be defined. If the search set is not
defined, then the work may be broken during a search of
the system. This result will occur because there will be oc-
casional combinations of system elements in which the re-
sponse to an external signal is inadequate.

The search can occur based on a brute force algorithm or
chance. Randomness, in turn, can be created artificially
(dynamic chaos, random number generator) or have a nat-
ural origin (thermal noise). However, this randomness is
not sufficient. There should be an enumeration algorithm of
system structures (machines); a set of possible system struc-
tures (machines) must be defined. Additionally, there must
be a set of criteria to end the search. This condition may be
either to achieve a predetermined gain or comparison (and
memorizing) of all received gains; the strategy choice cor-
responds to the maximum.

In this case, the behavior is innate. The contradiction of
creating new programs remains regardless of how they were
created (randomly or deterministically). New programs can-
not be created that are proven to be good in some sense. The
variants cannot obtain a guaranteed win (more gain than was
pre-assigned).

This "controlled noise" is of type A behavior.

Figure 5: Unrecognized image processing

We show that with a priori information, the solution lies in
a bounded set. In this case, the system (automaton) does not
perform acquisition of knowledge (behavior of type B), but
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learning (behavior of type A). Moreover, restrictions on the
set, which allow it to enumerate in real time, also mean that,
in this situation, learning, but not the acquisition of knowl-
edge occurs. The application of the trial and error method is
impossible without a property that requires a priori informa-
tion about the object being analyzed. This result contradicts
the definition of knowledge acquisition given above.

To ensure that any restriction of the search area is associ-
ated with a priori information, we use classical information
theory.

We consider the trial and error method as a series of experi-
ments, which will result in finding an adequate algorithm or
the absence of an adequate algorithm. In information the-
ory, the degree of uncertainty of experiment β with possi-
ble outcomes and their probabilities p1, p2 · · · pk is usually
characterized by the Shannon entropy:

H(β) = −
k∑

i=1
pi log2 pi (6)

If this value equals zero, the outcome of the experiment is
known in advance. Any measurement or supervision α prior
to experiment β can limit the quantity of possible experi-
mental outcomes and thus reduce a degree of its uncertainty.
The fact that realization of experiment α reduces a degree of
uncertainty in experiment β is reflected in the fact that the
conditional entropyH(β/α) of experiment β under the con-
dition of α is less than (more precisely – less than or equal
to) the initial entropy of the same experiment. Thus, if ex-
periment β does not depend on α, realization of α does not
reduce the entropy of β:

H(β/α) = H(β) (7)

If the result of α completely predetermines an outcome of
β, the entropy decreases to zero: H(β/α) = 0 . Thus, the
difference

I(α, β) = H(β)−H(β/α) (8)

specifies how much realization of experiment α reduces the
uncertainty of experiment β. This difference represents the
quantity of information in experiment β, which is contained
in experiment α. Here, information (according to the in-
formation theory) is understood as the uncertainty which is
removed when a message is received.

There is an interrelation between the number of experiments
and information received as a result of each experiment. For
example, if the experience is found with an adequate algo-
rithm, each experience corresponds to receiving one bit of
information. Suppose that the system has n degrees of free-
dom, each of which may be in one of m states. If, at the
beginning of the experiment, there is no a priori information
to find an adequate algorithm, then we obtain the average

number of steps required to achieve it, a number equal to
the total number of possible states:

N = mn (9)

If n is sufficiently large, then the number of steps is expo-
nentially large even for m = 2.

The number of steps corresponds to Shannon entropy:

H = log2 N = n log2 m (10)

In this case, each bit of a priori information reduces the
search area in half.

If the number of experiments is reduced by using an algo-
rithm compared to the entire enumeration, the a priori infor-
mation in the system is present. This information should be
included in the algorithm used. In this case, the acquisition
of knowledge is absent because there is a priori information
about the object.

In reply to a question on whether there is a general solu-
tion in this set, we can argue the following in the same way:
without a priori information about the existence of solutions
in this area, no other search method, except brute force, can
exist. In this case, the enumeration will occur in all pos-
sible automata (as permitted by the laws of nature and the
laws on the environment). Naturally, the power of this set is
exponentially large.

As an example, consider the solution to the problem of pass-
word cracking. Imagine that an unrecognized image is a
code (an information sequence). Then, the random search of
code variations (an attempt to break the code), implemented
by the automaton, will correspond to the trial and error
method. This sequence of actions is committed by replacing
letters, which changes the code as follows: AABCFDDD→
AABCFFDD. Any such action will be viewed as an exper-
iment, which makes the automaton. The experiment ends
when the sequence coincides with a target sequence that is
not known in advance. The challenge is to determine the
minimum number of steps required to achieve the first se-
quence and find the optimal search algorithm.

This problem is one of the classic problems of cryptography;
researchers[54] proved that in the absence of a priori infor-
mation, the problem is NP-hard, i.e., the problem requires
an exponentially large number of steps for the solution.

In which case the problem of cracking the password can be
solved using some quicker method (for example, retaining
the correct letters and changing the wrong ones)? Obvi-
ously, this method can be only used if a priori information
about the environment exists (in this case, the sequence). In-
deed, to use this method, the sequence should be prepared
in a special way: there must be a mechanism that defines
whether a letter is "good" or not. This mechanism must exist
for each letter individually, not only for the entire sequence
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as a whole. The enumerating region is significantly limited,
which implies the existence of a priori information about the
environment.

