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Abstract
We examine the asymptotic behavior of a finite, but error-prone population, whose agents can choose one of ALLD (always
defect), ALLC (always cooperate), or Pavlov (repeats the previous action if the opponent cooperated and changes action other-
wise) to play the repeated Prisoner’s Dilemma. A novelty of the study is that it allows for three types of errors that affect agents’
strategies in distinct ways: (a) implementation errors, (b) perception errors of one’s own action, and (c) perception errors of the
opponent’s action. We also derive numerical results based on the payoff matrix used in the tournaments of Axelrod. Strategies’
payoffs are monitored as the likelihood of committing errors increases from zero to one, which enables us to provide a taxonomy
of best response strategies. We find that for some range of error levels, a unique best response (i.e. a dominant strategy) exists. In
all other, the population composition can vary based on the proportion of each strategist’s type and/or the payoffs of the matrix.
Overall, our results indicate that the emergence of cooperation is considerably weak at most error levels.
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1 Introduction

Agents engage in behaviors that are constrained by the lim-
itations of their nature and the surrounding environment.
Such limitations have been treated by researchers under the
rubric of "errors." Errors oftentimes result in unintended ac-
tions and/or incorrect inferences, which might lead to sig-
nificant complications quite fast. For example, on 21 Jan-
uary, 1968, a nuclear-armed United States Air Force B-52
aircraft on a Cold War "Chrome Dome" mission, crushed
near Thule Air Base in the Danish-administered territory of
Greenland. Operation "Chrome Dome," initiated in 1960,
was one of several United States Air Force Cold-War era air-
borne global alert programs in which B-52 bomber aircrafts
armed with thermonuclear weapons were assigned targets
in the U.S.S.R. on schedules guaranteeing that a substantial

number of them were flying and fueled for their missions
at any given time. The incident led to a short escalation
of Cold War tensions between the Americans and Soviets.
A much sharper escalation occurred on September 1, 1983,
when Korean Air Lines Flight 007 was shot down by the So-
viets, killing all 269 people aboard, after the aircraft strayed
into prohibited Soviet airspace around the time of a planned
missile test. Soviets initially denied knowledge of the in-
cident, but later admitted the shoot-down, claiming that the
aircraft was on a spy mission.

Our objective in this study is to examine the asymptotic
behavior of a finite, but error-prone population of agents
that play the repeated Prisoner’s Dilemma game. The lat-
ter game has become the theoretical gold standard for in-
vestigating interactions; its importance stems from defying
common sense reasoning and highlighting the omnipresent
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conflict of interests among unrelated agents. The generic
Prisoner’s Dilemma game is indicated in Table 1. Further-
more, we restrict significantly the number of strategies con-
sidered to ensure that the analysis of the selection dynam-
ics is tractable. We thus concentrate on three, memory-one
strategists: the unconditional egoist, who always defects
(ALLD); the unconditional altruist, who always cooperates
(ALLC); and the opportunist, who repeats the previous ac-
tion if the opponent cooperated and changes action other-
wise (Pavlov).

Table 1: Generic Prisoner’s Dilemma Payoff Matrix
 

 

 Cooperate Defect 

Cooperate R S 
Defect T P 

Note. Agents either Cooperate (C) or Defect (D). If both agents choose C, then each earns the 

Reward payoff (R). If both agents choose D, then each earns the Punishment payoff (P). If one 

agent chooses D and the other agent chooses C, then the former agent earns the Temptation 

payoff (T), and the latter agent earns the Sucker's payoff (S). The payoffs are ordered such that 

T>R>P>S and satisfy R> T+S/2. The payoffs are those of the row agent. 

A novelty of the study is that we allow for three types of
errors that affect agents’ strategies in distinct ways. The
first channel models errors in the implementation of actions
along the lines of Selten’s trembling hand.[2] The other two
channels model errors in the transmission of information; in
particular, the second channel models errors in the transmis-
sion of one’s own action, whereas the third channel models
errors in the transmission of the opponent’s action. For in-
stance, the first incident in the opening paragraph is an ex-
ample of an implementation error, whereas the second inci-
dent is an example of a perception error of the opponent’s
action. Crucially, the error types allowed affect the strate-
gies studied in different ways. Neither ALLC nor ALLD are
affected by perception errors of one’s own action or percep-
tion errors of the opponent’s action. Yet both strategies are
affected by implementation errors. On the contrary, Pavlov
is affected by all three types of errors. Even though many
studies investigate the impact of errors on selected strate-
gies, to the best of our knowledge, this is the first study to
allow for all three types of errors. Other studies that inves-
tigate the impact of errors on strategies, albeit consider only
implementation errors or perception errors of the opponent’s
action, are those of Molander,[3] Fudenberg and Maskin,[4]

Nowak et al,[5] Kraines and Kraines,[6] Wu and Axelrod,[7]

Wahl and Nowak,[8] Kraines and Kraines,[9] Panchanathan
and Boyd,[10] Nowak and Sigmund,[11] Imhof et al.,[12] and
Rand et al.[13]

