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Abstract

Adaboost.RT is a well-known extension of Adaboost to regression problems, which achieves increased accuracy by iterative
training of weak learners on different subsets of data. At each iteration, the prediction error is compared against a threshold,
which is used to increase or decrease the weight of the sample for the next iteration. Adaboost.RT is susceptible to noise
and contains a singularity in its misclassification function, which results in reduced accuracy for output values near zero. We
propose Adaboost. MRT, which extends Adaboost.RT to multivariate output, addresses the singularity in the misclassification
function and reduces noise sensitivity. A singularity-free, variance-scaled misclassification function is proposed that generates
diversity in the training sets. Adaboost. MRT boosts multivariate regression by assigning each output variable a weight for each
sample in the training data. To avoid fitting to outliers, the sampling weights for the training sets are averaged across all output
variables. The threshold parameter is extended to accommodate the multivariate output and experiments suggest that for small
amounts of output variables, the threshold can be tuned for each output variable individually. Comparisons on six singlevariate
output datasets show that the proposed Adaboost. MRT outperforms Adaboost.RT on datasets with values near zero or with large
noise and displays a similar accuracy otherwise. Experiments with three multivariate output datasets show that Adaboost. MRT

performs similar or better than bagging and a simple averaging ensemble.
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1 Introduction

Ensemble prediction and learning is a widely used tech-
nique in machine learning and artificial intelligence to im-
prove prediction accuracy through the combination of mul-
tiple predictors/learners.!!! Ensembles display better clas-
sification accuracy than each individual predictor if the en-
semble consists of diverse predictors.?! Predictors are said
to be diverse if they have different error characteristics (e.g.,
mean, variance) on data points.®! The rationale behind the
use of ensembles acknowledges that it may be hard to find
an individual optimal learner and may be more practical to
select a combination of sub-optimal or "weaker" learners.

While the exact performance increase is difficult to deter-
mine, ensembles perform better than the ensemble’s weak-
est learner. Published work reports increased accuracy of
ensembles over single classifiers./>*>!

Bagging (bootstrap aggregating) and boosting are two en-
semble methods that use multiple predictors to improve the
accuracy for regression and classification problems. The
size of the available training data is increased and diver-
sified by repeated sampling, with replacement, from the
original dataset. In bagging, the samples are chosen with
equal weights. In boosting sampling occurs sequentially
with weights that are updated based on the accuracy of pre-
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vious predictions. Boosting methods are generally learned
in series, whereas bagging can be readily parallelized for
faster learning. These methods work best on unstable learn-
ers such as the neural network or decision trees technique.
There is some evidence suggesting that boosting has in-
creased accuracy over bagging.>:%1 However in Ref.5 and
Ref.7, the authors present examples of boosting’s perfor-
mance degradation in the presence of noise. The sequential
sampling of boosting techniques allows the ensemble to fo-
cus on harder examples, but may result in over-fitting. For
an overview on boosting methods, see Ref.8.

1.1 Adaboost methods

Adaboost, one of the first practical boosting methods, was
introduced by Freund and Schapire.®'% In Adaboost, weak
learners are combined, “boosted”, to improve ensemble ac-
curacy and produce a “strong” classifier. In classification,
weak learners exhibit only a small correlation between the
prediction and the true value. Specifically, a weak learner
has prediction accuracy of just over 50%, which is only
slightly better than random guessing. Weak learners are
used in ensembles, because a complex function can be de-
scribed by many general trends, which can result in a strong
approximation of that function. It is also often difficult to
select an individual optimal learner and boosting simplifies
that selection.

In Adaboost, the training data is iteratively sampled, with
replacement, to train the weak learner. The predictive per-
formance of the weak learner hypothesis is evaluated and
the sampling distribution weights are updated, giving more
weight to the misclassified examples. The next learner sam-
ples from the updated distribution and the learning process
is repeated. Training set diversity is introduced by train-
ing the next weak learner on the previously misclassified,
or “hard”, examples. The final output of Adaboost, is a
weighted combination of all hypotheses, with the weights
corresponding to each individual hypothesis’ prediction er-
TOT.

Adaboost featured some practical advantages: its low im-
plementation complexity and the introduction of only a sin-
gle tuning parameter, the number of iterations T. However,
the accuracy that can be expected is dependent on the base
learning algorithm and the available data. Boosting is sus-
ceptible to noise and Adaboost will fail if there is insuffi-
cient data, or if the prediction hypothesis is too weak.1!

Following the introduction of Adaboost, the research effort
shifted to the extension of the algorithm to accommodate
a wider set of problems and to address its short-comings.
Adaboost focused on binary classification but has been
extended to multi-class classification (Adaboost.M1, Ad-
aboost.M2[!'). In Ref.12, Sun et al. present cost-sensitive
modifications that handle class-imbalances in pattern recog-
nition, which are data with significant differences in prior
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probabilities.

Boosting is prone to over-fitting and is therefore noise and
outlier sensitive.[-13 141 Strategies that address this noise
sensitivity generally fall into two major categories:'3! (1)
revision of the weight updating mechanism to correspond to
amodified loss function; (2) filtering of outliers or modifica-
tion of the weights that are assigned to noisy data in the final
hypothesis. Following the first strategy, ND-Adaboost!!3]
was introduced, which addresses boosting’s noise sensitivity
and improves performance by a noise detection mechanism.
Along the second strategy is the AveBoost algorithm,!> 16!
in which the weighting distributions of the current and pre-
vious iteration are averaged. This averaging reduces the
impact of outliers on the final hypothesis by limiting the
weight that these outliers can be assigned. The reduction of
the sampling weight of outliers reduced the likelihood that
learners will pick these values for the following iterations
and thus reduced the chance of fitting to outliers.