If such a "cumulative search" works under any conditions
(i.e., without any a priori constraints), then the task of crack-
ing the password would not be a NP-hard; in general this
class of problems would not exist. However, the problem
NP 6= P is one of the Millennium problems, and this prob-
lem has still not been solved.[55]

This, of course, does not mean that the trial and error
method is not effective; this method is effective under cer-
tain conditions. The effectiveness of the random-search
method has been proven for automata with variable and
other methods, such as genetic algorithms, swarm intelli-
gence, and Monte Carlo, among others.

Finally, we note that if the trial and error method can be re-
garded as a universal algorithm for knowledge acquisition,
then such a statement contradicts the No Free Lunch Theo-
rem. Thus, for a system (living or artificial), algorithms exist
to gain knowledge using the trial and error method; the al-
gorithm requires a priori information about the environment
in which the machine exists. This result contradicts the def-
inition of knowledge acquisition, which distinguishes this
concept from learning.

If, however, we summarize the results of the analysis of
other algorithms to obtain new knowledge of an organism
(artificial system), we conclude the following: all these al-
gorithms either lead to contradictions or do not lead to ac-
quisition of knowledge (behavior of type B) but instead rep-
resent a type of learning (type A behavior).

Thus, a random search triggered innate programs. The
search only serves to determine which of these programs
is the most suitable for the conditions - this is the essence
and purpose of learning. The search occurs in a small (non-
exponential) number of variants.

Thus, each animal must have an innate program of trial and
error (such as genetic algorithms or other soft computing).
The result of this program will be the ranking of other con-
genital programs according to their relevance to the situa-
tion. Genetic predetermination of the program is confirmed
by experiments.[56]

Although knowledge acquisition is impossible the system
(alive or artificial) can still obtain information as a result of
some its actions. As a result of experience (communication
with the environment), the system receives the information
(or removes uncertainty) that one of the inherent behavior
programs is suitable in this case.

5.2 Randomness and repetition as a method for de-
creasing errors

As noted above, conditioned reflexes and other behaviors of-
ten require the repetition of certain actions. How can we jus-
tify such repetition? Many beneficial programs are created
such that they will only run after some preliminary steps.
The simplest of these actions can be repetition. This rep-
etition is a direct consequence of the uncertainty and error
occurring in the environment.

When modeling animal behavior, researchers usually use
the utility function (fitness).[57, 58] We show that in the sim-
plest case, repetition leads to a reduction of costs.

Errors occur each time the device measures the environ-
ment, leading to the possibility of erroneous recognition.
Therefore, the larger is the measurement error, the smaller is
the fitness Φ (fitness is at a maximum if errors are absent).
We shall label the maximum fitness as Φ0. Then, we can
write the following (if the errors are relatively small):

Φ = Φ0 −∆ (11)

where ∆ is a positive value denoting the decrease of fitness
resulting from a measurement error. From error theory, we
know that random error decreases during repeated measure-
ments as the number of measurements increases (if a sys-
tematic inaccuracy is present, it can be included in the max-
imum fitness). However, each measurement requires energy,
and, therefore, the fitness will decrease. We shall label the
decrease of fitness caused by the energy consumption for
one measurement as ε. Then, we have the following for the
fitness:

Φ = Φ0 − εn−
∆√
n

(12)

where n is the number of measurements.

The factor 1/
√
n appears because of the decrease of the

random error during repeated measurements. This formula
can be written for the case when the measurement time is
small compared to the characteristic behavior time. Alter-
natively, when measurements are slow, the fitness will de-
crease because the organism will not have time to measure
quick changes of the environment.

The fitness (1) may have an extremum with respect to n:

dΦ
dn = −ε− 1

2
∆
n3/2 = 0 (13)

Then, for n, we have:

n = ( ∆
2ε )2/3 (14)

Φ(X,Y ) = Φ0(X,Y )− ε1/3∆1/3( 1
22/3 + 21/3) (15)
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Because the number of measurements is an integer, the ex-
tremum exists only at ∆/ε > 2. Therefore, an organism,
which is in a complicated environment, may find it unfavor-
able to immediately change its behavior as the environment
is altered, but instead might prefer to perform a set of mea-
surements and only then begin to act. In other words, to start
some available programs, an organism should first recognize
its environment and determine the necessary programs.

This behavior explains the fact that, for example, living or-
ganisms form conditioned reflexes most often as a result of
recurrence of an external signal. Thus, repeated measure-
ments of the state of the environment by an organism de-
crease the error during operation of aprioristic programs.

Continual computations and parallel search.

There are other models of computation,[59] such as continual
calculations. The main feature of continual computations is
that the variables of the system are continuous. However,
we can easily show that regardless of the computing model,
NP-hard problems remain. Despite the fact that the continu-
ous systems formally have an infinite number of degrees of
freedom, they do not easily solve complex problems. There
are two cases: 1) a computer system, composed of agents,
each of which is controlled separately or 2) a computer sys-
tem, composed of agents, each of which individually uncon-
trollable.

An example of the second case is a continuous medium
(fluid) or the electrical potential of a cell membrane. In
this case, the system can contain any number of particles
(agents), but the amount of information it can carry is finite.
This fundamental conclusion was made by Shannon.[60] The
same conclusion applies, of course, to the calculations. This
conclusion connects with the fact that a digital signal is nec-
essary at some stage. In this case, ease of transmission and
processing of continuous signals is not due to rapid process-
ing of information (and certainly not with the solution of
NP-hard problems), but rather due to the fact that in some
lines of communication, transmitting these signals is conve-
nient.