We model the successive actions chosen by the agents using
such strategies by a Markov process. Moreover, the pres-
ence of errors guarantees that the process is ergodic. We
thus compute the invariant distributions of the realized ac-
tions for each pair of strategies and obtain the asymptotic
payoff matrix across the three strategies. We also derive nu-
merical results based on the payoff matrix used in the cel-

ebrated tournaments of Axelrod.[1] Our preference towards
using the specific payoff matrix is twofold: first, Axelrod’s
tournaments were error-free, therefore it would be interest-
ing to investigate the interplay of these three simple, but
fundamental strategies in the presence of errors, and sec-
ond, there is a vast literature that succeeded the findings in
the tournaments of Axelrod, which can serve as a motiva-
tion to the discussion of this study. Strategies’ payoffs are
monitored as the likelihood of committing errors increases
from zero to one. Traditionally, error levels have been as-
sumed quite small. This is a plausible assumption to make
in many environments, but not in every environment − for
instance, in environments where agents lack vital resources,
the likelihood of committing errors is quite high. We thus
propose a systematic analysis of the entire range of error
levels to obtain a taxonomy of best response strategies in
the presence of errors. When a unique best response is in-
dicated, then that best response is also a dominant strategy.
Consequently, the taxonomy enables us to also determine
dominant strategies.

We find that for some range of error levels, a dominant strat-
egy exists. In the error levels where a dominant strategy
does exist, ALLD is the dominant strategy at low error lev-
els; Pavlov is the dominant strategy at intermediate levels;
and ALLC, which acts as if it were an ALLD in low er-
ror levels, is the dominant strategy at high error levels. The
notion of dominance is of paramount importance to the se-
lection dynamics. More specifically, an ecological selection
process will enable the dominant strategy to proliferate to
the point where the entire population converges to a pure one
implementing that strategy. Recall that in the ecological per-
spective, there is a changing distribution of the strategists’
types. The less successful strategists become less common
and the more successful strategists proliferate. The latter
perspective differs from an evolutionary perspective, which
would allow mutations to introduce new strategies into the
environment. Furthermore, in the error levels where a domi-
nant strategy does not exist, the population composition can
vary based on the proportion of each strategist’s type and/or
the payoffs of the Prisoner’s Dilemma matrix. Overall, our
results indicate that the emergence of cooperation is consid-
erably weak at most error levels.

The rest of the paper is organized as follows. In Section 2,
we describe the analytical framework using a Markov pro-
cess. In Section 3, we revisit Axelrod’s tournaments. We
first review some important findings highlighted in the cel-
ebrated tournaments, and then discuss subsequent seminal
studies. In Section 4, we use the numerical values of Ax-
elrod’s payoff matrix to derive and display graphically the
payoffs of the strategies in the head-to-head competitions
for the entire range of errors. We also present examples
to discuss the implications for the population dynamics and
provide a taxonomy of best response strategies in the pres-
ence of errors. In Section 5, we discuss the important find-
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ings. Finally, in Section 6, we offer concluding remarks and
direction for future research.

2 Markov process
We provide next the framework to study the asymptotic be-
havior of a finite, but error-prone population, whose agents
can choose one of ALLD, ALLC, or Pavlov to play the re-
peated Prisoner’s Dilemma game. Each period of play leads
to an outcome j (j = 1, 2, 3, 4): (C,C), (C,D), (D,C), and
(D,D). Note that the first position denotes the action taken
by agent i and the second position that of agent −i. The
transition rules are labeled by quadruples (s1, s2, s3, s4) of
zeros and ones. In this context, sj is 1 if the strategy plays
Cooperate and 0 if the strategy plays Defect, after out-
come j is realized. The transition rules for ALLD, ALLC,
and Pavlov are (0, 0, 0, 0), (1, 1, 1, 1), (1, 0, 0, 1), respec-
tively. Consider the transition rule for Pavlov. Recall that
Pavlov repeats the previous action if the opponent cooper-
ated and changes action otherwise. The transition rule sig-
nifies that the probability of cooperating is 1, if the outcome
(C,C) or (D,D) is realized. Otherwise, if outcome (C,D) or
(D,C) is observed, then the probability of cooperating is 0.
For convenience, these rules are labeled SALLD, SALLC ,
and SP avlov . Suppose that strategies are subjected to three
types of errors: (a) implementation errors, (b) perception er-
rors of one’s own action, and (c) perception errors of the op-
ponent’s action. Let ε denote the probability of committing

an implementation error, δ the probability of committing a
perception error of the opponent’s action, and ζ the proba-
bility of committing a perception error of one’s own action.

