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Abstract
This study exposes a critical weakness of the (0-1) knapsack dynamic programming approach, widely used for optimal allocation
of resources. The (0-1) knapsack dynamic programming approach could waste resources on insignificant improvements and
prevent the more efficient use of the resources to achieve maximum benefit. Despite the numerous extensive studies, this critical
shortcoming of the classical formulation has been overlooked. The main reason is that the standard (0-1) knapsack dynamic
programming approach has been devised to maximise the benefit derived from items filling a space with no intrinsic value.
While this is an appropriate formulation for packing and cargo loading problems, in applications involving capital budgeting,
this formulation is deeply flawed. The reason is that budgets do have intrinsic value and their efficient utilisation is just as
important as the maximisation of the benefit derived from the budget allocation.

Accordingly, a new formulation of the (0-1) knapsack resource allocation model is proposed where the weighted sum of the
benefit and the remaining budget is maximised instead of the total benefit. The proposed optimisation model produces solutions
superior to both – the standard (0-1) dynamic programming approach and the cost-benefit approach.

On the basis of common parallel-series systems, the paper also demonstrates that because of synergistic effects, sets including
the same number of identical options could remove different amount of total risk. The existence of synergistic effects does
not permit the application of the (0-1) dynamic programming approach. In this case, specific methods for optimal resource
allocation should be applied. Accordingly, the paper formulates and proves a theorem stating that the maximum amount of
removed total risk from operations and systems with parallel-series logical arrangement is achieved by using preferentially
the available budget on improving the reliability of operations/components belonging to the same parallel branch. Improving
the reliability of randomly selected operations/components not forming a parallel branch leads to a sub-optimal risk reduction.
The theorem is a solid basis for achieving a significant risk reduction for systems and processes with parallel-series logical
arrangement.
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1 Introduction and related work

The problem of optimal resource allocation to attain a max-
imum benefit is an important problem, which appears fre-
quently in capital budgeting of departments and companies,

cutting stock problems, packing and cargo loading prob-
lems.

One of the most commonly used methods for solving the
discrete resource allocation problem is the classical 0-1
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knapsack dynamic programming approach which is also
one of the most extensively studied combinatorial optimiza-
tion problems. According to the classical formulation of
this problem, a set Ω of possible independent options are
given, each of which brings benefit of magnitude ri(i =
1, 2, · · · , n). The individual options i, are also characterised
by their implementation costs ci. The options can be se-
lected only once, hence each option can either be accepted
or rejected. No option can be repeated and no option can be
split. The task of optimal allocation of the available budget
consists of determining the optimal subset P ⊆ Ω of op-
tions associated with the maximum total benefit

∑
k∈P rk.

The imposed constraint is the specified limited budget B:
the total cost of the selected n options must not exceed the
available budget B:

Maximize :
n∑

i=1
xi × ri (1)

subject to the constraint:

n∑
i=1

xi × ci ≤ B (2)

where xi ∈ {0, 1} are decision variables; xi = 1 if the risk-
reduction option is accepted and xi = 0, otherwise. Nor-
mally, the sum of the costs of all options exceeds the existing
budget B (

∑
k∈P ck > B). The implicit assumption behind

this formulation is that each option can be independently
implemented with no consequences to other options.[1]

From (1)-(2) it is clear, that the purpose of the classical for-
mulation of the knapsack problem is to maximise the value
derived from filling an empty ‘knapsack’ of given size B,
with no intrinsic value. For optimal packing and cargo load-
ing problems this formulation is entirely adequate because
the space filled with items has no intrinsic value. For re-
source allocation problems however, the available budget
for achieving the desired maximum benefit, does have in-
trinsic value. The efficient use of the budget is just as im-
portant as the benefit derived from its allocation.

The (0-1) knapsack dynamic programming approach has
been intensively studied and used for a long time for op-
timal allocation of resources,[2–9] and in particular, as a re-
source allocation method among competing projects. More
recently, the 0-1 knapsack problem has also been used and
discussed.[11–16]

No discussion however seems to exist on the possibility of
obtaining inferior solutions from the classical (0-1) knap-
sack problem formulation (1)-(2) compared to the com-
peting cost-benefit approach for optimal allocation of re-
sources. Despite the very large volume of existing research
related to the (0-1) knapsack dynamic programming ap-
proach, this important point has been overlooked.

Furthermore, despite that dynamic programming techniques
have been around for a long time,[17] very few attempts
have been made to use them for optimal allocation of risk-
reduction resources. Richter et al.[18] solved an optimal re-
source allocation problem to achieve a maximum prevention
from infection. The objective function of the formulated
model involved only two additive terms, corresponding to
two independent populations. No details however were pro-
vided about the optimization algorithm.

A dynamic programming solution of the safety resource al-
location problem, in the case where the functions describ-
ing the risk reduction are arbitrary continuous functions, has
been presented in Todinov.[19] The treatment however, did
not cover the common case of discrete risk-reduction op-
tions. Mehr and Tumer[20] solved the optimal budget allo-
cation problem as a portfolio optimization problem, similar
to the problem commonly solved in managing investment
portfolios. However, this model has a narrow application
and cannot be used in the common case of discrete risk re-
duction options.

Indeed, the risk is often reduced by well-defined discrete op-
tions: purchasing new, more reliable and safer equipment,
investing in personnel training, investing in improved secu-
rity and control, investing in new systems, etc. Each risk-
reduction option can either be accepted (included) in the
optimal set of options or not. For each risk-reduction op-
tion, it is usually known from statistical data and experi-
ence, how large risk-reduction effect is achieved from im-
plementing the option. For example, in the railway industry,
the risk-reduction effect is commonly measured by estimat-
ing the expected number of prevented fatalities and injuries
from implementing a particular option.[21] In the case of dis-
crete risk-reduction options, cost benefit analysis has been
adopted by many industries and in particular by the railway
industry, as a tool for optimal allocation of safety resources.
In the railway industry for example, the safety budget al-
location starts with assigning risk reduction options to the
different risk contributors or risk scenarios resulting in a ma-
jor railway accident. Each risk reduction option is assessed
in terms of the benefit it brings and the cost of its imple-
mentation. The risk reduction options are ranked according
to their benefit/cost ratio. By starting with the risk reduc-
tion option with the largest benefit/cost ratio, the options
are sequentially included in the optimal set and a check is
performed whether the aggregated cost of the selected risk
reduction options has exceeded the allocated budget. The
risk-reduction options whose aggregated cost is within the
allocated budget are included in the optimal set. Conse-
quently, the algorithm of the cost-benefit approach can be
described by the following basic steps:[21]

(1) Rank the risk-reduction options in descending order,
according to their benifit/cost ratio.