1.2 Adaboost for regression

The successful application of Adaboost for classification
problems led to the extension of Adaboost to regression
problems. Adaboost’s modular nature allows for improve-
ments of the regressors and for the adaptability to specific
problems.®! For an overview of regression boosting meth-
ods see.!!”]

Adaboost.RT (where RT is an abbreviation for regression
threshold) is based on Adaboost.M1, which was modi-
fied for regression and was introduced by Solomatine and
Shrestha.l'8191  Adaboost.RT creates a sample from the
available training data using the sampling weight vector Dy.
The base learning algorithm uses this sample to create a hy-
pothesis that links the input to the output data. This hy-
pothesis is applied to all the data to create predictions. The
absolute relative error is calculated for each prediction and
compared against a threshold ¢. The absolute relative error
is the percent error of the prediction compared to the true
value. The threshold ¢ is used to classify the predicted val-
ues as correct or incorrect. This threshold comparison modi-
fies the regression task to a classification problem. The sam-
pling weight of incorrectly predicted samples is increased
for the next iteration. Adaboost.RT displayed better perfor-
mance than a single artificial neural network (ANN) at the
cost of the introduction of a new tuning parameter ¢. Ad-
aboost.RT did not have an early stopping criterion like sim-
ilar regression boosting methods such as Adaboost.R2 and
the number of iterations can be chosen depending on the re-
quired accuracy (up to a limit). Follow-up work compared
performance to Adaboost.R2, bagging, and artificial neu-
ral networks among others and reported better results with
Adaboost.RT.""”! Performance comparisons of Adaboost.RT
with various other algorithms can be found in Ref.19 and
Ref.20.
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Unlike other Adaboost-based regression techniques, Ad-
aboost.RT requires the selection of an additional tuning pa-
rameter ¢.['°'The parameter ¢ affects the accuracy of the
ensemble, as it influences the sampling weights of the in-
stances and thereby modifies the diversity of the training
data. A small threshold will classify the majority of pre-
dicted values as incorrect and result in a near uniform sam-
pling distribution, which will resemble bagging. A thresh-
old that is set too large will result in fitting to extreme out-
liers. An adaptive work-around for the problem has been
proposed in Ref.21 and 22, by recursive adjustment of ¢.
However, the equations presented in Ref.22 enable the value
of ¢ to become negative, which is physically meaningless
and force the algorithm to fail. From Ref.22, the value of ¢
at iteration t+1 is

)]

D1 = dp(1 — N),while ey < e;_1
D11 = di(1 4+ N),while ey > ey

where e, is the root mean squared error (RMSE) at iteration
t and by definition e; > 0. The value A is

€t —€t—1

A=r 2)

€t

where r is a tuning constant. The term 1-\ will be negative,
leading to a negative ¢, if e;_1 > 2e; (for r=1). This prob-
lem can be managed by selecting the value of r sufficiently
small to let A < 1. The reduction of the magnitude of r also
limits the algorithm’s ability to change and adapt the value
of ¢. The method shifts the tuning parameter from ¢ to r.
The adaptive method will however not fail as long as

3)

(&
-t > |€t — 6t71|
r

and as long as e; # 0.

An additional limitation of Adaboost.RT is the definition of
the misclassification function Er:(4) as the absolute rela-
tive error. This error function is a direct implementation
of the Adaboost.M1 algorithm and classifies a sample pre-
diction based on the percent error of the prediction f;(x;)
compared to the true value y;. The absolute relative error is
calculated at each iteration and is defined as

fe(@i) — i
Yi
This definition of the error function contains a singularity

when the true value y;=0.

Values near zero receive an artificially high absolute relative
error and are always classified as incorrect and their sam-
pling weight increases. Values near zero will be selected
more frequently for training and the accuracy of the val-
ues away from the zero-crossing will decrease. The perfor-
mance of the entire ensemble is degraded when the output
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variable contains a zero-crossing in the output data. This
issue is illustrated in Figure 1, with training data sampled
from the noise-less function y = xz. Despite the lack of
noise, the overall accuracy of the algorithm is degraded.
Training instances near y=0 are repeatedly sampled and
identified to a high accuracy, but the values away from the
zero crossing, experience a very high relative error.
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Figure 1: Performance comparison of Adaboost.RT and
Adaboost. MRT for estimation of the noise-less function

y = z. The accuracy of Adaboost.RT is negatively affected
by the singularity in the misclassification function.

Some possible remedies include a data transformation, by
the addition of a constant to the output data''®! or the use of
the absolute error misclassification function defined by

Er(i) = [fi(zi) — il (&)
The absolute error function, makes the determination of a
threshold ¢ difficult, since it is directly linked to the nu-
merical value of the output data. Absolute error-based mis-
classification functions attempt to increase accuracy at each
sample. Given noisy training data the general shape of the
function is more important than the accuracy at each sample
to avoid over-fitting to noise.

Despite its short-comings, Adaboost.RT is shown in liter-
ature to provide good results, with a few papers detailing
applications to real problems: in Ref.21 and 22 for molten
steel temperature prediction, in Ref.23 for music emotion
classification with a regression approach, in Ref.24 for soft-
ware reliability modelling and in Ref.25 for intensity esti-
mation of facial action units. These methods were used to
estimate a single output variable only. To the best of the au-
thor’s knowledge, the Adaboost algorithm has not been used
for multivariate output regression.
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1.3 Contributions

This paper presents Adaboost. MRT (Adaboost Multivariate
Regression Threshold), a multivariate regression algorithm
which is based on Adaboost.RT. Adaboost. MRT takes in
a set of labelled training instances S = {(@n,yn),n =
1,2,--+,m}, where y, is an R-dimensional vector of out-
put data and x,, is a multi-dimensional vector of input data.
The regression model f;(x) is built over 7' learning iter-
ations, with training data generated by iterative sampling
from the m available instances.