A stochastic strategy has transition rules p =
(p1, p2, p3, p4), where pj is any number between 0 and 1
denoting the probability of cooperating after the corre-
sponding outcome of the previous period. The space of all
such rules is the four-dimensional unit cube; the corners are
just the degenerate transition rules. In the context of the
proposed framework, the stochastic transition rules of the
three strategies are:

• SALLC : ((1− ε), (1− ε), (1− ε), (1− ε)),

• SALLD : (ε, ε, ε, ε), and

• SP avlov : ((1−δ)(1− ε)(1−ζ)+δε(1−ζ)+ζδ(1−
ε) + ζε(1− δ), ε(1− δ)(1− ζ) + ζ(1− δ)(1− ε) +
δ(1− ε)(1− ζ), ε(1− δ)(1− ζ) + ζ(1− δ)(1− ε) +
δ(1− ε)(1− ζ), (1− δ)(1− ε)(1− ζ) + δε(1− ζ) +
ζδ(1− ε) + ζε(1− δ)).

Note that neither ALLC nor ALLD is affected by percep-
tion errors of one’s own or the opponent’s action. Pavlov,
however, is affected by all three types of errors.

A rule p = (p1, p2, p3, p4) that is matched against a rule
q = (q1, q2, q3, q4) yields a Markov process where the tran-
sitions between the four possible states are given by the ma-
trix

p1q1 p1(1− q1) (1− p1)q1 (1− p1)(1− q1)
p2q3 p2(1− q3) (1− p2)q3 (1− p2)(1− q3)
p3q2 p3(1− q2) (1− p3)q2 (1− p3)(1− q2)
p4q4 p4(1− q4) (1− p4)q4 (1− p4)(1− q4)


If p and q are in the interior of the strategy cube, then
all entries of this stochastic matrix are strictly positive.
Consequently, there exists a unique stationary distribution
πp/q = (π1, π2, π3, π4) such that p(n)

j is the probability of
being in state j in the nth period, and converges to πj for
n → ∞ (j = 1, 2, 3, 4). It follows that the payoff for agent
i using p against agent −i using q is given by

P(p,q) = Rπ1 + Sπ2 + Tπ3 + Pπ4, (1)

where the coefficients arise from the payoff matrix in Table

1. Notice that πj and also the payoffs are independent of
the initial condition. For any error level 0 < ε, δ, ζ < 1,
the payoff obtained by a strategy using a transition rule Si

against a strategy with transition rule S−i can be computed
via (1). The limit value of the payoff for ε → 0, δ → 0,
and ζ → 0 cannot be computed, as the transition matrix is
no longer irreducible. Therefore, the stationary distribution
π is no longer uniquely defined. In Table 2, we provide the
asymptotic payoff matrix for any error level 0 < ε, δ, ζ < 1
across the three strategies: ALLD, ALLC, and Pavlov.

3 Axelrod’s tournaments

There are many conceivable strategies for the repeated
Prisoner’s Dilemma game. This prompted Robert Axel-
rod to conduct computational tournaments to determine the
best strategy in the game (Axelrod and Hamilton;[14] Ax-
elrod[11]). In the first tournament, there were 14 entries,
whereas in the second tournament, there were 63 entries.

Tit-For-Tat (TFT) was the champion in both tournaments.
TFT is a simple strategy that starts off by cooperating and
then imitates the opponent’s most recent action (Rapoport
and Chammah[15]). TFT’s victory was a startling outcome
especially given that Axelrod had circulated the results and
solicited entries from the first tournament prior to conduct-
ing the second tournament. Contestants in the second tour-
nament tried to design more sophisticated strategies that
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Table 2: Asymptotic Payoff Matrix in the Presence of Errors

Panel A ALLD ALLC Pavlov
ALLD Rε2 + Sε(1− ε)+ R(1− ε)ε+ Sε2+ [R(−αε+ αε2 − βε2)χ′(ε− 1)+

Tε(1− ε) + P (1− ε)2 T (1− ε)2 + Pε(1− ε) S(−ε)φ′χ′ + T (αε− α− βε)(ε− 1)φ′+
Pφ′χ′(ε− 1)]/ψ′

ALLC R(1− ε)ε+ S(1− ε)2+ R(1− ε)2 + Sε(1− ε)+ [R(−α(1− ε) + α(1− ε)2 − β(1− ε)2)χ′′(−ε)+
Tε2 + Pε(1− ε) Tε(1− ε) + Pε2 S(ε− 1)φ′′χ′′ + T (α(1− ε)− α− β(1− ε))φ′′(−ε)+

Pφ′′χ′′(−ε)]/ψ′′

Pavlov [R(−αε+ αε2 − βε2)χ′(ε− 1)+ [R(−α(1− ε) + α(1− ε)2 − β(1− ε)2)χ′′(−ε)+ [R(α2β − αβ2 − α2

2 )χ+
S(αε− α− βε)(ε− 1)φ′ + T (−ε)φ′χ′+ S(α(1− ε)− α− β(1− ε))φ′′(−ε)+ Sαφ+ Tαφ+ Pφχ]/ψ

Pφ′χ′(ε− 1)]/ψ′ T (ε− 1)φ′′χ′′ + Pφ′′χ′′(−ε)]/ψ′′
Panel B

α = (1− δ)(1− ε)(1− ζ) + δε(1− ζ) + ζδ(1− ε) + ζε(1− δ)
β = ε(1− δ)(1− ζ) + ζ(1− δ)(1− ε) + δ(1− ε)(1− ζ)
φ = −α2β + α2