(2) Choose the risk-reduction option, with the highest
benifit/cost ratio, which fits in the remaining budget.
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(3) Update the remaining budget.
(4) Repeat steps 2 and 3 until no other risk-reduction op-

tion can be included in the optimal set.

For n risk-reduction options, the ranking in descending
order, according to the benefit/cost ratio, can be done in
O(n logn) time. As a result, the selection of risk-reduction
options by following the cost-benefit method can always be
made in O(n logn) time.

There have been attempts to substitute the cost-benefit anal-
ysis selection of discrete risk reduction options with the
(0-1) knapsack dynamic programming approach. Thus,
Pigman et al[22] developed a dynamic procedure based on
the (0-1) knapsack dynamic programming approach which
selects the optimal combination of safety improvement
projects for a given budget. Pigman et al[22] compared the
(0-1) dynamic programming method with the cost-benefit
approach and concluded that because the (0-1) knapsack
programming procedure is not constrained by the benefit-
cost ratios, it utilises better the available resources and is a
superior method to the cost-benefit analysis.

More recently, the classical (0-1) knapsack dynamic pro-
gramming method in combination with the risk matrix has
been advocated for optimal risk reduction in Ref. 1. All
risks have been classified in the cells of a 4 × 5 risk matrix
and investments are made to decrease the risk in cell i to-
wards a cell j with a smaller risk. However, no details about
the implementation algorithm have been presented.

A detailed (0-1) knapsack dynamic programming algorithm
for optimal allocation of risk-reduction resources in the case
of discrete and statistically independent risk-reduction op-
tions was described in Ref. 23. Central to this algorithm
was the concept ‘amount of removed risk’ (expected poten-
tial loss) characterising the individual options and measur-
ing the derived benefit from their application. The removed
risk was expressed in monetary terms - the expected cost of
prevented accidents and fatalities.

The individual risk-reduction options i(i = 1, 2, · · · , n) are
characterised by the amount of removed risk ri (expected
potential loss) and cost of implementation ci. Risk reduction
options can be selected only once, hence each risk reduction
option can either be accepted or rejected.

The risk-reduction problem solved in Ref. 23 followed the
classical formulation of the (0-1) knapsack dynamic pro-
gramming (1)-(2). This choice was justified by the nature
of the considered problem: optimal allocation of a cental
safety budget for removing as many expected human fatal-
ities as possible. In this case, the purpose is not to save re-
sources and transfer them elsewhere, but to use the available
budget to the full and prevent as many expected fatalities as
possible.

In cases concerned with preventing financial losses or in

cases where unused budgets can be transferred for risk re-
duction in other areas, the unused budget is just as valuable
as the derived benefit from the invested part of the budget. In
these common cases, recent studies exposed an unexpected
weakness of the classical (0-1) knapsack dynamic program-
ming formulation (1)-(2). The solutions based on the clas-
sical knapsack dynamic programming formulation (1)-(2)
could waste resources on insignificant increase of the de-
rived benefit.

In addition, the presence of independent risk-reduction op-
tions whose implementation does not affect other options,
does not guarantee that the (0-1) dynamic programming ap-
proach could be applied. The existence of synergistic effects
related to the selected sets of options does not permit the
application of the (0-1) dynamic programming approach.
In this case, other methods for optimal resource allocation
should be used.

2 The proposed method
2.1 A counter-example

From the analyses published in the literature so far, it seems
that the standard (0-1) knapsack approach is a real alterna-
tive to the cost-benefit approach. This perception however is
rather deceptive as the next counter-example reveals. Sup-
pose that the benefits and the costs of four risk reduction
options preventing potential warranty costs are according to
Table 1. The available safety budget is 30 million.

Table 1: Four risk reduction options each characterised
with cost of implementation and magnitude of the removed
risk. The total safety budget is 30 million.

 

 

Risk-reduction 
option 

Removed risk 
[in millions $] 

Cost of implementation 
[in millions $] 

Benefit/Cost 
ratio 

A 33 10 3.3 
B 20.9 7 2.98 
C 26 14 1.86 
D 28 16 1.75 

 

All risk reduction options are characterised by a benefit/cost
ratio greater than one. The standard (0-1) knapsack algo-
rithm, selects risk reduction options C and D, which, within
the fixed budget of 30 million, yield the largest risk reduc-
tion (54 million). Clearly, this is a flawed solution because
if risk reduction optionsA andB had been selected, the risk
reduction would be marginally smaller (53.9 million) but 13
million unnecessary expenses (43% of the budget) would
have been saved. In fact, the classical (0-1) knapsack algo-
rithm ‘chooses’ to spend 13 million towards a risk reduction
of only 0.1 million, which effectively has a benefit/cost ra-
tio 0.1/13 = 0.0077. This is an indication of an extremely
wasteful use of resources!

It needs to be pointed out that in this counter-example, the
cost-benefit approach selects correctly the risk reduction op-
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tions A and B and avoids the problem associated with the
standard (0-1) knapsack approach.

Suppose that TR(0−1) and TC(0−1) denote the total re-
moved risk and the total cost of the selected options charac-
terising the (0-1) classical knapsack dynamic programming
solution, respectively. Similarly, TR(CB) and TC(CB) de-
note the total reduced risk and the total cost of the selected
risk reduction options characterising the cost-benefit solu-
tion. The comparative risk-reduction effectiveness ratio ρ
can then be calculated from

ρ = (TR(0−1) − TR(CB))/|TC(0−1) − TC(CB)|

This ratio measures the effectiveness of the extra budget
used by the standard (0-1) knapsack algorithm for reducing
risk, compared to the cost-benefit method.

If the risk-reduction ratio ρ is too small, the classical (0-
1) dynamic programming solution achieves only a marginal
risk reduction, at a very large cost, and should be discarded
in favour of the cost-benefit analysis solution. If the risk-
reduction ratio ρ indicates that a substantial risk reduction
has been achieved with the extra budget, the (0-1) knapsack
solution results in a cost-effective risk reduction and should
be accepted as an alternative of the cost-benefit solution.