The second limiting case (1) means that each agent is able to
perform calculations. Then, a large collection of such agents
will be able to perform parallel computing. However, this
result does not mean that all NP-hard problems are automat-
ically resolved. Unlike the case of (2), each agent must be
properly organized; its behavior should be governed by cer-
tain signals from the outside (it must consume energy, etc.).
In fact, the behavior creates a large computer system. The
larger is the computer system, the harder is the problem to
be solved. For such a system to be able to solve hard prob-
lems (e.g., pattern recognition), the system (as well as any
other computer system) should have standards (etalons). At
the same time, the paradox stated above remains. Moreover,
its formulation does not depend on the specific implementa-
tion of the physics of the computing processes.

Statements by Ivanitskii[61, 62] that the paradox of knowl-
edge acquisition in living systems has a simple solution, are
incorrect. According to Ref.61 and 62, the brain is a bio-
chemical analogous machine, which is based on principles
that are different from the principles of operation of comput-
ers, learning automata and other devices. One of the princi-
ples the author considers is the principle of competition for
resources and energy. The mechanism of neural networks
does not involve enumeration of all possible variants, but is
based on auto-wave principles of the interaction of the col-
lective modes.

However, we note that competition for resources is not a
new principle, peculiar only to living systems. The exis-
tence of such competition by itself does not lead to new log-
ical principles.

Ivanitskii argues that the existence of neuronal clusters -
large dynamic collections of neurons - by themselves can
avoid enumeration of a large number of variants, which au-
tomatically leads to the acquisition of knowledge.

We also note that parallel processing (parallel search) will
only lead to a polynomial reduction in the number of steps
and, therefore, does not solve the problem of searching an
exponentially large space. Indeed, if there are two parallel
working automata, then they can divide the search area in
half. In this case, the average seek time (in the absence of
prior information) will be halved. In the case of k automata,
when using parallel computing to solve the problem, the av-
erage time of its solution will be k times smaller than the
time for one automaton. Because the number of automata
participating in the parallel solution is always a polynomial
(the number of neurons, the number of processors), then we
can easily see that such a parallel solution will not lead to
significant progress in the case of exponentially large num-
bers that characterize the search space.

5.3 Social learning, intelligence and knowledge ac-
quisition

Social learning is often considered separately because of its
complexity and importance to complex communities. So-
cial learning is often considered an important part of the
learning experience as a transfer from parent to offspring.[5]

Numerous experimental data confirm this conclusion. How-
ever, in terms of the problem addressed in this article, social
learning is not fundamentally different from other types of
learning. We consider the case when an organism receives
new information from its parents or other animals. Can the
organism adapt itself to new conditions in this case? Con-
sidering what has been said above, the answer is no.

Importantly, we note that in this case, the organism also re-
ceives information via receptors. Therefore, any other or-
ganism (a member of the flock, the parent, etc.) is inter-
preted to be part of the environment. Consequently, the
aforementioned scheme measurement - recognition – deci-
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sion making holds. Whichever actions the parent makes,
they can be adequately interpreted only in one case: when
the signal has been recognized (compared with a standard
sample). In turn, this comparison is only possible if the stan-
dard sample has already been available in the organism (has
been congenital).

What is the role of the experience transfer between animals?
This role obviously reduces to triggering of aprioristic (con-
genital) behavior programs. Indeed, if the environment has
uncertainties, an important question is which programs to
start. The start of behavior programs that are not adequate to
changes in the environment can be catastrophic for an organ-
ism. Thus, social learning allows ranking of innate behavior
programs for their relevance in the social environment.

Note also that "supervised learning" in animals is funda-
mentally different from the "supervised learning" in neural
networks. The difference is that a neural network "teacher"
has the ability to prepare the system (that is, to set the con-
nections weights between neurons form the outside), and
for animals it is impossible. All acts of the "teachers" can
be perceived only through pattern recognition.

The analysis of human learning is a separate problem, but
analysis based on formal rules does not change the inconsis-
tency of knowledge acquisition. Various researchers[63–65])
have suggested that some of the concepts of human lan-
guage are congenital. In this case, however, the formation
mechanism of the remaining concepts is unclear.

For humans, we often use the term "intelligence" to differ-
entiate from the cognitive abilities of animals. However, we
need a more precise definition of intelligence. If we asso-
ciate intelligence with the notion of self, "I", or other in-
ternal characteristics, the definition is almost untestable and
subjective. Arranging an experiment to confirm the feeling
of "I" in animals is difficult. The concept of "intelligence"
is the ability to logically link acquired knowledge. Some
derivatives of this ability include the ability to create new
concepts and the ability to respond adequately to the new
environment. However, the algorithm of creating new con-
cepts can only work if this new concept is defined a priori.
Accordingly, we need to discuss the formation of concepts
and the fact that these aprioristic concepts are effective un-
der certain conditions. "Intelligence" in this situation means
many a priori programs are adapted to essentially different
situations.

5.4 Where innate programs of behavior can stored?

The paradox is not due to the conjecture that all behavior
programs are innate (though this statement is also important
and requires special consideration). Above all, the paradox
arises when considering where to store innate (a priori) in-
formation. If there were a universal algorithm for knowl-
edge acquisition, storage in relatively short information se-
quences, such as genes, would be possible. If (as shown

above), there is no such algorithm, the data should be stored
in the genes (or their analogs in artificial systems). How-
ever, the information capacity of genes is not sufficiently
large. This result is particularly evident for higher animals
and humans, whose genome sizes are approximately of the
order of 109 bits. Attempts to construct artificial systems
that can navigate in a complex situation (recognize patterns
and make decisions) show that this system requires a mem-
ory size many orders of magnitude larger. For example, hu-
mans and animals freely operate visual images for computer
processing, which would require many megabytes of mem-
ory.

How can we resolve the paradox of too much innate infor-
mation?