2 + αβ2 − β2 + β − 1
2

χ = −2αβ + α + 2β2 − 2β + 1
ψ = −1

2 (−α + 2β − 2β2 + 2αβ − 1) (−2α + 2β + 2α2 − 2β2 − 1)
φ′ = β + ε+ αε− 2βε− αε2 + βε2 − 1
χ′ = β + αε− βε− 1
ψ′ = (ε− 1) (−α + β + 2αε− 2βε− 1) (β + αε− βε− 1)
φ′′ = β + (1− ε) + α(1− ε)− 2β(1− ε)− α(1− ε)2 + β(1− ε)2 − 1
χ′′ = β + α(1− ε)− β(1− ε)− 1
ψ′′ = ε (α− αε+ βε− 1) (−α + β + 2αε− 2βε+ 1)

Notes: In Panel A, we provide the asymptotic payoff matrix for any error level 0 < ε, δ, ζ < 1 across the three strategies: ALLD, ALLC, and Pavlov.
The successive actions chosen by agents using such strategies are modeled by a Markov process. The presence of errors guarantees that the process is
ergodic. Computation of the invariant distribution of the realized actions for each pair of strategies, yields the payoffs in the matrix. The payoffs are those
of the row agent when paired with a column agent and utilize the letters in the generic Prisoner’s Dilemma matrix in Table 1. In Panel B, we provide the
expressions that have been replaced by the Greek letters in Panel A.

were superior to TFT, yet TFT won again (Axelord;[16] Ax-
elord[17]). The key to TFT’s success is that it cooperates
with other reciprocators, but resists exploitation by strate-
gies, such as ALLD. Nevertheless, TFT has an Achilles’
heel which did not become apparent in the error-free tour-
naments of Axelrod (Nowak and Sigmund[18]). If a pair of
TFTs interact with each other and one defects by mistake,
then the other TFT will retaliate and thus the two TFTs will
lock themselves into an endless string of retaliations (i.e.
a vendetta). TFT’s unrelenting punishment never forgives
even a single deviation, thus inhibiting the evolution of co-
operation (Molander[3]).

Following the success of Axelrod’s tournaments, Bendon et
al.[19] initiated a new tournament. However, in this tourna-
ment the authors re-evaluated the performance of reciprocat-
ing strategies, such as TFT, and identified alternative strate-
gies that could sustain cooperation in an environment with
random shocks. This time TFT placed eighth out of the thir-
teen strategies considered. The winning strategy was Nice-
And-Forgiving (NAF), which differs in many ways from
TFT. First, NAF is nice in the sense that it cooperates as long
as the frequency of cooperation of the opponent is above
some threshold. Second, NAF is forgiving in the sense that,
although NAF retaliates if the opponent’s cooperation falls
below the threshold level, it reverts to full cooperation be-
fore its opponent does, as long as the opponent meets certain
minimal levels of cooperation. The success of NAF is not
a robust result, but is limited to the particular environment.
As Bendor et al.[19] note, the generosity of NAF creates a

risk: other strategies may exploit NAF’s willingness to give
more than it receives. In other words, NAF can be suckered
by a nasty strategy that is disinterested in joint gains. Due to
its generosity, NAF lost in its pairwise play with every one
of its opponents. In contrast to NAF’s pattern, VIGILANT,
the strategy that placed dead last in the tournament, beat ev-
ery one of its partners in bilateral play. VIGILANT was a
highly provocative and unforgiving strategy that retaliated
sharply if it inferred that its partner was playing anything
less than maximal cooperation. Beyond NAF, Nowak and
Sigmund[20] showed that Pavlov could also typically outper-
form TFT in the repeated Prisoner’s Dilemma game. Pavlov
responds to stimuli applying Thorndike’s "law of effect,"
hence it is more resistant than TFT to cycles of recrimina-
tion and thrives at the expense of unconditional cooperative
strategies. Indeed, if a pair of Pavlovs interact with each
other and one defects in error, then the other Pavlov will
retaliate in the next period (so will the Pavlov that commit-
ted the error), but subsequently both Pavlovs will resume
mutual cooperation. In addition, if Pavlov notices than an
inadvertent defection against an opponent meets no retalia-
tion, Pavlov will continue to defect thus capitalizing on the
"Temptation" payoff. Thus, Pavlov would exploit a strat-
egy, such as ALLC. Yet Pavlov is vulnerable to exploitation
by unconditionally aggressive strategies, such as ALLD. On
the other hand, ALLD is myopically flawed despite being
aggressive as its short-term advantage succumbs to its own
success.