From Table 1, TR(0−1) = 26 + 28 = 54; TC(CB) =
33+20.9 = 53.9; TC(0−1) = 16+14 = 30 and TC(CB) =
10 + 7 = 17. The comparative ratio given by equation (2)
then becomes: ρ = (54− 53.9)/|30− 17| = 0.0077

which is only 0.7%. This ratio indicates a very inefficient
use of safety resources and the standard (0-1) knapsack so-
lution is worse than the cost-benefit solution.

The main reason for this problem is that the classical (0-1)
knapsack approach has actually been devised to maximise
the total benefit derived from items filling space with no in-
trinsic value.

It needs to be pointed out that if the budget had no intrinsic
value, then the (0-1) dynamic programming approach would
always yield an optimal solution. The budget however, does
have intrinsic value and is just as important as maximising
the risk reduction, particularly in the common case of risk
reduction related to financial losses.

The direct application of the (0-1) dynamic programming
approach devoid from the intrinsic value of the budget leads
to resources being trapped on insignificant improvements
and prevents their efficient use.

For the separate departments in a company for example, it is
important to determine how to allocate their limited safety
resources in order to mitigate a number of relevant sources
of risk. A fixed budget constraint is always present if the
total cost of the available risk-reduction options is greater
than the amount of available resources.

Wastage of resources on an insignificant improvement exists

even in situations where the purpose of the risk reduction
budget is the prevention of as many human fatalities as pos-
sible. Consider an example related to preventing accidents
in the railway industry. Suppose that safety budgets are al-
located for improving the safety of level crossings, reducing
the risk of derailment, reducing the risk of train collision
and reducing the train platform accidents. Each of these
areas of safety improvement is associated with its distinct
set of possible risk reduction options. In each of these ar-
eas, it is required to identify the optimal selection of options
which achieves the most efficient risk reduction within the
allocated resources for that particular area. It is very impor-
tant not to waste resources on insignificant risk reduction in
any of these areas because remaining (unused) resources in
any of these areas could be re-directed to prevent fatalities
in the other areas. In this sense, the more efficient use of risk
reduction resources in each area ultimately translates into a
higher total number of prevented fatalities.

A very similar situation is present in the cases where safety
budges are allocated for reducing the risk of certain diseases.
Each particular disease is associated with its own distinct set
of possible risk reduction options. Again, it is important not
to waste resources on insignificant risk reduction in any of
these risk areas because remaining resources in one of these
areas could be transferred for more efficient disease preven-
tion in the other areas. If resources are wasted on an in-
significant reduction of the expected fatalities from diseases
A,B and C for example, there may not be resources left for
preventing significantly more expected fatalities from the
equally dangerous disease D. The result is an inefficient use
of resources.

Unfortunately, often it is impractical to state and solve the
budget allocation problem as a global optimisation problem
at the level of the entire organisation (company), including
all possible risk reduction options across all departments.

The first reason is technical−the dimension of the problem
is very big. The presence of thousands of risk reduction op-
tions makes it extremely difficult to apply an exact optimisa-
tion technique such as dynamic programming. In addition,
it is difficult to provide consistency and coordination across
many departments. As a result, some of the selected risk
reduction options will be incompatible or may require com-
plex conditions and constraints which could be difficult to
resolve on a global scale.

The second reason is that deciding upon and listing all avail-
able risk reduction options in a particular area, and not miss-
ing any risk reduction option, can only be done by experts
with deep knowledge relevant to that particular area. As a
result, the problem of optimal allocation of resources is a
problem that needs to be solved by each responsible depart-
ment.

Finally, decomposing the problem of global optimisation
into series of smaller-size problems solved by the relevant

18 ISSN 1927-6974 E-ISSN 1927-6982



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 4

departments is essentially an application of the ‘divide and
concur strategy’ which has already proved its benefits in
solving efficiently large-scale optimisation problems.

2.2 Synergistic effects associated with independent
risk reduction options

The implicit assumption behind the classical (0-1) knapsack
allocation problem formulation (1-2) is that the separate op-
tions are independent and their individual implementation
does not affect other options. However, the next example
shows that even if this assumption is fulfilled, in some cases,
the (0-1) knapsack allocation still cannot be applied because
of the synergistic effect from particular option selections.

Consider the system in Figure 1 which transports water from
three sources s1,s2 and s3 to a processing plant t. The wa-
ter supply system consists of identical pipeline sections (the
arrows in Figure 1a). The pipeline sections are subjected to
random ruptures caused by intensive corrosion. The places
of intensive corrosion are randomly located and it can be
considered that each section essentially fails independently
from the other sections. In addition, the replacement of any
section has no effect on other sections. In other words, the
separate pipeline sections can be regarded as independent
components.

Suppose that the water supply system fulfils its mission only
if at least one parallel branch delivers water to the process-
ing plant. As a result, a system failure is defined by a state
for which none of the parallel branches delivers water to the
processing plant.

Suppose that each pipeline section is characterized by the
same probability (for example 0.6) of working after one
year of continuous operation. Because of the deteriorated
pipeline sections, the water supply system will certainly
benefit from risk-reduction options consisting of purchasing
and replacing old (deteriorated) pipeline sections (marked
with ‘o’ in Figure 1) with new sections (marked with ‘n’
in Figure 1). Consequently, the replacement of any of the
nine independently working pipeline sections can be viewed
as a possible risk-reduction option. Now suppose that the
available budget is sufficient for implementing exactly three
options (for replacing exactly three pipeline sections). Sup-
pose also that each new pipeline section is characterised by
a probability 0.95 of working after one year of continuous
operation.

The identical pipeline sections are independent and inter-
changeable and the replacement of any section has no effect
on the other sections. In addition, the selection of any three
sections for a replacement results in the same expected num-
ber of prevented component failures in the system. Because
of the symmetry of the system in Figure 1a, it seems that any
three risk-reduction options could be replaced with new sec-

tions (see Figure 1b, Figure 1c and Figure 1d), to the same
effect. This conclusion however would be incorrect.

Because of the synergistic effect of the selected options, the
total removed risk is highest if the available budget is spent
preferentially on replacing pipeline sections forming an en-
tire parallel branch (see Figure 1d), as opposed to replac-
ing randomly selected sections from different branches (see
Figure 1b,Figure 1c).

Figure 1: A water supply system consisting of three
parallel branches including three separate sections.