The first major contribution is the improvement of the mis-
classification function of Adaboost.RT. The singularity in
the absolute relative error function of the original algorithm
potentially degrades the accuracy of the ensemble. In the
proposed formulation, a variance-scaled error function is se-
lected that allows for zero-crossings in the output data with-
out the need for output data transformation. The variance-
scaled error function always classifies a portion of the pre-
dictions as incorrect at each iteration, which also avoids fit-
ting to outliers. As part of a variance-scaled misclassifica-
tion function it was also necessary to change the output of
the ensemble from a weighted output as, in Adaboost.RT, to
a simple average output.

The second major contribution is the extension of Ad-
aboost.RT to accommodate multivariate output. The pro-
posed method modifies the sampling distribution into D,, ¢
an R x m vector which maintains the weight distributions
of all R output variables for each of the m instances. Every
entry in D,, ; tracks how well each of the R output variables
have been predicted by the previous ¢ learners. This new dis-
tribution is called the output error distribution and is a mea-
sure of the prediction error at each output variable. At each
iteration, the instance sampling weight Dy is the average of
the weights of the R output variables within the instance.
Similar to AveBoost,!'>1] this averaging reduces the im-
pact that an outlier within the R output variables has on the
weight of the training instance. This strategy is aimed at
reducing the algorithm’s noise and outlier sensitivity when
dealing with multivariate output data.

Adaboost. MRT addresses Adaboost’s noise and outlier sen-
sitivity in two ways: (i) by the redefinition of the misclas-
sification function (Equation (6)) and by (ii) averaging the
sampling distribution of the output variables for multivari-
ate output (Equation (10)). The variance-scaled misclassi-
fication function classifies the least accurate samples as in-
correct at each iteration based on ¢. The misclassification
of the least correct predictions generates training set diver-
sity in successive training iterations. The averaging of the
sampling distribution across the output variables, for mul-
tivariate output, prevents a single outlier in y from overly
increasing the value of a particular instance. This averaging
limits the impact of outliers in one output variable on the
entire sample distribution.
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Adaboost.MRT is tested and validated against Adaboost.RT
and their base learning algorithm, the artificial neural net-
work, on six commonly used singlevariate output datasets.
Performance comparisons for Adaboost.RT against other
methods can be found in Ref.18-20. Thus, the singlevari-
ate experiments in this paper only focus on comparing the
performance of Adaboost. MRT against Adaboost.RT. The
Friedman #1, #2, and #3 data sets are commonly used
for regression performance evaluation. The Gabor and the
sinc|x| function were used due to their zero-crossing in the
output data. The yacht hydrodynamics dataset from the UCI
Machine Learning database was used to assess the accuracy
on real data. The noise sensitivity of Adaboost.RT and Ad-
aboost. MRT was compared in an experiment that varied the
noise-to-signal magnitude ratio for the Friedman #3 dataset
and the sinc|z| function.

For multivariate output, Adaboost.MRT is tested and val-
idated against bagging, the simple averaging of 10 neural
networks trained under similar conditions, and a single iter-
ation of the base learning algorithm. The bagging and the
simple averaging method contain 10 neural networks and
were included to test whether Adaboost. MRT improves the
way that each learner is trained. The performance compari-
son was done on three multivariate output datasets.

Following the introduction, the Adaboost. MRT algorithm is
presented in Section 2. Experiments with singlevariate out-
put are presented in Section 3. Multivariate output exper-
iments are presented in Section 4 and concluding remarks
are found in Section 5.

2 Adabost.MRT algorithm

The proposed Adaboost. MRT algorithm is capable of esti-
mating vector outputs y from vector inputs . There are
three main phases: (i) the initialization phase, (ii) the train-
ing phase, and (iii) the output phase.

During the initialization phase the following parameters
have to be selected: a base learning algorithm, the num-
ber of iterations 7', and the threshold parameter ¢. The base
learning algorithm is the method that will create a hypothe-
sis f(x) — y. Previous work used M5 model trees or neu-
ral networks as the base learner.'"”! Adaboost. MRT boosts
the accuracy of weak learners, by training multiple of these
consecutively and providing each with a different portion
of all the available training data. The number of iterations
T has to be selected during the initialization phase. Previ-
ous work on Adaboost.RT (which the proposed algorithm
is based on) shows that there is limited accuracy decrease
beyond T'=10 iterations.!'”) The threshold ¢ is used to in-
crease the sampling weight of incorrectly predicted samples
(explained in Section 2.2). The value of ¢ affects the ac-
curacy of the entire ensemble. A section of the available
training data should be used to train Adaboost. MRT for dif-
ferent values of ¢. The value of ¢ that gives the lowest error
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on the small sample, should be used to generate a final hy-
pothesis for your data (see Section 3.2 for scalar output and
Section 4.3 for vector output).

During the training phase 7' different learners are trained.
Each learner is passed a small subset of the entire data and
generates a hypothesis f;(x) — y. This hypothesis is then
used on the entire training data to evaluate how well the
learner predicts the data. Each correctly predicted sample
(based on ¢) has its sampling weight decreased and each
incorrectly predicted sample has its sampling weight in-
creased, making it more likely to be selected for the next
iteration.