Within the huge class of strategies in the repeated Prisoner’s
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Dilemma game, we shall concentrate on three, memory-one
strategies: ALLD, ALLC, and Pavlov. ALLD and ALLC
are natural choices to provide a lower and an upper bound
on payoffs, and Pavlov has been shown to be evolutionary
stable in the set of strategies of finite complexity when al-
lowing for errors (Fudenberg and Maskin[4]). Needless to
say, there are many other possible strategies that could be
considered, and some indeed play an important role. Yet
coping with a mere, tri-morphic population still results in
a high degree of perplexity in terms of selection dynamics,
mainly because of the possibility of "rock-paper-scissors"
cycles; that is, it may happen that strategy B beats strategy
A, strategy C beats strategy B, and strategy A, in turn, beats
strategy C. In such a case, the selection dynamics can lead
to long-term coexistence of the strategies.

4 Numerical results
In this section, we first determine how the level of errors
affects the payoffs of a pair of agents. We then display
graphically the payoffs of the strategies in the head-to-head
competitions for the entire range of errors. We also present
examples to discuss the implications to the population dy-
namics, and provide a taxonomy of best response strategies
in the presence of errors. For the calculation of the values,
we used the payoff matrix from the tournaments of Axel-
rod.[1] The payoff matrix is displayed in Table 3. Our quest
to derive exact results led us to impose two simplifying as-
sumptions. We assume that (i) the error level is common
knowledge amongst agents, and (ii) for each error type, the
error level is the same. To fix ideas, consider a parasite’s
virulence, which depends only on the neighborhood. Fur-
thermore, assume that all adjacent parasites face the exact
identical conditions− the only difference amongst the adja-
cent parasites is the strategy pursued (Nowak and May[21]).

Table 3: Axelrod’s Prisoner’s Dilemma Payoff Matrix
 

 

 Cooperate Defect 

Cooperate 3 0 
Defect 5 1 

Note. The payoffs are those of the row agent 

4.1 Payoffs with errors

As highlighted above, we shall assume that the error level is
common knowledge and that the likelihood of committing
any type of error is the same; that is, 0 < ε = δ = ζ < 1 for
all levels. Note that the latter assumption is not as restric-
tive as it may seem. Recall that only Pavlov is affected by
all three types of errors; ALLD and ALLC are only affected
by implementation errors. Having said this, we do acknowl-
edge that varying the error levels across error types would
contribute to the generality of the results. We defer such an

interesting venue for future work.

The idea is to first calculate the invariant distribution of
each pair combination at each error level. Then, the dis-
tribution is plugged into the payoff function (1) with the
numerical values of Axelrod’s payoff matrix in order to
derive the corresponding payoffs. For example, assume
that an ALLD is matched with another ALLD at an error
level of 10%. The invariant distribution at this error level
is πALLD/ALLD = (0.102, 0.10 · (1 − 0.10), 0.10 · (1 −
0.10), (1 − 0.10)2). The payoff for agent i using ALLD
against agent −i also using ALLD, at the 10% error level,
is given by P(ALLD,ALLD) = 3 · 0.102 + 0 · 0.10 · (1−
0.10)+5·0.10·(1−0.10)+1·(1−0.10)2 = 1.29. The same
procedure is followed for all combination pairs in all error
levels. This way, we can observe the trends, as well as any
monotonicity properties where those exist. The payoffs for
the entire range of errors is demonstrated graphically in Fig-
ure 1. It is interesting to note that with the exception of the
payoff of an ALLC when paired with a Pavlov, which ex-
hibits no monotonicity properties, every other payoff func-
tion is either monotonically increasing or decreasing as the
likelihood of errors increases.

In the top left corner in Figure 1, the plot of the payoff of
ALLC when paired with one of ALLC, ALLD, or Pavlov
is provided. The payoff of an ALLC paired with a twin
starts off near the “Reward" payoff, but goes down and
reaches near the "Punishment" payoff as the likelihood of
committing implementation errors reaches 1. In the specific
mark, both ALLCs behave almost as ALLDs. The payoff of
an ALLC when matched with an ALLD starts off near the
"Sucker’s" payoff and gradually comes near to the "Temp-
tation" payoff when the likelihood of committing an imple-
mentation error approaches 1. At this mark, ALLC acts al-
most as if it were an ALLD, whereas an ALLD acts almost
as if it were an ALLC. On the other hand, the payoff of an
ALLC when paired with Pavlov starts off a little bit higher
than the "Punishment" payoff, then at the 50% error level
comes close to a payoff of 2 as the pair alternates between
the "Reward" payoff and the "Punishment" payoff. Around
the 55% error level, the payoff of ALLC reverses direction.
At such high error levels, ALLC acts as an ALLD in low
error levels. Thus, the outcomes realized by a pair of an
ALLC and a Pavlov, at high error levels, tend to be more
defecting than cooperative.

In the top right corner in Figure 1, the plot of the payoff of
an ALLD when matched to one of the three strategists is dis-
played. The payoff of an ALLD paired with an ALLC starts
off near the "Temptation" payoff, but as the probability of
committing implementation errors approaches 1, the payoff
of an ALLD draws near the "Sucker’s" payoff. At this spe-
cific mark, as explained earlier, there is a reversal of roles;
that is, an ALLD acts almost as if it were an ALLC, whereas
an ALLC acts almost as if it were an ALLD. The payoff of
an ALLD paired with a twin starts off near the payoff of 1
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and draws closer to a payoff of 3 as the likelihood of imple-
mentation errors approaches 1. At this specific mark, both
ALLDs behave almost as ALLCs. The payoff of an ALLD
when paired with Pavlov starts off near a payoff of 3 and
gradually decreases close to the "Sucker’s" payoff when the
likelihood of committing errors approaches 1.