Indeed, the probability that there will be at least one branch
delivering water after one year of operation, if one section
is replaced from each parallel branch (see Figure 1b), is:

Rb = 1− (1− 0.62 × 0.95)3 = 0.71

The probability that there will be at least one branch deliv-
ering water after one year of operation, if two sections are
replaced from the same branch, and one section from an-
other branch (see Figure 1c) is:

Rc = 1−(1−0.63)×(1−0.952×0.6)×(1−0.62×0.95) =
0.76

The probability that there will be at least one branch deliver-
ing water after one year of operation, if three sections from
the same branch are replaced is:

Rd = 1− (1− 0.63)2 × (1− 0.953) = 0.91

This example shows that in some cases, even for identi-
cal and independent risk-reduction options whose individual
implementation has no consequences for other options, the
amount of total removed risk depends on the actual selection
of the risk reduction options.

Consider now the case where the water supply system ful-
fils its mission, only if all three branches deliver water to the
processing plant. If no old sections are replaced with new
ones, the probability of no failure of the water supply within
one year of operation is

R = 0.69 = 0.01

which is the probability that all nine sections will be in
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working state at the end of the year.

If exactly three sections are replaced, no matter which three
sections are replaced, the probability of no disruption in
the water supply, within one year of operation, remains the
same:

R = 0.66 × 0.953 = 0.04

In other words, in this case, the same amount of total risk
is removed, irrespective of the selected set of risk reduction
options. This different result, obtained for the same physi-
cal system, can be explained by the fact that despite that the
nine water sections are physically still arranged as a parallel-
series system, with respect to delivering a full-capacity flow
of water to the processing plant, they are logically arranged
in series. In this case, the synergistic effect from the option
selection is not present and the total amount of removed risk
is insensitive to which set of three options is selected.

The considered example involving a parallel-series logical
arrangement is very common. It holds for example in the
case where the risk-reduction options are investments in
training people.

Indeed, consider the case where three groups of people
(teams) A, B and C, each of which includes three indepen-
dently working team members, work towards eliminating
the same major hazard (see Figure 2). The risk is reduced if
at least one of the teams succeeds in eliminating the hazard.
Within each team, the task of eliminating the major hazard
is divided into subtasks among the team members. Every
single person in a team must accomplish their sub-task suc-
cessfully, in order for the team to eliminate the hazard suc-
cessfully.

The identical risk reduction options are the resources in-
vested in training a single person. The training increases the
probability that the sub-task conducted by the person will
be accomplished successfully. Suppose that an untrained
person accomplishes successfully their sub-task with prob-
ability k(0 ≤ k < 1), while investing in training of that
person increases the probability of accomplishing the task
to m > k(m < 1).

If the available budget is sufficient to train three people only,
a random selection of three people for training, from differ-
ent groups is a strategy far from optimal. It results in prob-
ability

pa = 1− (1− k2m)3

of removing the hazard for the case in Figure 2a and proba-
bility

pb = 1− (1− k3)(1− km2)(1− k2m)

for the case in Figure 2b.

Investing in training all the people from a single team results
in the highest probability

pc = 1− (1− k3)2(1−m3)

of successfully accomplishing the task.

Indeed, and the difference pc − pa can be presented as

pc − pa = (k −m)2[2k(1−mk2) +m− k4]

In this expression, m < 1 and k < 1, hence 1 −mk2 > 0.
In addition, because m < 1, k < 1 and m > k, it follows
that m− k4 > 0. Consequently, pc − pa > 0 or pc > pa.

Similarly, the difference pc − pb can be presented as

pc − pb = (1− k)(k2 + k + 1)(k +m)(k −m)2

In this expression, 0 ≤ k < 1 and m ≥ 0, hence 1 − k >
0, k2 + k + 1 > 0, k + m > 0 and (k −m)2 > 0. Conse-
quently, pc − pb > 0 or pc > pb.

Clearly, the total removed risk depends on the selection of
the risk reduction options. In reality, the cost of training and
the amount of reduced risk is different for each team mem-
ber. In either case however, the (0-1) dynamic programming
approach cannot be applied to optimise the optimal selection
of risk reduction options because the amount of reduced to-
tal risk depends on the actual selection of the risk reduction
options.

Figure 2: Three groups of people working towards
eliminating the same major hazard.

Finally, consider a case of a production system similar to the
one in Figure 1 which includes again old pipeline sections
(O) transporting fluid from the sources s1, s2 and s3 to the
sink t.

The pipeline sections are characterised by a failure fre-
quency (expected number of failures per year) of 8 year−1.
The capacity of each pipeline section was chosen to be 100
thousand cubic meters of fluid per day. Each failed section
requires 20 days to be repaired. During the repair of a failed
pipeline section, the corresponding parallel branch is not de-
livering any fluid.

Suppose that the available budget is used to achieve the
maximum possible removed risk of lost production due to
failures of pipeline sections.

An indication of the loss of production is the production un-
availability 1 − A where A is the production availability of
the system. Production availability is an important indicator
of the performance of repairable production systems. It is
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defined as the ratio of the total amount of production fluid
delivered by the system for one year in the presence of fail-
ures of the pipeline sections to the total amount of produc-
tion fluid which can be potentially delivered in the absence
of failures.[24] Even a very small percentage decrease in the
production availability (1%-2%) translates into big financial
losses over the entire period of operation.

Suppose that the available risk-reduction options are: re-
placing 3 old pipeline sections (O) with new sections (N)
and replacing another 3 pipeline sections with medium-age
sections (M).

The failure frequency of the new sections (N) is 0.1 year−1

while the failure frequency of the medium-age sections (M)
is 2 year−1. The repair time for the new sections and the
medium-age sections is again 20 days. Figure 3 represents
different choices of pipeline sections to be replaced.

Figure 3: A production system consisting of three parallel
branches and different state of deterioration of the pipeline
sections.

The production availability, for one year of operation, of
the different variants in Figure 3 was assessed by using the
discrete-event simulator for the production availability of re-
pairable flow networks described in Ref. 24. The produc-
tion availabilities characterising the different variants were
as follows: system ‘a’: 62.3%; system ‘b’: 64.3%; system
‘c’: 64.6% and system ‘d’: 68.4%. The largest production
availability was exhibited by system ‘d’.

The largest removed risk of lost production due to fail-
ures was achieved for variant ‘d’, which is associated with
more than 6% increase in production availability compared
to the worst variant ‘a’. This is a significant improve-
ment, achieved solely by an appropriate permutation of ex-
isting interchangeable options. Rearranging interchange-
able components with similar levels of reliability in separate
branches, creates the very attractive opportunity to increase
the reliability and availability of parallel-series systems, at
no extra investment.

