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Abstract
We proposed a new Small-World network (called n-Star network in which average path-length L becomes absolutely small)
inspired by ants’ collective behavior. As one of the real-world applications using this network, it is shown that reorganization of
the world airline network is possible in the next generation. In addition, it not only has the characteristic that is more immune
from random failure and resilient to targeted attacks than bimodal degree distribution network and scale-free network, but also it
can maintain Small-World characteristics even when probability of failure is considerably large. Furthermore, the n-Star network
can be extended to various types of hierarchical networks, and we performed theoretical analysis of each network structure and
derived formulas using various network parameters such as average degree 〈k〉, average path-length L, clustering coefficient C
and newly analyzed assortativity (degree correlation) r with the number of star nodes n, their peripheral nodes N0, the total
number of nodes N and the level of hierarchy l. We newly discuss the merit and demerit on the current airline network and an
airline network based on the n-Star network, and propose a hierarchical architecture of airline network more suitable for real
world than both the current airline network and the basic (non-hierarchical) n-Star-based airline network.
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1 Introduction
Small-World[1] network has a shorter path-length along a
shortcut than those along the other regular paths when the
link exchange probability ρ is small enough, however, its av-
erage path-length L is equivalent to that of a random graph
as a whole. The author got a hint from ants’ collective
behavior, and proposed a new algorithm to design a new
small-world network by searching for the shortest paths and
changing the topology of a random graph repeatedly based
on the pheromone trail of ants. As a result, the generated
network became the multi-star network called n-Star net-
work[2] in which various kinds of network parameters can
be analyzed theoretically. It is proved that this network has
the shortest average path-length L for a given average de-
gree 〈k〉 among complex networks through the theoretical
analysis and experimental simulation.[2] This fact can also
be proved that by defining a new measure of small-world, or
the degree of small-worldness R, the R value always shows

the invariant value 2 for the n-Star networks as small as that
of a complete graph with R ≡ L + p = 2 because L = 1
and p = 1 where p = 〈k〉 /(N − 1) is link probability. In
addition, we examined a method for reorganizing the next-
generation world airline network to apply this network to
real world using real data such as the latitude and longi-
tude of the world-ranking major cities, population and the
distance between the major cities along the geodesic line
of Earth.[3] Compared to a current airline network, the n-
Star network-based airline network was found to be more
efficient in terms of average cruising distance L(dist) and
average number of transits L(step) (it can reduce at least
20%-30% in a relatively small domain of link probability
p = 〈k〉 /(N − 1), where 〈k〉 is the average number of dif-
ferent flight routes per airport, and N is the total number
of airports).[3] Furthermore, we showed the n-Star network
is immune from random failure on nodes and links, and re-
silient to targeted attacks on star nodes even if all star nodes
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fail by the targeted attacks, a self-organizing algorithm can
be applied automatically to recover the original topology es-
pecially in a mobile communication environment.[4]

In this study, we show the n-Star network can be constructed
to several hierarchical types of architecture: hierarchical
type, torus type, star type, star-torus type, fractal type I and
fractal type II. Their network parameters such as average
degree 〈k〉, average path-length L, clustering coefficient C,
degree of small-worldness R[5] and assortativity r[6] can be
analyzed theoretically with the relationship of n, N0, N and
l where n is the number of star nodes, N0 is the number of
peripheral nodes, N is the total number of nodes and l is
the level of hierarchy. As one of real-world applications, a
new hierarchical airline network is proposed using one of
the best hierarchical architectures of n-Star network.
This article constitutes as follows: in the next Section 2, we
describe the method for emerging a new small-world net-
work inspired by ants’ collective behavior. Section 3 de-
scribes the extension of n-Star network to six kinds of hier-
archical structures. Section 4 describes analysis on the hier-
archical structures from the viewpoints of small-world and
assortativity (i.e. degree correlation). Section 5 describes a
real-world application in the field of logistics using one of
the hierarchical structures. Experimental results and Discus-
sions are in Section 6. Finally, we summarize the contents
in Conclusion.