Figure 1: Payoffs in the Presence of Errors

In the bottom left corner in Figure 1, the plot of the payoff of
a Pavlov when paired with one of ALLC, ALLD, or Pavlov
is presented. The payoff of a Pavlov when paired with an
ALLC starts off close to midway of the "Temptation" and
"Reward" payoffs, before getting closer to the "Punishment"
payoff as the likelihood of committing errors approaches 1.
The payoff of a Pavlov when matched with an ALLD starts
off a little bit higher than the "Sucker’s" payoff and gradu-
ally comes near to the "Temptation" payoff when the likeli-
hood of committing errors reaches 1. The payoff of a Pavlov
paired with a twin starts off near the "Reward" payoff, but
moves closer the "Punishment" payoff as the likelihood of
committing errors approaches 1.

4.2 Taxonomy of best response strategies in the
presence of errors

In the previous subsection, we plotted the payoffs of the
strategies in the head-to-head competitions for the entire
range of error levels. Here, we look at one error level each
time to determine the best response strategy for the error
level specified. When a unique best response is indicated,
then that best response is also a dominant strategy. The no-
tion of dominance is significant to the selection dynamics.
More specifically, an ecological selection process will en-
able the dominant strategy to proliferate to the point where
the entire population converges to a pure one implementing
that strategy. Thus, depending on the error level, an evolv-
ing population could consist of only ALLDs, only ALLCs,
or only Pavlovs. We present next, examples and discuss the
implication for the population dynamics. We then provide a
taxonomy with the best response strategies in the presence
of errors.

• Example 1 (ε = δ = ζ = 20%)

Table 4: Payoff Matrix With ε = δ = ζ = 20%.
 

 

 ALLD ALLC Pavlov 

ALLD 1.56 3.84 2.69 
ALLC 0.84 2.76 1.79 
Pavlov 1.20 3.31 2.24 

Note. Tables 4-6 follow the same structure. The payoff matrix indicates the payoffs of a 

population consisting of ALLDs, ALLCs and Pavlovs. The payoffs are those of the row agent 

when paired with a column agent and reflect the invariant distributions for the error level 

specied. In this example, the dominant strategy is ALLD. 

In this first example, we assume that implementation errors,
perception errors of the opponent’s action, and perception
errors of one’s own action are kept constant at 20%. The
payoff matrix of a population consisting of ALLDs, ALLCs,
and Pavlovs is indicated in Table 4. Clearly, this is a domi-
nance solvable game, where ALLD is the dominant strategy.
Therefore, based on the specific error level, an ecological
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selection process would converge to a population consisting
of only ALLDs.

On the other hand, a different outcome would emerge for an
error level of 50%. In this case, the process would converge
to a population consisting of only Pavlovs.

• Example 2 (ε = δ = ζ = 50%)

The payoff matrix in Table 5 corresponds to implementa-
tion errors, perception errors of the opponent’s action, and
perception errors of one’s own action kept constant at 50%.
Analogous to the previous example, there is a dominant
strategy − Pavlov. Note that an ALLD and an ALLC earn
identical payoffs as, at this error level, the two strategies
emulate the strategy Random. On the other hand, Pavlov
is a somewhat less cooperative form of Random. Kraines
and Kraines[9] show that Random is a poor strategy against
strategies that defect frequently. This result is also demon-
strated here.
Table 5: Payoff Matrix With ε = δ = ζ = 50%.

 

 

 ALLD ALLC Pavlov 

ALLD 2.25 2.25 2.03 
ALLC 2.25 2.25 2.03 
Pavlov 2.34 2.34 2.12 

Note. The dominant strategy is Pavlov. 

The selection dynamics therefore depend crucially on the
error levels. Figure 2 is indicative of the error level depen-
dence. The horizontal axis indicates the error level. The
bar indicates any strategy that is a best response to another
strategy. Up to the 45.3% error level, ALLD is the dominant
strategy, as it is the best response to each of the strategies.
Between error levels 45.4% and 60.4%, the dominant strat-
egy is Pavlov. Furthermore, from error level 64.2% to 76%,
the dominant strategy is ALLC.

Figure 2: Taxonomy of Best Response Strategies in the
Presence of Errors

A natural question to ask is what will be the outcome of
an ecological process when a unique best response does not
exist. In other words, what would the composition of the
population be like in the range of error levels in transit from
one dominant strategy to another. The population composi-
tion could vary based on the proportion of each strategist’s
type and/or the payoffs of the Prisoner’s Dilemma matrix.
We illustrate these features of the population dynamics with
an example.