2.3 An alternative formulation of the 0-1 dynamic
programming approach incorporating the intrin-
sic value of the available budget

The counterexample from Table 1 exposes the danger asso-
ciated with following blindly the classical (0-1) knapsack
dynamic programming approach for optimising the allo-
cation of risk reduction resources. Despite that the stan-
dard (0-1) knapsack dynamic programming algorithm al-
ways yields the exact solution in maximising the risk reduc-
tion within a fixed budget, it could still generate “solutions”
wasting valuable resources on insignificant return.

The counterexample from Table 1 shows that there is clearly
a need for incorporating the value of the remaining safety
budget. Consequently, the requirement for a maximum to-
tal removed risk

∑
k∈P rk should be abandoned, because it

leads to a wasteful use of safety resources.

This predicament can be resolved by introducing weights
(α, (1 − α); 0 ≤ α ≤ 1) assigned to both the amount of
removed risk and the remaining budget, to reflect the value
of the remaining budget. For risk reduction options all char-
acterised by benefit/cost ratio greater than unity, what needs
to be maximised is not the total amount of removed risk∑

k∈P rk but the weighted total removed risk α
∑

k∈P rk

and the weighted remaining budget (1−α)[B−
∑n

i=1 ci×
xi]. This formulation prevents expending most of the re-
maining budget on a marginal risk reduction.

Following these considerations, the appropriate model of the
optimal budget allocation among independent risk reduction
options is given next:

Given the constraint:

n∑
i=1

xi × ci ≤ B (3)

Maximize the sum:

X = α

n∑
i=1

xi × ri + (1− α)[B −
n∑

i=1
ci × xi] (4)

where xi ∈ {0, 1} are decision variables; xi = 1, if the
risk-reduction option is accepted and xi = 0, otherwise.
Because the available budget B is a constant, maximis-
ing the sum X in equation (4) is equivalent to maximising
X = α

∑n
i=1 xi × ri − (1 − α)

∑n
i=1 ci × xi. The two

summations can be combined and, as a result, what should
be maximised is the expression

X =
n∑

i=1
xi[αri − (1− α)ci] (5)

The weights can be conveniently altered to reflect correctly
the value of unit removed risk and the value of unit remain-
ing budget. Usually, both the removed risk and the avail-
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able budget are measured in the same monetary units and
α = 0.5 is the natural weighting factor reflecting that the
value of unit removed risk is the same as the value of unit
remaining budget.

Thus, for (α = 0.5), equation (5) becomes

X = 0.5
n∑

i=1
xi × (ri − ci) (6)

which is equivalent to maximising

X =
n∑

i=1
xi × (ri − ci) (7)

3 Results
3.1 Optimal allocation of risk reduction resources

incorporating the intrinsic value of the available
budget

Implementation details related to the (0-1) knapsack dy-
namic programming algorithm have been discussed in detail
in Ref. 23 and will not be repeated here. The difference is
that the expression to be maximised is (7) instead of (1).

The (0-1) knapsack algorithm, applied to the counter-
example from Table 1 now yields the correct solution. Op-
tions A and B are selected as optimal options and not op-
tions C and D. This shows that the proposed model pro-
duces a superior solution compared to the standard (0-1)
dynamic programming algorithm.

The proposed model also yields a solution superior to the
cost-benefit solution. This will be illustrated by the next
example from the railway industry. A similar example has
been considered in Ref. 21. Table 2 lists 5 risk reduc-
tion measures (A,B,C,D and E) associated with different
amount of removed risk and different costs.

Suppose that from the central safety budget, a total budget
B=$2.6 million has been allocated to a team responsible for
the reduction of platform train accidents with passengers.
This is a major risk which is located in the high-risk re-
gion of the risk matrix. The first risk reduction option ‘A′
requires the train driver to operate a CCTV monitoring of
the platform. The train will not be started if there are pas-
sengers stuck at the door, fallen onto the track or fallen be-
tween train and platform. Option B requires introducing
stop plungers - wall-mounted alarm devices at specified lo-
cations/intervals within the platform area which can be op-
erated by platform staff or passengers. Trains in the plat-
form area will be brought to a halt by operating any of these
plungers. Option C includes equipping the train doors with
sensors to reduce the possibility of trapping and dragging
passengers. Option D consists of gap fillers between train

and platform to reduce accidents where passengers fall be-
tween train and platform whilst boarding the train. Option
E includes a system preventing opening the train doors on
the wrong side of the platform.[21]

The five key risk reduction options, A,B,C,D and E have
been evaluated, and the corresponding magnitudes of re-
moved risk and costs are according to Table 2.

Following the cost-benefit approach, the risk reduction mea-
sures C and A, with the largest benefit/cost ratio will be se-
lected. The combined cost of the selected risk reduction
measures is $2.3 million - well within the fixed budget of
$2.6 million. The removed risk is $4.7 million.

The proposed model yields an optimal set including risk-
reduction options B,C and D with a combined cost exactly
$2.6 million (equal to the available budget) and removed
risk equal to $5.1 million. The risk-reduction ratio

ρ = (5.1− 4.7)/|2.6− 2.3| = 1.33

equals 133%, which indicates that the proposed solution
produces a substantial return on the extra resources. The
proposed model in section 2.3 yields a solution superior to
the cost-benefit solution.

Table 2: Risk reduction measures with the associated costs
and magnitudes of the removed risk. The total budget is
$2.6 million.

 

 

Risk reduction  
option 

Removed risk  
[in millions $] 

Cost of implement 
[in millions $] 

Benefit/Cost 
ratio 

A 2.4 1.2 2 
B 1.3 0.7 1.857 
C 2.3 1.1 2.09 
D 1.5 0.8 1.875 
E 1.6 0.9 1.777 

 

Table 3 lists 7 risk reduction options (A,B,C,D,E, F and
G) with removed risks and costs, according to the table. The
total budget is B=$170 thousand. Following the cost-benefit
approach, risk reduction options A,B and C, associated with
the largest benefit/cost ratio will be selected. The combined
cost of these risk reduction options is TCCB = $140 thou-
sand, well within the fixed budget of $170 thousand. The
removed risk is TRCB = $1478 thousand.