The output phase is used once an entire ensemble has been
trained. The output of the ensemble is an averaged output of
the 7" learners.

An overview of the Adaboost. MRT procedure is given in
Algorithm #1. The initialization phase is detailed in Section
2.1. Section 2.2 describes the steps that occur at each itera-
tion during learning and Section 2.3 describes the way that
Adaboost. MRT outputs predictions.

2.1 Initialization phase

Adaboost. MRT is passed m training instances and each in-
stance consist of vector input data « and vector output data
y = (y1,¥2, -+ ,Yr), where R is the number of output vari-
ables in the vector y and r denotes the index of the output
variable (r = 1--- R) within y. The number of iterations
T is also defined, where t denotes the index of each learner
(t=1---T).

The weights in Dy (an m X 1 vector) are initialized as a uni-
form distribution and correspond to the sampling weight of
each instance in S, which describes an instances likelihood
to be selected for training. This distribution Dy is updated
at each iteration to assign more weight to the misclassified
predictions. Hard examples in the training data will be se-
lected more frequently than samples that are accurately pre-
dicted, which generates predictors in the ensemble that are
specialized on harder examples.

The output error distribution D, ; is an 2 x m vector, which
contains the prediction accuracy for each output of the R
output variables for all m training instances. The output
error distribution is an extension of the Adaboost.RT al-
gorithm to the multivariate output case and is initialized
as 1/m. Prior to training, a threshold parameter vector
¢ = [¢1 - - - ¢R] is initialized. These thresholds are used to
classify the predictions as correctly or incorrectly predicted.
The optimal threshold value ¢, that results in the lowest
RMSE for a given dataset is selected from experiments in
which the value of ¢ is varied (see Sections 3.2 and 4.3).
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2.2 lteration phase

A regression model f;(x) — y is created at each iteration
from N training examples (where N < m). The [N samples
are randomly selected, with replacement, from the original
m training instances using the sampling weights D;. Let ¢
denote the index of the instance with ¢ = 1,2,--- ,m. The
regression model is used on all m instances to predict the
output y. This prediction is used in the variance-scaled er-
ror function

_ [fe(@i) — yral

S0 =
O

6
Equation (6) calculates the absolute error of the prediction
and divides it by the standard deviation of the absolute error
for all m predictions at(r) of an output variable. The result-
ing quantity is a measure of prediction error for instance ¢
of output variable 7, compared to all predictions at this iter-
ation. Equation 6 is defined for all at(r) > 0, which is true
for most predictions that have error.

The error function output is an R X m dimensional vector
and is compared to the threshold ¢. The weights in Dy ,.
of the misclassified samples are added to create the misclas-
sification error rate 5&”, an R x 1 dimensional vector. The
misclassification error rate is a measure of how many "hard"
examples the regression model misclassified. In the context
of a variance-scaled E'r(r), "hard" examples are not nec-
essarily outliers, they are examples that previous regression
model iterations have classified as incorrect. A large value
means that the regression model classified a lot of the “hard”
examples as incorrect. The error rate is used in

Bew = ()" )

to calculate the weight updating parameter j3;, using the
power coefficient n. The power coefficient governs the sam-
pling weight increase for incorrect predictions for the next
iteration. In Ref.19 a power coefficient of n=2 and n=3 was
suggested, but the authors warn that a large power coeffi-
cient may result in fitting to specific examples and may fail
to generalize. If n is set too large, the algorithm will fit
to outliers in a manner similar to Adaboost’s zero-crossing
problem (see Section 1.2).

The weight updating parameter 3, , updates the weights in
the output error distribution in D,S:g 11(2) by

) . ).
Dy,t—i—l(r)(i) — Mx {6t,r; if Erg )(z) < ¢, ®)

Iy 1, otherwise

The weights of the correctly classified examples in Equa-
tion (8) are multiplied by ;. If the current iteration mis-
classified a lot examples (i.e. little additional diversity or
bad prediction), 3;, will be close to 1 and the weights in
D, will remain nearly unchanged. Conversely, if the pre-
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diction is good, the weights of correctly classified examples  distribution D, ; for each instance in m given by
are reduced. The sampling weight distribution Dy for the
next iteration is updated as the average of the output error

R _
Dia(i) = 5 > D, ) 9)
k=1

Algorithm 1 Generalized Procedure for the Adaboost Multivariate Regression Threshold (Adaboost.MRT) algorithm,
capable of estimation of R sized output vectors.

1. Input:
e Sequence of m examples < x1,y1 > -+ < X;n , Vm > Where the output y = (y41, ¥4, ..., Vr) ER
e Weak learning algorithm (""Weak Learner")
e Integer T specifying number of iterations or machines
e Threshold vector ¢ = (¢4, ..., Pr), (0 < ¢p) used to classify samples as correct and incorrect
2. Initialize:
e Machine number or iteration, t = 1
e Set the sampling weight distribution D, (i) = 1/m for all i
*  Setthe output error distribution D, (i) = 1/m forall i
e Set misclassification error rate vector of size Rto el =0
3. Iterate while t < T:
e Sample N examples from sequence of m, using weights D, with replacement (where N < m)
*  Give these N examples to the Weak Learner
e Build the regression model f;(x) - y
*  Calculate the error function on all m examples for each output variable:

x. —_ .
Ert(r)(i) — |ft( l)(r) yr,l'
9

where at(r) is the sample standard deviation of (f;(x;) — y,;)
e Calculate the misclassification error rate for every output of f;(x):

V= ) DRw
EEr (D>,
e Set the weight updating parameter
Ber = (gt(r))n
where n= power coefficient (e.g. , linear, square or cubic)
*  Update the output error distribution D,,  as:

i , .
Dyt+1(r)(i) — Dy,t ® x {:Bt,r Jif Ert(r)(l) < ¢,

Zy 1 ,otherwise
where Z, is a normalization factor such that Dy_Hl(T) will be a distribution.
e Update the sample weight distribution as the average of the error rate of each output variable r for each i:

T
C_INY e
Dea@® =% Y DIP@)
k=1
° Sett=t+1.