We can assume that living systems have a large amount of
hidden innate information not related to genes. One such
opportunity for the storage of large amounts of informa-
tion is provided by quantum mechanics. As is well known
the quantum particles that represent q-bits can store more
information than their classical analogs. The main prop-
erty of q-bit is that it may exist not only in one of its two
states, but also in both of them simultaneously. This prop-
erty allows for the parallel operations that are used in quan-
tum computers. Can quantum entanglement characterize bi-
ologically important molecules (proteins, DNA, RNA)? A
number of papers are devoted to this subject. For example,
Davies[66] examined the role of quantum mechanics in life
processes. In particular, Davies noted that the uncertainty
principle limits the precision of a quantum clock (Wigner
inequality). The same logic can be applied to the process of
protein folding. The experimental dependence of folding on
the length of the protein is consistent with the theoretically
derived dependence. Some articles suggest quantum models
of intracellular metabolism,[67] intracellular processes and
storage.[68, 69] Models of quantum information processing
in neurons[70, 71] are also presented.

A number of scientists believe that the possible quantum be-
havior of biologically important molecules allows us to dis-
cuss the quantum basis of intelligence.[72–74]

If the proteins within cells are in entangled states and this
state can be maintained for a long time by some mecha-
nism (which can be tested experimentally), this quantum en-
tanglement can serve as an important information resource
for the organization of animal behavior. This additional
resource can solve the paradox of the large amount of in-
herent information that is necessary for the implementation
of innate behavior programs. Therefore, information can
be stored in the entangled quantum states of proteins and
not primarily in genes where there is not enough space.
From the point of view of language, this information repre-
sents a large and hidden portion of the overall information.
Thus, there are no controversies when some properties of
the higher levels of the system are not related to the prop-
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erties of the lower levels of the system. Some authors[43]

use the term "system properties" or “emergent”, but during
the ontogenesis of an organism, all properties need to be
determined. When the physical transition from a molecu-
lar to macroscopic system or organism occurs, the transition
properties of the organism at higher levels must be a conse-
quence of the properties of the lower levels.

Based on the theory of dynamical systems, any measure-
ment is always associated with irreversibility and random-
ness. By contrast, the Copenhagen interpretation of quan-
tum mechanics, associate collapse of the wave function with
measurement, such as the interaction of a quantum particle
with a macroscopic device. However, the definition of the
“device” is uncertain; therefore, it would be logical to as-
sociate the ideas of "device" and "measurement" with irre-
versibility and chaos. Then, the situation in which the wave
function collapses becomes quite certain.

Melkikh[75, 76] proposed that some of the coherent (charac-
terized by a wave function, which is the solution of the
Schrödinger equation) quantum states of the intracellular
molecules are abnormally stable. “It can be assumed that
the structure of biological molecules involves additional se-
lection rules for quantum particles, which significantly slow
decoherence. It is possible that coherent quantum states and
entanglement of quantum states arise even in the synthesis
of proteins (and DNA and RNA) and are then stored and
maintained at the expense of non-local interactions”.

In terms of the issues addressed in this study, it can be
assumed that the properties of biological molecules are
as follows: the quantum states of biologically important
molecules, such as proteins in neurons, can store an expo-
nentially large amount of information.

Therefore, the information contained in DNA that is neces-
sary for protein synthesis may be much less than that con-
tained in its entangled quantum states. We can say that this
information is a library that is used for problem solving.

However, the question is, from where do these quantum
states for animal behaviors arise? Currently, the answer to
this question cannot be obtained experimentally, but it can
be assumed that the structure of proteins, which is due to
the properties of the electrons in the atoms, already contains
the information. The idea of the special properties of el-
ementary particles has been discussed previously (see, for
example, the anthropic principle[74]).

5.5 Possible experiments to test the hypothesis on
innate behavior programs

Is it possible to design an experiment to obtain a definitive
answer to the question of whether all programs of behavior
are innate?

As noted above,[78] current experiments cannot accurately
identify the chain of elementary events that occur during

progression from genes to behavior. This is due to the com-
plexity of living systems and the fact that it is difficult to
perform a non-invasive experiment on the organism and re-
ceive enough information.

To understand whether the organism is obtaining something
novel, data are needed regarding as to what is innate and
what is not with respect to the organism. However, this
is not a trivial matter because inherent information cannot
manifest itself under certain influences. For example, when
we work with computers, we know that certain programs
manifest themselves or run only under very specific con-
ditions. It is now recognized that the relationship between
genes and behavior is complex. There is a significant dif-
ference between the statement "as a result of switching off
this gene, certain types of behavior disappear (modified)"
and the statement "the gene contains the entire program nec-
essary to implement this type of behavior." The first state-
ment can be verified relatively easily, although difficulties
can arise.[78] Experiments to test the second statement are
quite complex but possible in principle.

What experimental requirements are necessary to identify
the presence of innate behavior programs? Obviously, such
an experiment would allow us to follow the entire decision-
making chain at the molecular level such that a change in
the environment→ recognition process→ decision-making
→ appropriate action. The most valuable experiment is one
that would reveal the appropriate response of the animal to
a stimulus that was not adjusted either during past genera-
tions or over the course of evolution. Therefore, it is neces-
sary to artificially create a new situation that is unpredictable
from the point of view of the animal. This primarily refers
to a rapidly changing environment, which is related to the
evolution of society, ecosystems, and technology during re-
cent decades and centuries. For example, an appropriate re-
sponse of the animal to synthetic chemicals, which did not
previously exist in nature, may occur. Additionally, training
a higher animal in properties of human behavior and prob-
lem solving may also occur. It is necessary to identify the
response of each neuron and, if possible, to resolve all the
reactions, including changes in the proteins.