Applying the model proposed earlier, yields an optimal set
including risk reduction optionsB,D andG. The combined
cost of these options is TC(0−1) = $169 thousand (within
the fixed budget of $170 thousand) with a total removed risk
TR(0−1) = $1735 thousand. The comparative ratio is

ρ = (1735− 1478)/|169− 140| = 8.86

As can be verified, despite that the comparative ratio is
smaller than the benefit/cost ratio of each risk-reduction op-
tion, the total risk reduction is substantial ($257 thousand),
which provides an excellent return on the invested extra bud-
get of $29 thousand. Clearly, the solution from the proposed
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model should be preferred to the cost-benefit solution.

Table 3: Risk reduction options with the associated costs
and magnitude of the removed risk. The available budget is
B=$170 thousand.

 

 

Risk reduction  
option 

Removed risk 
[in thousands $] 

Cost of implement.
[in thousands $] 

Benefit/Cost 
ratio 

A 442 41 10.78 
B 525 50 10.5 
C 511 49 10.4 
D 593 59 10.05 
E 546 55 9.927 
F 564 57 9.89 
G 617 60 10.28 

 

Table 4 lists 24 different risk-reduction options and available
budget B = $6404180. The options selected in the optimal
set by the proposed model are shown in the last column of
the table.

Table 4: Risk-reduction options with the associated costs
and magnitude of the removed risk. The total budget is
$6404180.

 

 

Risk reduction 
option 

Removed  
risk, $ 

Cost of imple- 
ment.$ 

Benefit/Cost
ratio 

Selection
indicator

1 825594 382745 2.1570 1 
2 1677009 799601 2.0973 1 
3 1676628 909247 1.8440 0 
4 1523970 729069 2.0903 1 
5 943972 467902 2.0175 1 
6 97426 44328 2.1978 1 
7 69666 34610 2.0129 0 
8 1296457 698150 1.8570 0 
9 1679693 823460 2.0398 0 
10 1902996 903959 2.1052 1 
11 1844992 853665 2.1613 1 
12 1049289 551830 1.9015 0 
13 1252836 610856 2.0510 1 
14 1319836 670702 1.9678 0 
15 953277 488960 1.9496 0 
16 2067538 951111 2.1738 1 
17 675367 323046 2.0906 0 
18 853655 446298 1.9127 0 
19 1826027 931161 1.9610 0 
20 65731 31385 2.0943 0 
21 901489 496951 1.8140 0 
22 577243 264724 2.1805 1 
23 466257 224916 2.0730 1 
24 369261 169684 2.1762 1 

 

For a small number of risk reduction options (up to 12),
the proposed model has been validated by using a recursive
backtracking algorithm generating, evaluating and compar-
ing all possible combinations of risk-reduction options, after
which the best combination, associated with the largest sum
X =

∑n
i=1 xi × (ri − ci) is selected.

A validation test has been conducted including 12 risk re-
duction options, with removed risks and costs according to
Table 5. The optimal selection produced by the proposed
model is given in the last column of Table 5. The execu-

tion of the recursive backtracking algorithm yielded options
2,3,4,6,9,10,11 as optimal options, with total cost $1577
thousand. This result matched exactly the result from the
proposed model in section 2.2.

Table 5: A validation test example including 12
risk-reduction options, the associated costs and magnitudes
of the removed risk. The total budget is $1600 thousand.

 

 

Risk reduction 
option 

Removed risk 
[x 1000 $] 

Cost of option 
[x 1000 $] 

Benefit/Cost 
ratio 

Selection
indicator

1 245 182 1.35 0 
2 311 166 1.87 1 
3 412 240 1.72 1 
4 567 378 1.5 1 
5 188 112 1.68 0 
6 443 277 1.6 1 
7 116 79 1.47 0 
8 89 45 1.98 0 
9 398 217 1.83 1 
10 178 98 1.82 1 
11 477 201 2.37 1 
12 289 245 1.18 0 

 

A number of additional tests have also been conducted, with
a different number of risk-reduction options. Invariably, the
results from the recursive backtracking procedure matched
exactly the results from the proposed model. The worst-case
running time of the (0-1) dynamic programming algorithm
for optimal allocation of a safety budget isO(n×B) where,
n is the number of available options and B is the size of
the budget as an integer number. Expressing the available
budget B, the removed risk and the cost of the options as
numbers (e.g. rounded to the nearest thousand) makes the
(0-1) dynamic programming algorithm very efficient, which
is indicated by the results for the set of options in Table 4.
Despite the large budget and the presence of risk-reduction
options with very different costs, the solution was obtained
by the (0-1) knapsack algorithm after 1.75s, on a computer
with a processor Intel (R) Core (TM) 2 Duo CPU T9900 @
3.06 GHz.

Going back to the second limitation of the classical (0-1)
dynamic programming approach, for two sets including the
same number of identical independent risk-reduction op-
tions, because of synergistic effects, some sets of options
remove more risk compared to other sets of options. The
classical (0-1) knapsack dynamic programming approach
cannot handle cases where synergistic effects are present.

To be applicable to problems of optimal risk reduction, the
(0-1) knapsack dynamic programming approach must oper-
ate only with risk-reduction options for which no synergistic
effects are present and the total removed risk depends only
on the sum of the removed risks by the separate options.
The risk-reduction options in various industries possess this
property. Examples of such options have already been given
from the railway industry.

A good test signalling the presence of synergistic effects
among the risk reduction options is to assume temporarily
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that each of the risk reduction options has the same cost
and removes the same amount of risk. Next, a check is per-
formed whether any selection of m risk reduction options
removes the same amount of total risk, where m is any fea-
sible number of selected options. If particular selections of
options remove more total risk than other selections, syn-
ergistic effects are present and the (0-1) dynamic program-
ming approach cannot be applied.

Consider a case where again, the available risk reduction
options are investments in training people. In the first case,
three teams A,B and C, each of which contains three inde-
pendently working team members, work in three different
safety areas. Team members A1, A2 and A3 reduce the risk
of derailment; team membersB1, B2 andB3 reduce the risk
of train collision and team members C1, C2 and C3 reduce
the risk of train platform accidents. In this case, no require-
ment is present for each team member to be successful in
their allocated task for the risk to be reduced. The effort of
each team member reduces independently the correspond-
ing risk. Investing in training of team members results in a
proportional reduction of the corresponding risk.