4. Output the final hypothesis:

Yoo = ZAW
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2.3 Output phase

The final hypothesis y of Adaboost.MRT is the averaged
output of all the T learners.

(10)

During learning, 7' different learners are trained and Ad-
aboost. MRT diversifies the training data to created diverse
learners. Adaboost.RT outputs a weighted sum, based on
the accuracy of each learner, which may however lead to fit-
ting to noise in noisy data sets. Previous iterations of the
Adaboost. MRT algorithm considered the use of the weight
updating parameter f3; ., to scale the output. The parameter
B¢, is derived from a variance-scaled quantity and is thus
not a good predictor of accuracy. The increase in accuracy
for a simple averaging output can be attributed to an increase
of diversity in the learners.

3 Performance evaluation for scalar output
datasets

3.1 Datasets

The performance of Adaboost. MRT was tested on six
datasets and compared to that of Adaboost.RT, a single iter-
ation of their weak learner i.e., the artificial neural network
(ANN), and a simple averaging ensemble. The averaging

ensemble consisted of 10 neural networks that were passed
N randomly selected sampled. The output of the averaging
ensemble was an average of all 10 neural networks. This
type of ensemble was included to demonstrate the creation
of diverse learners by Adaboost.MRT and to showcase that
it is more accurate than simply 7" different learners.

Six datasets (five of which appeared in Ref.20 and 26) were
used for performance comparison. Each dataset consists of
vector inputs and scalar outputs. The six datasets are the
Friedman #1, #2, and #3 datasets, the Gabor function, the
sinc|x| function, and the yacht hydrodynamics dataset from
the UCI Machine Learning Repository.[?’! These test sets
are commonly used for performance evaluation in regres-
sion literature. The Friedman #1, #2 and #3 have been used
in boosting regression in Ref. 6,19,20,26,28,29.

The Friedman #1 dataset has 10 input variables, 5 of which
do not contribute to the output. The Friedman #2 and #3 test
set model the impedance and phase shift in an alternating
circuit.”! The Gabor and the sinc|z| function have been
selected for the zero-crossing in the output data. The yacht
hydrodynamics dataset was selected for function estimation
of real measured data. The equations and parameters for the
test sets are shown in Table 1. Uniformly distributed noise
€ was added to the output variable y in the training data.
The noise magnitude parameters are shown in Table 2. The
RMSE was calculated against the noiseless function.

Table 1: Dataset equations used in the performance evaluation

Dataset Function Input Variables Size, m
. i~U10,1],
Friedman #1 y = 10sin(mwx;x;) + 20(x3 — 0.5)% + 10x, + 5x5 ;CL_ 1[ 1(]) 5000
x,~U[0,100]
2
. 4
Friedman #2 y= [x2 + (x5 — (L) x,~U[40m, 5607] 5000
i XZX4 'x3 U[O 1]
x,~U[1,11]
1 x,~U[0,100]
X2X3 = >
Friedman #3 y=tan~!| — 2% %, ~U[40m, 560m] 3000
X1 x3~U[0,1]
x,~U[1,11]
T x,~U[0,1]
Gabor y = Eexp[—Z(xl2 + x2)] cos[2m(x; + x5)] x: ~U[01] 3000
. . sin |x|
sinc|x| y = sinc|x| = ] x~U[-2m, 2] 5000
Yacht Yacht Hydrodynamics Dataset x,i=1..6 308

The neural networks are trained by the back-propagation al-
gorithm in a MATLAB implementation. The neural network
consisted of one input, one hidden, and one output layer
with the number of hidden nodes H shown in Table 2 for
each dataset. The architecture of the neural network was

70

not optimized for accuracy, as the relative performance of
the tested algorithms was more important. The power coeffi-
cient n=1 was used in the Adaboost. MRT and Adaboost.RT
algorithms to reduce the probability of fitting to outliers.
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3.2 Optimization of the threshold parameter ¢

The threshold parameter ¢ affects the accuracy for Ad-
aboost.MRT and Adaboost.RT. An experimental search for
an optimum value of threshold ¢ is presented in this section.
The optimum value ideally gives the lowest error. For clar-
ity, the thresholds will be referred to as ¢ g and ¢ps g for
Adaboost.RT and Adaboost. MRT, respectively.

The threshold parameter search used a k-fold cross-
validation with k=10. In a k-fold cross-validation the data
is partitioned into k£ equal folds and the algorithm is trained
on all data except one fold for each of the k folds.*®! The
data contained in the fold left out of the training data is used
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to calculate prediction error. The yacht dataset used 4-fold
cross-validation due to the low number of samples.