Another direction for experimental research is to determine
where large amounts of information that are required for
complex behaviors, such as the recognition of complex im-
ages and smells, are stored. This can be accomplished by
identifying the molecular structures of the decision-making
chain.

Therefore, the purpose of these experiments is to simultane-
ously measure the states of the proteins involved in learning
and decision making.

Experimental methods for the identification of molecular
changes that occur in the nervous system include lumines-
cence and X-ray analysis. Currently, luminescence is widely
used to determine the state and position of macromolecules,
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such as proteins. In this case, the problem lies in record-
ing the state of many proteins in many cells simultaneously,
such as during the formation of new synaptic contacts. This
is a technically challenging but feasible task.

X-ray analysis techniques, (such as X-ray Free Electron
Laser) are advantageous because they can provide high reso-
lution up to a single atom. Identifying the position of a large
number of atoms or molecules is also difficult but feasible
in principle.

The use of such methods will allow for the development of
neurogenetics analyses at the atomic level. What conclu-
sions can be drawn from these experiments?

First, we will obtain an understanding of the ability of each
organism to adapt to the environment. Second, for areas
such as synthetic biology and artificial life, it is important to
understand the general laws of artificial systems that allow
these systems to adapt to unforeseen circumstances. There-
fore, our principle conclusion is that is impossible to create
a self-learning synthetic system. With respect to artificial
life, this suggests that the behavior programs of these or-
ganisms can only be aprioristic or previously created. Third,
our conclusion imposes restrictions on a wide range of intel-
ligent systems that are used in various fields of engineering
and human activities.

6 Conclusions
A model of learning in animals that is based on the neuroge-
netics of behavior and on the theory of complexity and pat-
tern recognition is proposed in this study, and we also con-
sider the analogy between artificial intelligence algorithms
and the properties of living systems. Pavlovian condition-

ing that is related to the task of clustering is demonstrated.
Additionally, we show that Pavlovian conditioning can be
implemented in the absence of the recognition of new ob-
jects. However, more complex forms of learning are con-
tradictory, and the paradox of learning is formulated, which
has the following double meaning: higher animals and hu-
mans can adequately respond to a situation that could not
be innately programmed, but general algorithms to adapt to
unknown situations are contradictory, and if these new sit-
uations exist as innate programs, it is unclear where such
programs can be stored due to the huge amount of informa-
tion required for these programs.

Therefore, a large part of behavior, such as learning by trial
and error, is consistently explained by innate programs. An-
other aspect of behavior, such as the creation of concepts
and insight, is usually explained by abstract learning abil-
ities. However, these abilities are contradictory. The pro-
posed hypothesis is that this aspect of behavior is also based
on innate programs. In both cases, however, there is a prob-
lem regarding storage of the large amount of information
that is required for these behaviors.

An important conclusion for synthetic biology and artificial
intelligence is that it is impossible to build a self-learning ar-
tificial organism or intelligent system. The hypothesis that
animal behavior is based on innate behavior programs is
proposed in this study. The quantum entanglement states
of proteins may allow for coding, which allows for the stor-
age of much more information. This information will be a
hidden part of the internal language, and structures within
these states may be inherent, which is a consequence of the
structure of the atoms and molecules. Experiments to test
these hypotheses are also proposed.

References

[1] Waddell S, Quinn WG. Flies, genes, and learning. Ann Rev Neu-
rosci. 2001; 24: 1283-309. PMid:11520934 http://dx.doi.org
/10.1146/annurev.neuro.24.1.1283

[2] Wiener N. Cybernetics or Control and Communication in the Ani-
mal and the Machine. MIT Press; 1948.

[3] Bloch E, Cardon S, Iberall A, Jacobowitz D, Kornacker K, Lipetz
L, McCulloch W, Urquhart J, Weinberg M, Yates F. Introduction in
biological systems science. NASA, Washington; 1971.

[4] Anokhin PK. Biology and neurophysiology of the conditioned reflex
and its role in adaptive behavior. Pergamon Press, New York; 1974.

[5] Shettleworth SJ. Cognition, Evolution, and Behavior (2nd Ed). Ox-
ford Univ. Press; 2010.

[6] Thorpe WH. Learning and instinct in animals, 2nd edn, Methuen,
London; 1963.

[7] Meyer J-A, Wilson SW. (Eds) From animals to animats. Proceed-
ings of the First International Conference on Simulation of Adap-
tive Behavior. The MIT Press: Cambridge, Massachusetts, London,
England; 1990.

[8] Donnart JY, Meyer JA. Learning Reactive and Planning Rules in
a Motivationally Autonomous Animat. IEEE Transactions on Sys-
tems, Man, and Cybernetics - Part B: Cybernetics. 1996; 26(3):
381-395. PMid:18263041 http://dx.doi.org/10.1109/3477.
499790

[9] Tsitolovsky LE. A model of motivation with chaotic neuronal dy-
namics. Journal of Biological Systems. 1997; 5(2): 301-323. http:
//dx.doi.org/10.1142/S0218339097000199

[10] Edelman G. Neural Darwinism. Oxford University Press, New York;
1989.

[11] Edelman G, Tononi G. Consciousness. How matter becomes imagi-
nation. Penguin Books, London; 2000.

[12] Maninng A, Dawkins MS. Animal Behavior. 5-th Edition. Cam-
bridge University Press; 1998.

[13] Bloom FE, Lazerson A, Hofstadter L. Brain, mind, and behavior.
Freeman, New York; 1988.

[14] Simon HA. Why should machines learn? In RS Michalski, J CRar-
bonell, TM Mitchell(Eds), Machine learning: an artificial intelli-
gence approach. San Mateo: Morgan Kauffmann; 1983.