2 Emerging new small-world
Several methods to emerge small-world networks have been
proposed. One type of method is based on simple itera-
tion algorithms with growing vertices and edges of a net-
work.[7–13] Another type of method is based on rewiring

edges while keeping a total number of nodes in a net-
work,[14] a connected lattice[15] and a small-world net-
work.[16] A study on the relative tradeoff between wiring
and connectivity has been reported[17] when the network
seeks to minimize wiring, a regular graph results, and at
the other extreme, when connectivity is maximized, a ran-
dom network is obtained. Unlike the model of Watts and
Strogatz,[18] they find an alternate route to small-world be-
havior through the formation of hubs, small clusters where
one vertex is connected to a large number of neighbors. A
study on seeking an efficient small-world network results in
the network with several centers and a connected subnet-
work of shortcuts.[19] Furthermore, small-world behavior in
time-varying graphs are also recently investigated.[20]

A method for creating new small-world, called n-Star net-
work, inspired by ants’ collective behavior is described in
the literature.[2] This network holds a large clustering coef-
ficientC and the shortest average path-length L (these prop-
erties satisfy the definition of small-world[1]) among con-
ventional complex networks.
We present the results of a theoretical analysis for the multi-
star network architecture. When the number of stars in the
multi-star network is n (n = 1, 2, 3, · · · , N), we can call it
"n-Star network". Figure 1 (left) shows the n-Star networks
when n = 1, 2, 3 and 4; the stars are located at the center
with the peripheral links as denoted by the dotted lines. All
of the star nodes are completely connected with each other
forming a “clique”, and all peripheral nodes are connected
with all of the star nodes.
For the n-Star networks with the peripheral links (m: the
number of peripheral links, m = 0, 1, 2, · · · , N−nC2), the
average degree 〈k〉, average path-length L and clustering
coefficient C are calculated as follows:

〈k〉 = n(2N − n− 1) + 2m
N

;n = 1, 2, 3, · · · , N,m = 0, 1, 2, · · · ,
(
N − n

2

)
. (1)

L = 2N(N − n− 1) + n(n+ 1)− 2m
N(N − 1) ;n = 1, 2, 3, · · · , N,m = 0, 1, 2, · · · ,

(
N − n

2

)
. (2)

C =

n

((
n− 1

2

)
+(n−1)(N−n)

)
(
N − 1

2

) + (N − n)

N
;n = 2, 3, · · · , N,m = 0.

C = 0; n = 1,m = 0

(3)

When n is removed using Eqs. (1) and (2), we obtain Eq.(4) as follows:

L = 2− 〈k〉
N − 1 = 2− p, p = 〈k〉

N − 1 , (4)
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where p is link probability.
We can obtain the invariant R ≡ L + p ≡ 2 directly from
Eq.(4) independent of the values of L and 〈k〉 (hence, in-
dependent of n,m and N ). This means that the R value is
invariant (=2) for the n-Star networks. The definition of the
small-worldness in this paper is original. However, another
different definition of small-worldness was proposed as the
ratio σ[21] with comparison of clustering coefficient Cran

and average path-length Lran of a random graph as follows:

σ = γ/λ, γ = Cnet/Cran > 1, λ = Lnet/Lran, (5)

where Cnet is clustering coefficient and Lnet is average
path-length of a network. This definition is a relative com-
bination of clustering coefficient and average path-length of
a network relative to those of a random graph. On the
other hand, our definition is based on the absolute value
R ≡ L + p that simply combined average path-length L
(i.e. efficiency of a network) with link probability p (i.e.
cost or resource of a network) independent of clustering
coefficient C where the R value is always 2 for complete
graphs and any single and n-Star networks both with and
without peripheral links, and the R values for the other net-
works always show the values more than 2. This definition
is more universal than the conventional definition of small-
world with a short average path-length L and a large cluster-
ing coefficient C because even a single-star network has the
small-world property although its clustering coefficient C is
zero which is against the conventional definition of small-
world with a large value of C.