All experiments used the same data for each value of ¢.
The search range for ¢z was [0.1,0.16], with steps of 0.01
and the search range for ¢, rr was [0.05,0.01,. ..,1.5] with
steps of 0.1. The resulting mean RMSE is shown in Figure
2 and the standard deviation is not shown for clarity. The
training data for the search was only generated once. There
will be variation in the results shown in Figure 2 for a dif-
ferent set of generated data but it was found that the trends
presented in the figure can still be used to find a best ¢,
which results in a low prediction error. The best values for
¢ that were found are shown in Table 2.
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Figure 2: Variation of ¢;rr(black) and ¢ grr(red) and the resulting mean RMSE for a single cross-validation test for six

singlevariate output datasets.
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Table 2: Training parameters for the datasets, showing the number of nodes in the hidden layers, the Adaboost.RT
threshold ¢ pr, the Adaboost. MRT threshold ¢y;rr and the sample size IV for each iteration. The power coefficient n=1

was used for all tests.

Dataset Nodes, H brr DmrT Sample Size, N Noise, &
Friedman #1 10 0.05 0.8 2000 U[-2,2]
Friedman #2 20 0.04 0.9 2000 U[—120,120]
Friedman #3 95 0.07 05 1200 U[—-0.4,0.4]
Gabor 45 0.10 0.9 1200 U[-0.2,0.2]
sinc|x| 10 0.10 1.3 2000 U[-0.2,0.2]
Yacht 10 0.03 0.4 150 -

There are significant performance gains in the sinc|z| and
the Gabor function prediction for a wide range of ¢rsrr.
This performance gain can be attributed to the zero-crossing
in the data, which causes over-fitting in the prediction of Ad-
aboost.RT. The main factor that affects the selection of ¢ is
the prediction error distribution. Large errors were observed
for ¢prrT>1.5, which can be attributed to lack of diversity
in the training data, since the learners will only fit to extreme
outliers if the threshold is too large.

3.3 Performance for
datasets

comparison singlevariate

The parameters from Table 2 were used to compare the pre-
diction performance of Adaboost.RT, Adaboost.MRT, a sin-
gle iteration of the base learning algorithm, and a simple
averaging ensemble. The root mean square error (RMSE)
was used as the metric for performance comparison of the
ensemble methods. The data for the comparison was gen-
erated once and the learners were trained 30 times. At each
of the 30 repetitions the data was randomly shuffled. Of
the total number of data points m, 9/10 was used for train-
ing and 1/10 was used for testing. Previous work suggests
that there is little reduction in RMSE past T=10 iterations
for Adaboost. MRT, ! thus T'=10 iterations was used for all
experiments.

The resulting mean RMSE and the standard deviation of the
30 repetitions is shown in Table 3. The results in Table 3
differ slightly from Figure 2, especially for the sinc|x| func-
tion. The optimum threshold search used a cross-validation
and the data was also regenerated for the performance eval-
uation. Adaboost.MRT has the lowest numerical mean for
four of the six datasets and outperforms Adaboost.RT on
five of the six datasets (except the Yacht dataset). The sim-
ple averaging ensemble outperforms all other ensembles on
the Friedman #3 dataset by a small margin.

Adaboost. MRT significantly outperforms Adaboost.RT on
the sinc|x|, and the Gabor dataset, due to the zero-crossing
in the output data. The Friedman #2 dataset does not
contain a zero-crossing; however the addition of noise
likely resulted in the introduction of some, thus letting Ad-
aboost.MRT outperform Adaboost.RT.

These results show that Adaboost. MRT should be consid-
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ered over Adaboost.RT for output that contains a zero-
crossing (based on sinc|z| and Gabor performance). In
some cases, the noise in the system can introduce zero
crossings, which may reduce the accuracy of Adaboost.RT
(Friedman #2). Adaboost. MRT has outperformed Ad-
aboost.RT in five out of six of the experiments while main-
taining the same number of tuning parameters.

Table 3: Performance comparison of Adaboost.RT,
Adaboost.MRT, a single iteration of the ANN, and a simple
averaging ensemble trained on the same data. The lowest
values for each dataset are shown in bold font.

Dataset Method RMSE Mean RMSE Std.
Dev.
Adaboost.RT 0.2936 0.0367
Friedman #1 Adaboost. MRT 0.2674 0.0373
Averaging Ensemble 0.2873 0.0347
Single ANN 0.3664 0.1765
Adaboost.RT 10.221 0.845
Friedman #2 Adaboost. MRT 9.174 0.714
Averaging Ensemble 9.485 0. 827
Single ANN 12.237 1.9853
Adaboost.RT 0.0965 0.0091
Friedman #3 Adaboost. MRT 0.0964 0.0096
Averaging Ensemble 0.0941 0.0083
Single ANN 0.1251 0.0187
Adaboost.RT 0.00994 0.00126
i Adaboost. MRT 0.00618 0.00084
sinclx| Averaging Ensemble 0.00966 0.00099
Single ANN 0.01268 0.00474
Adaboost.RT 0.02564 0.00150
Gabor Adaboost. MRT 0.02126 0.00137
Averaging Ensemble 0.02422 0.00170
Single ANN 0.03294 0.00437
Adaboost.RT 0.8204 0.2661
Yacht Adaboost. MRT 0.9170 0.3693
Averaging Ensemble 0.9250 0.3890
Single ANN 1.2360 1.6643

3.4 Performance comparison with noisy data

The redefinition of the error function from the absolute rel-
ative error to the variance-scaled error function should re-
duce the RMSE in the presence of noise. Noise increases the
probability of near-zero values, which result in over-fitting
with Adaboost.RT. This claim is investigated in this section
using two datasets with an increasing signal-to-noise ratio
(SNR). The Friedman #3 dataset was used, since the perfor-
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mance for Adaboost.RT and Adaboost. MRT were similar in
Table 3. The sinc|x| function was selected to test perfor-
mance gains with an already present zero-crossing.