[15] Nadin M. Not everything we know we learned. In M. Butz et al.
(Eds.): Anticipatory Behavior in Adaptive Learning Systems. Foun-

Published by Sciedu Press 61

http://dx.doi.org/10.1146/annurev.neuro.24.1.1283
http://dx.doi.org/10.1146/annurev.neuro.24.1.1283
http://dx.doi.org/10.1109/3477.499790
http://dx.doi.org/10.1109/3477.499790
http://dx.doi.org/10.1142/S0218339097000199
http://dx.doi.org/10.1142/S0218339097000199


www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 4

dations, Theories, and Systems, LNAI. 2684, Berlin. Heidelberg.
NewYork: Springer-Verlag; 2003. pp 23-43.

[16] Narendra KS, Thathachar MAL. Learning Automata: An Introduc-
tion, Englewood Cliffs, NJ. Prentice Hall; 1989.

[17] Marsh C, Gordon TJ, Wu QH. Stochastic optimal control of active
vehicle suspensions using learning automata, Proceedings I Mech
Eng Part I, Journal of Systems and Control Engineering. 1993; 207:
143-152.

[18] Narendra KS, Thathachar MAL. Learning Automata. A Survey.
IEEE Transactions in Systems, Man and Cybernetics. 1974; 4(4):
323-334.

[19] Valiant LG. A theory of the learnable. Communications of the ACM.
1984; 27: 1134-1142. http://dx.doi.org/10.1145/1968.19
72

[20] Garey M, Johnson D. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, San Francisco; 1979.

[21] Luger GF. Artificial intelligence. Structures and strategies for com-
plex problem solving. Fourth edition. Addison Wesley; 2003.

[22] Luger GF. Cognitive Science: The Science of Intelligent Systems.
Academic Press, San Diego and New York; 1994.

[23] Minsky ML The Society of Mind. William Heinemann Ltd, London;
1987.

[24] Vilhelm C, Ravaux P, Calvelo D, Jaborska A, Chambrin M-C, Boni-
face M. Think!: a unified numerical-symbolic knowledge represen-
tation scheme and reasoning system. Artificial Intelligence. 2000;
116 (1–2): 67–85.

[25] Kamsu-Foguem B, Tchuenté-Foguem G, Allart L, Zennir Y, Vil-
helm Y, Mehdaoui H, Zitouni D, Hubert H, Lemdani M, Ravaux P.
User-centered visual analysis using a hybrid reasoning architecture
for intensive care units. Decision Support Systems. 2012; 54 (1):
496–509. http://dx.doi.org/10.1016/j.dss.2012.06.009

[26] d’Avila Garcez AS, Lamb LC, Gabbay DM. Neural-Symbolic Cog-
nitive Reasoning, Cognitive Technologies. Springer-Verlag, Berlin
Heidelberg; 2009.

[27] Brachman RJ. Systems that know what they’re doing. IEEE Intel-
ligent systems. 2002; 6: 67-71. http://dx.doi.org/10.1109/M
IS.2002.1134363

[28] Salakhutdinov R, Tenenbaum J, Torralba A. One-shot learning with
a hierarchical nonparametric Bayesian model. Technical Report.
2010; MIT-CSAIL-TR-2010-052.

[29] Ohsuga SA. Consideration to knowledge representation – an in-
formation theoretic view. Bulletin of Informatics and Cybernet-
ics.1984; 21(1-2): 121-135.

[30] Gottfredson LS. Mainstream Science on Intelligence (editorial). In-
telligence. 1997; 24: 13–23.

[31] Ohsuga SA. Intelligence for Upgrading Information. In N. Zhong
et al (Eds). Web Intelligence Meets Brain Informatics. LNAI 4845;
2007. pp 97-121.

[32] Pavlov IP. Conditioned reflexes: an investigation of the physiologi-
cal activity of the cerebral complex. Oxford University Press. Lon-
don; 1927.

[33] Bouton ME. Learning and Behavior: A Contemporary Synthesis.
Sunderland, MA: Sinauer; 2007.

[34] Rescorla RA, Wagner AR. A theory of Pavlovian conditioning:
Variations in the effectiveness of reinforcement and nonreinforce-
ment, Classical Conditioning II, A.H. Black & W.F. Prokasy, Eds.,
Appleton-Century-Crofts; 1972. pp 64–99.

[35] Miller RR, Barnet RC, Grahame NJ. Assessment of the Rescorla-
Wagner Model. Psychological Bulletin (American Psychological
Association). 1995; 117 (3): 363–386. PMid:7777644

[36] Cattell RB. The description of personality: Basic traits resolved
into clusters. Journal of Abnormal and Social Psychology. 1943; 38:
476-506. http://dx.doi.org/10.1037/h0054116

[37] Jain AK, Murty MN, Flynn PJ. Data clustering: a review. ACM
Computing Surveys. 1999; 31: 264-323. http://dx.doi.org/1
0.1145/331499.331504

[38] Duda RO, Hart PE, Stork DG. Pattern classification. 2nd ed., John
Wiley & Sons, N.Y.; 2001.

[39] Hong YY. Learning Assignment Order of Instances for the Con-
strained K-Means Clustering Algorithm. IEEE Transaction on
System, Man and Cybernetics, Part B. 2009; 39 2: 568-
574. PMid:19109091 http://dx.doi.org/10.1109/TSMCB.2
008.2006641

[40] Agrawal AA. Phenotypic Plasticity in the Interactions and Evo-
lution of Species. Science. 2001; 294: 321-326. PMid:11598291
http://dx.doi.org/10.1126/science.1060701

[41] Whitman DW, Agrawal A. What is phenotypic plasticity and why
is it important? Phenotypic Plasticity of Insects: Mechanisms and
Consequences (ed. by D. W. Whitman and T. N. Ananthakrishnan),
Science Publishers, Enfield, New Hampshire; 2009. pp 1–63.