• Example 3 (ε = δ = ζ = 62%)

In this last example, we assume that implementation errors,
perception errors of the opponent’s action, and perception
errors of one’s own action are kept constant at 62%. The
payoff matrix is indicated in Table 6. In contrast to the two
previous examples, there is no dominant strategy. ALLC is
a best response if the opponent uses ALLC or Pavlov, but
Pavlov is a best response if the opponent uses ALLD. Inter-
estingly, the population dynamics depend on the proportion
within the population of each type and the payoff choices.
For expositional purposes, let us fix the population size at 30
agents. The agents can use any one of the three strategies,
and are paired in a round-robin structure; that is, all agents
are paired with one another in every possible combination.
Furthermore, we assume that a strategy does not play itself.
To calculate the average payoff of each pair, we use the val-
ues of the payoff matrix in Table 3. Finally, assume that
within the population of 30 agents, x agents use ALLC, y
agents use ALLD, where x, y ∈ N,N = {1, 2, ..., 29}). In
particular, the payoffs, at this error level, are the following:

P (ALLD) = 2.48·(y−1)+1.66·x+1.64·(30−x−y)
29 ,

P (ALLC) = 2.00·(x−1)+2.02·(30−x−y)+2.86·y
29 ,

P (Pavlov) = 1.99·(x)+2.01·(30−x−y−1)+2.87·y
29 .

If x = 1, y = 19, and 10 play Pavlov, then, at this error
level, P (Pavlov) > P (ALLC) > P (ALLD). In a more
balanced population though, where x = 10, y = 10, and 10
play Pavlov, then P (ALLC) > P (Pavlov) > P (ALLD).

Table 6: Payoff Matrix With ε = δ = ζ = 62%.
 

 

 ALLD ALLC Pavlov 

ALLD 2.48 1.66 1.64 
ALLC 2.86 2.00 2.02 
Pavlov 2.87 1.99 2.01 

Note. There is no  dominant strategy. 

However, to illustrate the sensitivity of population dynamics
to the choice of payoffs in the matrix, we alter the "Tempta-
tion" payoff and the "Reward" payoff of Table 3. In particu-
lar, the "Temptation" payoff is changed to 11 from 5, and the
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“Reward" payoff is changed to 6 from 3. The "Punishment"
payoff and the "Sucker’s" payoff stay the same. Analogous
to the initial case, assume that x = 1 agent uses ALLC,
y = 19 agents use ALLD, and 30−1−19 = 10 use Pavlov.
The payoffs, for an error level kept constant at 62%, are the
following:

P (ALLD) = 5.04·(y−1)+3.24·x+3.19·(30−x−y)
29 ,

P (ALLC) = 3.84·(x−1)+3.90·(30−x−y)+5.88·y
29 ,

P (Pavlov) = 3.82·(x)+3.86·(30−x−y−1)+5.90·y
29 .

Therefore, P (ALLC) > P (Pavlov) > P (ALLD) in sharp
contrast to the former ranking P (Pavlov) > P (ALLC) >
P (ALLD), which was based on the payoff matrix in Table
3.

5 Discussion
TFT was the winner in the in silico tournaments of Axel-
rod. The performance of TFT led Axelrod to identify four
basic attributes that were necessary for the emergence and
survival of cooperation: (i) provocation in the face of an
uncalled-for defection by the other; (ii) forgiveness after re-
sponding to a provocation; (iii) clarity of behavior so that
the other agent can adapt to your pattern of action; and (iv)
avoidance of unnecessary conflict by cooperating as long as
the other agent cooperates. Yet Axelrod and Dion[22] recog-
nized that in the presence of errors, the emergence of coop-
eration is hardly inevitable; unnecessary conflict can only be
avoided by generosity, but generosity invites exploitation,
and exploitation invites retaliation. Dawes and Thaler[23]

point out that many in vivo experimental studies of the re-
peated Prisoner’s Dilemma game, have found that mere sus-
picion of the possibility of exploitation induces individu-
als to engage in a kind of defensive "stinginess" that im-
parts the emergence of cooperation. More recently, Dal Bó
and Fréchette[24] provide compelling experimental evidence
with human data to suggest that even in treatments where
cooperation can be supported in equilibrium, the level of
cooperation may remain at low levels even after significant
experience is obtained. The authors conclude that "these re-
sults cast doubt on the common assumption that agents will
make the most of the opportunity to cooperate whenever it
is possible to do so in equilibrium" (p. 412).

In this study, we consider three simple, but fundamental
strategies in the presence of the entire range of errors. Our
findings confirm that the emergence of cooperation is not as
likely at any error level. In the error levels where a dominant
strategy exists, ALLD is the dominant strategy at low error
levels; Pavlov is the dominant strategy at intermediate error

levels; and ALLC, which acts as if it were an ALLD in low
error levels, is the dominant strategy at high error levels. In
almost all of these cases, non-cooperative outcomes emerge;
that is, vulnerability to errors prompts non-cooperative out-
comes and, oftentimes, results in long strings of retaliations
(i.e. vendettas).