The noise was uniformly distributed with zero mean. The
noise amplitude was varied from a value of 0.2 and incre-
mentally doubled to 12.8 resulting in seven different noise
magnitudes. The parameters for the learners are shown in
Table 2. The performance was assessed under the same con-
ditions as Section 3.3, except with only 10 repetitions.

JE — ANN
s .|| = Adaboost.RT
= 10 H e, Adaboost. MRT
m
w e —
=
Rz 407 - 5
e 10 10
- ]
% 10
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n 107
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(a) Friedman #3 dataset

The average RMSE values were recorded for Ad-
aboost. MRT, Adaboost.RT, and the ANN. The results for
both datasets are shown in Figure 2. In the presence
of noise Adaboost. MRT achieves an approximately 5%
smaller RMSE than Adaboost.RT for the Friedman #3
dataset (see Figure 3 (a)) and a larger RMSE reduction for
the sinc|z| function (see Figure 3 (b)) for a large range of
noise magnitudes.
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(b) sinc|x| dataset

Figure 3: RMSE mean and standard deviation for a range of noise magnitudes for the Friedman #3 and the sinc|x|

datasets.

4 Performance evaluation for vector out-
put datasets

4.1 Datasets

This section investigates the proposed extension of Ad-
aboost.MRT to accommodate vector output data. The pro-
posed Adaboost. MRT is compared against a single iteration

of its base learner, bagging, and a simple averaging ensem-
ble. Three datasets were used for the comparison: two non-
linear functions and a dataset from the UCI repository. Table
4 shows the equations used to generate the datasets. A low
number of hidden nodes was selected for the multivariate
output experiments to test Adaboost. MRT’s ability to boost
the accuracy of weak learners.

Table 4: Dataset equations for the multivariate output performance evaluations.

Dataset Function Input Variables Size, m Sample Size, N
h —
X ( Z)rdcose h =10, 74 =10
3D Cone [y] =lat 2 z~U[0,10] 1000 900
T4Sin @ 0~U[—m, 7]
x 6 cos 0 -
Swiss Roll [y] = [ d ] d~UI0,10] 500 200
z 6sinf §~U[0,4n]
Energy Y1 .
= X i,i=1.. 7 7
Efficioncy yz] £y, Xy o X7) x,i=1..8 68 576

The first dataset is a function that describes a cone in 3D
space, with two input variables x = [z1,22] = [z, 0] and
two output variables y = [y1,y2] = [z,y]. The con-
stant parameter h indicates the height of the cone and ry
is the cone radius when z=0. Uniformly distributed noise
e ~ U[—2, 2] was added to the output variables. The neural
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network base learner consisted of one hidden layer and H=>5
hidden nodes.

The second dataset is the Swiss Roll function with two
inputs ®* = [z1,22] = [d,0] and three outputs y =
[y1,Y2,y3] = [z,y,2]. Uniformly distributed noise ¢ =
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U[-1.5,1.5] was added to both output variables. The
RMSE was calculated against the noiseless output variables.
The neural network consisted of H=3 hidden nodes.

The energy efficiency dataset®?! from the UCI Machine
Learning Repository predicts the heating and cooling load
on buildings depending on their parameters such as wall
area, roof area, surface area, etc. The dataset has eight real-
valued input variables and two real-valued output variables.
Uniformly distributed noise ¢ ~ U[—5, 5] was added to the
Energy Efficiency dataset output variables. The base learner
neural network consisted of =5 hidden nodes.

4.2 Comparison methods

Adaboost. MRT was compared to a single iteration of its
base learner, to a simple averaging ensemble, and bagging.
Each of the methods used the same base learner, the artificial
neural network (ANN). The bagging ensemble and the sim-
ple averaging ensemble have previously been used in Ref.20
for method validation. Adaboost. MRT combines the output
of multiple weak learners into a strong learner by manipu-
lating the training data, thus it was compared against other
boosting and bagging ensemble methods only.

The bagging method has been chosen because it is an en-
semble method similar to boosting. Each sample has the
same likelihood to be picked at each iteration. The sam-
pling likelihood of a sample in boosting is independent of
the performance of the previous learner. The bagging en-
semble consists of 7'=10 individual learners. The training
data for each leaner is sampled from the available data with
replacement and the output of the ensemble is averaged. The
sample size N was 900, 200, and 576 for the 3D cone, the
Swiss roll, and the energy efficiency dataset, respectively.

The simple averaging ensemble consists of 10 iterations of
the base learning algorithm. At each iteration, the averaging
ensemble is passed N examples, which were randomly cho-
sen with equal likelyhood. The output of the ensemble is an
averaged output of the 10 learners. The averaging ensemble
is used as comparison to investigate whether Adaboost. MRT
is better than just the average output of multiple learners.

The data for the comparison was generated once and reshuf-
fled after each test. Each test took the m examples and used
1/10*" for validation and 9/10*" for learning. The test was
repeated 30 times and a final RMSE mean and standard de-
viation of the 30 test was reported.

4.3 Adaboost.MRT threshold parameter selection

The parameter ¢ for the multivariate case is a multi-
dimensional vector ¢ = [¢1 - - - ¢r], which results in mul-
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tiple tuning parameters that affect the expected accuracy of
the ensemble. The best or optimal value ¢, for each out-
put variable for each dataset is experimentally determined
in this paper.