[42] Glanzman DL. Common Mechanisms of Synaptic Plasticity in Ver-
tebrates and Invertebrates. Minireview. Curr Biol. 2010; 20: 31-
36. PMid:20152143 http://dx.doi.org/10.1016/j.cub.200
9.10.023

[43] Noble D. The Music of Life. Biology Beyond Genes, Oxford Uni-
versity Press, Oxford; 2006.

[44] Searle JR. Is the brain’s mind a computer program? Sci Am. 1990;
1: 26-31.

[45] Gorlich D, Artmann S, Dittrich P. Cells as semantic systems. Bioch
Bioph Acta. 2011; 1810: 914–923. PMid:21569823 http://dx.d
oi.org/10.1016/j.bbagen.2011.04.004

[46] Wolpert DH, Macready WG. No Free Lunch Theorems for optimiza-
tion. IEEE Trans Evol Comput.1997; 1: 67-82. http://dx.doi.o
rg/10.1109/4235.585893

[47] Wolpert DH, Macready WG. Coevolutionary free lunches. IEEE
Transactions on evolutionary computation. 2005; 9: 721-735. http:
//dx.doi.org/10.1109/TEVC.2005.856205

[48] Ho YC, Pepyne DL. Simple explanation of the No-Free-Lunch The-
orem and its implications. J Optim Theory Appl. 2002; 115: 549-
570. http://dx.doi.org/10.1023/A:1021251113462

[49] Melkikh AV. First principles of probability theory and some para-
doxes in modern biology (comment on "21st century: what is life
from the perspective of physics?" by G.R. Ivanitskii). Phys Usp.
2011; 54(4): 449-451.

[50] Melkikh AV. Can Organism Pick up New Valuable Information from
the Environment? Biophysics (Biofizika). 2002; 47(6): 1053-1058.

[51] Tsetlin ML. Finite automata and models of simple forms of be-
havior. Russian Mathematical Surveys. 1963; 18(4): 1-27. http:
//dx.doi.org/10.1070/RM1963v018n04ABEH001139

[52] Varshavskii VI, Vorontsova IP. On the behaviour of stochastic au-
tomata with variable structure. Automation and Remote Control.
1963; 24: 327-333.

[53] Butz M, Sigaud O, Gerard P. Internal models and anticipations in
adaptive learning systems. In M. Butz et al. (Eds.): Anticipatory
Behavior in Adaptive Learning Systems. Foundations, Theories,
and Systems, LNAI. 2684, Berlin. Heidelberg. NewYork: Springer-
Verlag; 2003. pp 89-109.

[54] Mao W. Modern cryptography: theory and practice. Prentice Hall,
Professional Technical Reference; 2003.

[55] Aaronson S. NP-complete problems and physical reality. ACM
SIGACT News, complexity theory column. 2005; 36(1): 30-52.
http://dx.doi.org/10.1145/1052796.1052804

[56] Klein TA, Neumann J, Reuter M, Henning J, Yves von Cramon
D, Ullsperger M. Genetically Determined Differences in Learn-
ing from Errors. Science. 2007; 318: 1642-1645. PMid:18063800
http://dx.doi.org/10.1126/science.1145044

[57] McFarland D. Animal behavior. Pitman, University of Oxford;
1985.

[58] McFarland D, Houston A. Quantitative ethology: The state space
approach. Pitman Advanced Pub Program, Boston; 1981.

[59] Simeonov PL. Integral biomathics: A post-Newtonian view into the
logos of bios. Prog Bioph Mol Biol. 2010; 102 2-3: 85-121.

[60] Shannon CA. Mathematical Theory of Communication, Bell System
Technical Journal.1948; 27: 379–423, 623–656.

[61] Ivanitskii GR. 21st century: what is life from the perspective of
physics? Physics – Usp. 2010; 53(4): 327-356. http://dx.doi
.org/10.3367/UFNe.0180.201004a.0337

62 ISSN 1927-6974 E-ISSN 1927-6982

http://dx.doi.org/10.1145/1968.1972
http://dx.doi.org/10.1145/1968.1972
http://dx.doi.org/10.1016/j.dss.2012.06.009
http://dx.doi.org/10.1109/MIS.2002.1134363
http://dx.doi.org/10.1109/MIS.2002.1134363
http://dx.doi.org/10.1037/h0054116
http://dx.doi.org/10.1145/331499.331504
http://dx.doi.org/10.1145/331499.331504
http://dx.doi.org/10.1109/TSMCB.2008.2006641
http://dx.doi.org/10.1109/TSMCB.2008.2006641
http://dx.doi.org/10.1126/science.1060701
http://dx.doi.org/10.1016/j.cub.2009.10.023
http://dx.doi.org/10.1016/j.cub.2009.10.023
http://dx.doi.org/10.1016/j.bbagen.2011.04.004
http://dx.doi.org/10.1016/j.bbagen.2011.04.004
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1109/TEVC.2005.856205
http://dx.doi.org/10.1109/TEVC.2005.856205
http://dx.doi.org/10.1023/A:1021251113462
http://dx.doi.org/10.1070/RM1963v018n04ABEH001139
http://dx.doi.org/10.1070/RM1963v018n04ABEH001139
http://dx.doi.org/10.1145/1052796.1052804
http://dx.doi.org/10.1126/science.1145044
http://dx.doi.org/10.3367/UFNe.0180.201004a.0337
http://dx.doi.org/10.3367/UFNe.0180.201004a.0337


www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 4

[62] Ivanitskii GR. Remembering a random choice kills alternatives (re-
ply to comment on „21st century: what is life from the perspec-
tive of physics?“). Physics – Usp. 2011; 54(4): 451–454. http:
//dx.doi.org/10.3367/UFNr.0181.201104p.0451

[63] Osherson D, Stob M, Weinstein S. Systems that learn. MIT Press.
Cambridge MA; 1986.