Now assume that the efforts from each team member reduce
the same amount of risk and investment in training of any
team member results in the same amount of removed extra
risk. If the efforts of each team member result in the same
amount of removed risk, it is clear that selecting any combi-
nation of m options (people to train) will result in the same
amount of reduced total risk. No synergistic effect is present
and the total removed risk does not depend on the selection
of the risk reduction options. In reality, the cost of training
and the amount of reduced risk will be different for each
person and the (0-1) dynamic programming approach can
be applied to determine the optimal selection of people for
training.

This case can be compared with the case already discussed
in Section 2.2 where the three teams work in parallel on
the task of eliminating the same major hazard and the total
risk is reduced if at least one of the teams succeeds in elim-
inating the hazard. Again, it can be assumed temporarily
that the efforts of each team member have the same impact.
From the analysis presented in Section 2.2 however, it is
clear that despite that all risk reduction options are identi-
cal and independent, because of the synergistic effect, the
(0-1) dynamic programming approach cannot be applied to
optimise this case.

In many real cases, the risk-reduction options are not sta-
tistically dependent but this does not preclude the use of
the (0-1) knapsack problem for determining the optimal re-
source allocation. In some cases, the selection of one of the
risk-reduction options Ai automatically excludes the selec-
tion of a series of other options Aj , i 6= j(Ai ∩ Aj = ø).
For example, purchasing a particular type Ai signalling sys-
tem/breaks excludes purchasing another type Aj of sig-

nalling system/breaks. In other cases, the selection of a
risk-reduction option A requires the selection of other risk-
reduction options Bi(A→ Bi). Such is the case where pur-
chasing a signalling system (option A) requires investing in
training (option B1) and purchasing an improved communi-
cation system (option B2).

There are also asymmetrical risk-reduction options where
option A for example can be selected without option B but
optionB cannot be selected without optionA. For example,
option A consisting of purchasing calibration and mainte-
nance services for equipment controlling an important func-
tional parameter (e.g. temperature, pressure, concentration)
cannot be done without purchasing the controlling equip-
ment.

These numerous option constraints can be presented as ad-
ditional constraints to the (0-1) knapsack problem. The opti-
mal solution can still be found by solving the (0-1) knapsack
problem provided that no synergistic effects are present for
the different sets of options.

3.2 Optimal strategy in reducing the total risk in
parallel-series systems

The parallel-series logical arrangement example in section
2.2 demonstrated that the (0-1) dynamic programming ap-
proach cannot be used if synergistic effects are present. The
parallel-series logical arrangement is a common logical ar-
rangement in safety devices working in parallel for prevent-
ing the occurrence of a particular risk event. Consider a
safety-critical system for detecting the release of heath from
incipient fire, based on n heath detectors working in parallel,
each of which consist of a heath sensor, control block and
an alarm. Upon fire, the system detects the heath release
if at least one of the detectors working in parallel detects
the heath release. This system has a parallel-series logi-
cal arrangement because the heath detectors are logically
arranged in parallel while the components building them
(heath sensor, control block and an alarm) are logically ar-
ranged in series.

Because systems with parallel-series logical arrangements
(see Figure 4) are very common, and the optimal selection
of risk reduction options cannot be resolved by the (0-1) dy-
namic programming approach, a specific method should be
developed for accomplishing the task of optimal resources
allocation which delivers the smallest risk of system failure.

The cases in Figure 1, Figure 2c and Figure 3d are exam-
ples of well-ordered parallel-series systems. A well-ordered
parallel-series arrangement is obtained if the available com-
ponents are used to build the branch with the highest pos-
sible reliability/availability, the remaining components are
used to build the next parallel branch with the highest possi-
ble reliability/availability and so on, until the entire parallel-
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series arrangement is built.

Another example of a well-ordered parallel-series system
is the system in Figure 4, where in the parallel branches
there are three pre-existing components with reliabilities
r01 = 0.78, r02 = 0.75, r03 = 0.80. These components
are always attached to the corresponding branches and can-
not be swapped. There are also empty sockets which can
accommodate type-A components and type-B components.
There are two type-A components: an old component with
reliability 0.57 and a medium-age component with relia-
bility 0.67. There are also six type-B components: Four
old components with reliability 0.7 and two medium-age
components with reliability 0.8. The system with the high-
est possible reliability (the largest removed risk of system
failure) is the system shown in Figure 4. In this system,
the branch with the highest possible reliability (the second
branch) cannot be improved by interchanging type-B com-
ponents with type-B components from other branches. The
next highest-reliability branch (the third branch) cannot be
improved by interchanging components with the less reli-
able first branch.

Figure 4: A parallel-series logical arrangement with three
pre-existing components with specified reliabilities and
eight interchangeable components.

Yet another example of a parallel-series mechanical system
is the one in Figure 5 featuring a pipeline with three inter-
changeable valves V1, V2 and V3 of the same type. The
valves are initially open and are closed on demand by the
actuators A1, A2 and A3 (all of the same type and there-
fore interchangeable), which are energized by the control
modules CM1,CM2 and CM3, also of the same type and
therefore interchangeable.

The reliability network of the system from Figure 5a is given
in Figure 5b. With respect to the function stopping the fluid
in the pipeline on demand, the valves are logically arranged
in parallel, while the actuators and the control modules are
logically arranged in series (see Figure 5b). This is because
at least one of the three valve blocks needs to be operational
to stop the fluid in the pipeline. For a valve block to be op-
erational, the valve, the corresponding actuator and control
module must all be operational.

Figure 5: (a) A functional diagram of three valve blocks
on a pipeline; (b) Reliability block diagram of the function
“stopping the fluid in the pipeline”.

The results obtained for a number of well-ordered parallel-
series systems have been verified by a computer simu-
lation. The computer simulation consisted of specifying
the reliabilities of the interchangeable components in the
branches and calculating the reliability/availability of the
well-ordered system. The second phase of the validation
program was a “random shuffle” of the interchangeable
components in the branches, by generating random indices
of components from different branches and swapping their
reliability values. The swapping guarantees that any resul-
tant system includes exactly the same set of interchangeable
components as the initial system. After the random shuffle,
the reliability/availability of the shuffled system was calcu-
lated and compared with the reliability of the well-ordered
system. If the reliability/availability of the well-ordered sys-
tem was greater than or equal to the reliability of the shuffled
system, the content of a counter was increased. At the end,
the probability was calculated that the well-ordered system
has reliability/availability not smaller than the reliability of
the shuffled system. In all conducted simulations, this prob-
ability was always equal to one, which leads to the conjec-
ture that the well-ordered parallel-series arrangements are
characterised by the largest reliability/availability. These re-
sults lead to establishing the following general result:

Theorem. Among all possible parallel-series logical ar-
rangements, the well-ordered parallel-series logical ar-
rangement possesses the highest possible reliability.