The best value ¢, for output y,. was determined by keep-
ing all other ¢ # r constant while changing ¢, from 0.1
to 1.4. For each value of ¢, a 10-fold cross-valdiation was
peformed and a mean RMSE calculated. From the results,
a general trend was determined and a “best” ¢, was se-
lected. This process was repeated for each of the R out-
put variables. The best determined value for the 3D Cone
data set was ¢ = [1.1,1.2], for the Swiss Roll dataset
¢ = [0.6,0.2,0.6] and for the Energy Efficiency dataset
¢ = [0.7,0.9]. This threshold selection becomes more
complex and time-consuming as more output variables are
added. Difficulty was experienced when tuning the Swiss
Roll dataset, due to the three output variables, which all af-
fect the RMSE. Further research into automated threshold
selection methods (via an optimization, for example) is war-
ranted.

4.4 Performance for multivariate

datasets

comparison

The RMSE mean and standard deviation for the perfor-
mance comparison is shown in Table 5, with the lowest
value for the mean and standard deviation RMSE shown in
bold font. All ensembles outperform a single iteration of
their base learner, except for Adaboost for the Swiss Roll
dataset y output variable, in which the single ANN outper-
formed the ensembles.

Simple averaging performs well when a strong learner, such
as a neural network with a large number of hidden nodes, is
used. Adaboost.MRT, a boosting method, outperforms bag-
ging and the simple averaging ensemble in the performed
experiments.

Some difficulties with relative accuracy increases were ex-
perienced with the Swiss roll dataset. As the accuracy of one
variables was increased, the accuracy of others diminished.
This points towards a difficulty with multivariate datasets in
achieving the lowest RMSE for all output variables.

Overall, Adaboost. MRT performs well, when pitted against
similar type of ensembles. Adaboost.MRT is capable of
boosting the accuracy of weak learners at the cost of in-
troducing a tuning parameter. More investigation into the
threshold parameters selection is warranted, as previously
suggested for Adaboost.RT.!'!
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Table 5: Performance comparison of Adaboost.MRT to bagging, a simple averaging ensemble, and a single iteration of
the base learner for the 3D Cone, the Swiss Roll, and the Energy Efficiency datasets. Lowest values are shown in bold

font.
Function Output Variable Method RMSE Mean RMSE Std. Dev.
3D Cone x Adaboost. MRT 0.1391 0.0237
Bagging 0.1656 0.0276
Simple Average 0.1608 0.0176
Single ANN 0.2212 0.0305
y Adaboost. MRT 0.1328 0.0202
Bagging 0.1709 0.0226
Simple Average 0.1690 0.0205
Single ANN 0.2446 0.0363
Swiss Roll x Adaboost. MRT 2.706 0.367
Bagging 2.849 0.390
Simple Average 2973 0.571
Single ANN 3.184 1.428
y Adaboost. MRT 0.868 0.302
Bagging 0.458 0.169
Simple Average 0.369 0.143
Single ANN 0.294 0.146
z Adaboost. MRT 3.158 0.290
Bagging 3.663 0.193
Simple Average 3.602 0.258
Single ANN 3.952 0.511
Energy Y1 Adaboost. MRT 2.526 0.154
Efficiency Bagging 2.701 0.155
Simple Average 2.748 0.155
Single ANN 3.025 0.607
V2 Adaboost. MRT 2.905 0.151
Bagging 3.039 0.171
Simple Average 3.076 0.181
Single ANN 3.286 0.468

5 Conclusions

In this paper Adaboost.MRT, a boosting algorithm for mul-
tivariate output regression, was introduced. The proposed
algorithm is based on Adaboost.RT and addresses the sin-
gularity in the misclassification function by introducing a
variance-scaled misclassification function and modifies the
ensemble output from a weighted to an averaged output.
To the best of the author’s knowledge, Adaboost.MRT is
the first algorithm that extends Adaboost to multivariate
regression, resulting in a boosted accuracy for machine
learning with multivariate outputs and weak learners. Ad-
aboost.MRT has presented some insensitivity to noise in the
training data, which led to an increase in accuracy. Mul-
tivariate regression is extensively used in machine learning
for data mining, system identification and advanced control.

Experiments with six commonly used datasets showed that
Adaboost. MRT outperforms Adaboost.RT on training sets
that contain high magnitude noise and training sets with a
zero-crossing in the output data and performed similarly to
Adaboost.RT on others. Experiments suggest that the pro-
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posed method is applicable to a wider range of cases than
Adaboost. RT.

Experiments on Adaboost. MRT on three multivariate output
functions have been performed and its performance com-
pared to bagging, a simple averaging ensemble, and a sin-
gle iteration of the base learning algorithm. In most cases,
there was some error reduction in the RMSE or compara-
ble performance over the other methods at the cost of the
introduction of a new tuning parameter.

Experiments suggest that for a small number of output vari-
ables the RMSE of an output variable is most sensitive to the
threshold parameter of the specific output variable, a claim
that breaks down as more output variables are added. For
a very small number of output variables the threshold can
be selected and tuned for each variable individually. Fur-
ther testing on larger sets and more diverse combinations of
output variables is warranted.

In Adaboost.MRT, the expected accuracy depends on the
base learning algorithm and the noise distribution of the pre-

75



www.sciedu.ca/air

Atrtificial Intelligence Research

2014, Vol. 3, No. 4

dictions. Following the selection of the base learning algo-
rithm, the values of ¢ and T" need to be chosen. There is are-
duction in accuracy increase beyond 7" = 10 iterations. The
optimum value of ¢ can be experimentally determined and
remains consistent for a given prediction error distribution.
Future work should focus on the selection of the threshold

parameter ¢. The optimal parameter value is likely linked
to the distribution of the prediction error. Further research
on an adaptive threshold parameter selection method that
automates the threshold selection, or an investigation in the
relation between the noise distribution and the optimal pa-
rameter value, is warranted.
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