Vulnerability to errors is a real concern in international pol-
itics, and has been an especially poignant one during the
Cold War. Speaking of the likelihood of nuclear accidents in
the wake of the Cuban Missile Crisis in 1962, Assistant Sec-
retary of Defense John T. McNaughton stated that, "the ex-
plosion of a nuclear device by accident−mechanical or hu-
man− could be a disaster for the United States, for its allies,
and for its enemies. If one of these devices accidentally ex-
ploded, I would hope that both sides had sufficient means of
verification and control to prevent the accident from trigger-
ing a nuclear exchange. But we cannot be certain that this
would be the case" (Sagan[25]). United States was indeed
concerned by accidents, such as the B-52 crash in 1968,
near Thule Air Base in Greenland. Along with the U.S.S.R.,
they agreed to take measures to ensure that a future nuclear
accident would not lead the other party to conclude incor-
rectly that a first strike was under way. Consequently, on 30
September, 1971, the two superpowers signed the "Agree-
ment on Measures to Reduce the Risk of Nuclear War." Each
party agreed to notify the other immediately in the event of
an accidental, unauthorized or unexplained incident involv-
ing a nuclear weapon that could increase the risk of nuclear
war. They even agreed to use the Moscow-Washington hot-
line, which was upgraded at the same time, for any com-
munication between the two countries. Also, following the
downing of Korean Airlines Flight 007 after it strayed over
territory belonging to the Soviet Union, Reagan announced
the expansion of the Global Positioning System (GPS) to
civilians, which at the time was only used by the US mili-
tary. It would thus be harder for any pilots to drift into So-
viet airspace with satellite navigation technology. In 1987,
the Department of Defense formally requested the Depart-
ment of Transportation to establish and provide an office to
respond to civil users’ needs and to work closely with the
Department of Defense to ensure proper implementation of
GPS for civil use.

Finally, we find that in the error levels where a dominant
strategy does not exist, the population composition can vary
based on the proportion of each strategist’s type and/or the
payoffs of the Prisoner’s Dilemma matrix. Several studies
have considered variations in the Prisoner’s Dilemma payoff
matrix, most often to examine its effect on the likelihood of
cooperation (Busch and Reinhardt;[26] Stephens et al.[27]).
Here, we go one step further, to show that, not only, the
payoff structure affects selection dynamics and hence the
likelihood of cooperation, but also the proportion of each
strategist’s type. Consequently, in such cases it becomes
possible to observe "rock-paper-scissors" cycles, where the
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selection dynamics can lead to long-term coexistence of the
strategies. A lot of examples of long-term co-existence can
be found in nature. For instance, there exist three morphs
of the male territorial iguanid lizard Uta stansburiana who
differ in their throat color and in their mate-guarding be-
havior. Males with orange throats are monogamous and
succeed in preventing other males from approaching their
mates. Males with dark blue throats are polygamous and
less efficient, having to split their efforts on several females.
Males with prominent yellow stripes on their throats do not
engage in female-guarding behavior at all, but roam around
in search of sneaky matings (Sinervo and Lively[28]). Fur-
thermore, there exist three strains of Escherichia coli bacte-
ria. The colicin-producing strain releases toxic colicin and
produces, for its own protection, an immunity protein. The
sensitive strain produces the immunity protein only. The re-
sistant strain, on the other hand, produces neither the toxic
colicin nor the immunity protein (Kerr et al.[29]).

6 Concluding remarks
We study the asymptotic behavior of a finite, but error-
prone population of agents that play the repeated Prisoner’s
Dilemma game. Three types of errors are allowed: imple-
mentation errors, perception errors of one’s own action, and
perception errors of the opponent’s action. The space of
strategies considered is restricted to simplify the dynamics.
We thus concentrate on an ALLD strategist, an ALLC strate-

gist, and a Pavlov strategist. We first obtain the asymptotic
payoff matrix across the three strategies in the presence of
errors, and then derive numerical results using the payoff
matrix from Axelrod’s celebrated tournaments. Crucially,
we consider the entire range of error levels in order to clas-
sify best response strategies as the likelihood of error levels
increases from zero to one. We find that for some range of
error levels, a unique best response (a dominant strategy) ex-
ists. Moreover, the dominant strategies at the corresponding
error levels lead to mostly non-cooperative outcomes. On
the other hand, in the range of error levels where a domi-
nant strategy does not exist, the population composition can
vary based on the proportion of each strategist’s type and/or
the payoffs of the Prisoner’s Dilemma matrix. In such cases,
it is possible to observe "rock-paper-scissors" cycles.

Our findings highlight that a systematic analysis of the en-
tire range of error levels is an important and essential as-
pect of population dynamics. Thus, an interesting direction
for future research would be to use the methodology pre-
scribed to provide a taxonomy of best response strategies in
the presence of errors in alternative games. Ultimately, one
would like to determine better strategies across a vast array
of games and for different levels of errors. Another promis-
ing direction for future research would be to assume that
there are differences in the levels of errors across the three
error types. For instance, there exist environments where
agents are more likely to commit perception errors of the
opponent’s action (perhaps, due to limited channels in the
transmission of information) than implementation errors.
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