[64] Pask G. The cybernetics of human learning and performance.
Hutchinson; 1975.

[65] Fodor JA. The Modularity of Mind: an Essay of Faculty Psychology.
MIT Press; 1983.

[66] Davies P. Does quantum mechanics play a non-trivial role in life?
BioSystems. 2004; 78: 69–79. PMid:15555759 http://dx.doi.o
rg/10.1016/j.biosystems.2004.07.001

[67] Davies P, Demetrius LA, Tuszynski JA. Implications of quan-
tum metabolism and natural selection for the origin of cancer
cells and tumor progression. AIP ADVANCES. 2012; 2: 011101.
PMid:22489276 http://dx.doi.org/10.1063/1.3697850

[68] Matsuno K. Cell motility as an entangled quantum coherence.
BioSystems.1999; 51: 15–19. http://dx.doi.org/10.1016/S
0303-2647(99)00009-X

[69] Igamberdiev AU. Quantum computation, non-demolition measure-
ments, and reflective control in living systems. Biosystems. 2004;
77: 47-56. PMid:15527945 http://dx.doi.org/10.1016/j.b
iosystems.2004.04.001

[70] Beck F, Eccles JC. Quantum aspects of brain activity and the role of
consciousness. PNAS.1992; 89: 11357-11361. http://dx.doi.o
rg/10.1073/pnas.89.23.11357

[71] Hameroff S. Conduction pathways in microtubules, biological quan-
tum computation and consciousness. Biosystems.2003; 64: 149-
168. http://dx.doi.org/10.1016/S0303-2647(01)00183-6

[72] Georgiev D. Consciousness operates beyond the timescale for dis-
cerning time intervals: implications for Q-mind theories and anal-
ysis of quantum decoherence in brain. NeuroQuantology. 2004; 2:
122-145.

[73] Melkikh AV. Congenital programs of the behavior as the unique ba-
sis of the brain activity. NeuroQuantology. 2005; 2: 134-148.

[74] Melkikh AV. Congenital programs of the behavior and nontrivial
quantum effects in the neurons work. BioSystems. 2014; 119: 10-
19. PMid:24704210 http://dx.doi.org/10.1016/j.biosyst
ems.2014.03.005

[75] Melkikh AV. Biological complexity, quantum coherent states and
the problem of efficient transmission of information inside a cell.
BioSystems. 2013; 111: 190-198. PMid:23438638 http://dx.d
oi.org/10.1016/j.biosystems.2013.02.005

[76] Melkikh AV. Quantum information and the problem of mech-
anisms of biological evolution. BioSystems. 2014; 115: 33-
45. PMid:24184874 http://dx.doi.org/10.1016/j.biosyst
ems.2013.10.005

[77] Carter B. Large Number Coincidences and the Anthropic Principle
in Cosmology. IAU Symposium 63: Confrontation of Cosmologi-
cal Theories with Observational Data. Dordrecht: Reidel; 1974. pp
291–298.

[78] Glanzman DL. Behavioral neuroscience: no easy path from genes
to cognition. Curr Biol. 2012; 22 9: 302-304. http://dx.doi.o
rg/10.1016/j.cub.2012.03.034

Published by Sciedu Press 63

http://dx.doi.org/10.3367/UFNr.0181.201104p.0451
http://dx.doi.org/10.3367/UFNr.0181.201104p.0451
http://dx.doi.org/10.1016/j.biosystems.2004.07.001
http://dx.doi.org/10.1016/j.biosystems.2004.07.001
http://dx.doi.org/10.1063/1.3697850
http://dx.doi.org/10.1016/S0303-2647(99)00009-X
http://dx.doi.org/10.1016/S0303-2647(99)00009-X
http://dx.doi.org/10.1016/j.biosystems.2004.04.001
http://dx.doi.org/10.1016/j.biosystems.2004.04.001
http://dx.doi.org/10.1073/pnas.89.23.11357
http://dx.doi.org/10.1073/pnas.89.23.11357
http://dx.doi.org/10.1016/S0303-2647(01)00183-6
http://dx.doi.org/10.1016/j.biosystems.2014.03.005
http://dx.doi.org/10.1016/j.biosystems.2014.03.005
http://dx.doi.org/10.1016/j.biosystems.2013.02.005
http://dx.doi.org/10.1016/j.biosystems.2013.02.005
http://dx.doi.org/10.1016/j.biosystems.2013.10.005
http://dx.doi.org/10.1016/j.biosystems.2013.10.005
http://dx.doi.org/10.1016/j.cub.2012.03.034
http://dx.doi.org/10.1016/j.cub.2012.03.034

	Introduction
	Learning, adaptation and knowledge acquisition
	Pavlov conditioning, plasticity and learning
	Pavlov conditioning and the task of clustering
	Plasticity and learning

	The knowledge acquisition paradox and hypothesis on instinctive behavior
	The knowledge acquisition paradox and No Free Lunch Theorem
	Knowledge acquisition and learning automata
	Hypothesis of innate behavior

	Discussion
	Can new behavior programs arise from random processes?
	Randomness and repetition as a method for decreasing errors
	Social learning, intelligence and knowledge acquisition
	Where innate programs of behavior can stored?
	Possible experiments to test the hypothesis on innate behavior programs

	Conclusions