Proof. This proposition will be proved by contradiction
and by making use of the extreme principle. Suppose that
there is a parallel-series logical arrangement which is not
well-ordered and which possesses the highest possible reli-
ability. Without loss of generality, suppose that the parallel
branches in this arrangement have been re-arranged in such
a way that for any two branches ‘i′, ‘j′ for which i < j, the
reliability Ri of the branch ‘i′ is not less than the Rj relia-
bility of branch ‘j′(Ri ≥ Rj). If the parallel-series arrange-
ment is not well-ordered, then there must be two branches
with indices a and b(a < b) and reliabilities Ra ≥ Rb,
where there will be at least one component in branch a
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with a smaller reliability than the reliability of the analogous
component in branch b. Suppose thatRa = a1a2×· · ·×ana

and Rb = b1b2 × · · · × bnb are the reliabilities of branches
a and b and na, nb, nb are the number of components in
branches a and b, correspondingly. The quantities ai and
bi stand for the reliabilities of the components in branches

‘a’ and ‘b’, respectively. Without loss of generality, sup-
pose that ‘na′ and ′nb′ are the indices of the two analogous
components in branches ‘a’ and ‘b’, for which ana < bnb is
fulfilled.

The reliability of the initial system can be presented as

Rsys1 = 1− (1− a1a2 × · · · × ana)(1− b1b2 × · · · × bnb)× [1−Rrest] (8)

whereRrest is the reliability of the rest of the parallel-series
arrangement (not including branches ‘a’ and ‘b’).

After swapping the components with indices na and nb, the
reliability of the resultant system becomes

Rsys2 = 1− (1− a1a2 × · · · × ana−1bnb)(1− b1b2 × · · · × bnb−1ana)× [1−Rrest] (9)

Subtracting (9) from (8) yields:

Rsys1 −Rsys2 = (ana − bnb)(a1a2 × · · · × ana−1 − b1b2 × · · · × bnb−1)× [1−Rrest] (10)

Because Ra = a1a2 × · · · × ana ≥ Rb = b1b2 × · · · × bnb

(by the way the branches have been arranged in descending
order according to their reliability) and because ana < bnb

by assumption, the inequality

a1a2 × · · · × ana−1 > b1b2 × · · · × bnb−1 (11)

holds, which means that in equation (10),

a1a2 × · · · × ana−1 − b1b2 × · · · × bnb−1 > 0

Since 1−Rrest > 0 and ana − bnb < 0, the right hand side
of equation (10) is negative, which means that the resultant
system (after the swapping of components) has a higher re-
liability (Rsys2 > Rsys1). This contradicts the assumption
that the initial system (before the swap of components) was
the system with the highest possible reliability. Therefore,
the reliability of a system which is not well-ordered, can
always be improved by swapping components between par-
allel branches until a well-ordered system is finally attained.
The well-ordered system is unique and there can be no dis-
tinct two well-ordered systems. Because a parallel-series
system can either be a well-ordered or not well-ordered sys-
tem, the well-ordered system has a higher reliability com-
pared to any other arrangement. The theorem has been
proved.

This result provides an opportunity to remove the maximum
amount of total risk of failure in parallel-series arrange-
ments by concentrating the available resources on renewing
single parallel branches as opposed to renewing randomly
selected components in the system.

This result also provides the valuable opportunity to im-
prove the reliability/availability of common engineering

systems with parallel-series logical arrangement of their
components without the knowledge of their reliabilities and
without any investment. Unlike traditional approaches,
which invariably require resources to achieve a reliability
improvement and system risk reduction, a risk reduction can
also be achieved at no extra cost, by appropriate permuta-
tion of the available interchangeable components between
the parallel branches.

Components of similar level of deterioration (reliability lev-
els) should be placed in the same parallel branch. Although
this study is related to systems with parallel-series logical
arrangement, it clearly identifies the need to explore possi-
bilities for improving the reliability and availability of sys-
tems with topologically complex arrangement, at no extra
cost, achieved solely by permutations of interchangeable
components.

4 Conclsuions
1) The classical (0-1) knapsack dynamic programming for-
mulation used for optimal allocation of safety resources to
achieve a maximum benefit yields highly undesirable solu-
tions, wasting resources on insignificant risk reduction.

2) The classical knapsack dynamic programming approach
maximises the total benefit derived from items ‘filling a
space’ with no intrinsic value. While this is an appropri-
ate formulation for packing and cargo loading problems, for
applications involving capital budgeting, this formulation is
deeply flawed. The reason is that budgets do have intrinsic
value and their efficient use is just as important as the max-
imisation of the benefit derived from the budget allocation.

26 ISSN 1927-6974 E-ISSN 1927-6982



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 4

3) A new resource allocation model has been proposed,
where the weighted sum of the benefit (total removed risk)
and the remaining budget is maximised. The proposed
model produces solutions superior to both – the classical
(0-1) dynamic programming approach and the cost-benefit
approach.

4) The proposed approach promotes a more efficient use
of the risk reduction resources by preventing them from
being locked into insignificant benefit improvement. The
proposed approach permits freeing risk-reduction resources
from areas of diminishing returns to other areas where more
risk could be removed with the same levels of investment.

5) Because of synergistic effects, sets including the same
number of identical options could remove different amount
of total risk. The existence of synergistic effects does not
permit the application of the (0-1) dynamic programming
approach. In this case, specific methods for optimal re-
source allocation should be developed.

6) For systems with parallel-series logical arrangement,
the maximum amount of risk is removed by using the
available resources preferentially, on improving the relia-
bility of operations/components building an entire parallel
branch. Improving the reliability of randomly selected op-
erations/components leads to a sub-optimal risk reduction.

7) The concept ‘well-ordered parallel-series arrangement’
has been introduced and, by using the extreme principle,
a relevant theorem has been stated and proved: ‘among
all possible parallel-series logical arrangements, the well-
ordered parallel-series arrangement has the highest reliabil-
ity’.

8) The proposed approach, based on well-ordered parallel-
series arrangement, makes it possible to increase the reli-
ability and availability of engineering systems at no extra
investment. This creates the attractive opportunity to sig-
nificantly increase the competitiveness of many engineering
companies.
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