Therefore, we can comparatively evaluate each network as
to the degree of small-world based on this invariant R. Note
that since the R value for complete graphs is 2 because
L = 1 and p = 1, which implies the n-Star networks are
always as small as complete graphs for any given values of
〈k〉 corresponding to cost of network. Based on this fact,
the R value could be regarded as a degree of small-world
(we may call it “small-worldness”). As the Barabási-Albert
(BA) model[22] possesses a "scale-free" characteristic with
the order of L ∼ O(logN)[23] (O(x) means the order of x),
the R value is comparable to those in a random graph and
the Watts-Strogatz (WS) model.[2] These results indicate
that the n-Star networks can always achieve the maximum
degree of small-world.

As the n-Star network has the absolutely minimum aver-
age path-length L among known complex networks, it can
be applicable to search for the minimum paths in the fields
of communication and logistics networks, etc., which will
be very beneficial for reducing communication and trans-
portation costs effectively while increasing the efficiency at
maximum.

We designed a new world airline network using the n-Star
network where it could reduce the average cruising distance
L(dist) (also the average number of transits L(dist)) as
much as 20%-30% compared to a current airline network
(the current airline network has a scale-free characteristic
that can be modeled by the BA model) for a relatively small
average degree 〈k〉 which is proportional to the number of
different flight routes per airport.[3]

Figure 1: n-Star network architectures having the star nodes at the center (left), and how to build hierarchical structure
based on the n-Star networks (right). Some peripheral nodes in the l-th layer become the star nodes in the next (l + 1)-th
layer where l = 1, 2, 3, · · · ,∞ for the case of n = 3.

3 Hierarchical structure in nature and real
world

Nature contains hierarchical structures in itself from micro-
scale (i.e. elementary particles) to macro-scale (i.e. the Uni-
verse). However, mid-scale phenomena play a major role
in our daily life. For examples, many kinds of real-world

networks such as social networks between humans, WWW
(World Wide Web), the Internet, logistics networks such as
airline networks, brain networks between neurons, biologi-
cal networks for metabolism in a cell contain their “scale-
free” structures[24–26] and often fractal structures with hi-
erarchy.[27–30] The interaction between the functional nodes

Published by Sciedu Press 3



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 4

can be expressed as links in a complex network with hi-
erarchy. The study[31] proposed a geographical scale-free
network model with the nodes embedded in a fractal space
where the fractal dimension D of the embedding space was
found to influence the scale-free exponent γ. The study[32]

discusses on emergence of fractal scale-free networks from
stochastic evolution on the Cayley tree. The study[33] anal-
yses mean commute time for random walks on hierarchical
scale-free networks called (x, y)-flowers.
Although the networks with “scale-free” degree distribu-
tion show the small-world characteristics with the aver-
age path-length L ∼ O(logN), their network topologies
are not necessarily optimized because a random graph also
shows a similar property with the average path-length L ∼
O(logN) , which implies the efficiency of scale-free net-
works in terms of average path-length L for a given average
degree 〈k〉 (corresponding to cost) is as same as that of a
random graph.
As is described in the previous section, the n-Star network
architecture is completely optimized in terms of average
path-length L for a given average degree 〈k〉 or link prob-
ability p. In other words, the degree of small-world or

“small-worldness” R always shows the minimum value of 2
among any kinds of complex networks. Based on this n-Star
network architecture, building several kinds of hierarchical
structures would provide significant values when we design
hierarchical structures of complex networks and apply them
to both nature and real world.

The concept of hierarchical structure of n-Star network is
shown in Figure 1 (right) where the star nodes on the l-th
layer are located at the center, and another star nodes on the
next (l + 1)-th layer are located as a part of the peripheral
nodes on the l-th layer. Namely, some nodes are commonly
used as the star nodes on the (l + 1)-th layer and the pe-
ripheral nodes on the l-th layer. The level of hierarchy l
can increase as l = 1, 2, 3, · · ·∞ which will form a fractal
structure.

In the following subsections, six kinds of hierarchical struc-
tures of n-Star network are described with their adjacency
matrices, and theoretical analysis results on several network
parameters such as average degree 〈k〉, average path-length
L, clustering coefficient C with 3D viewgraphs and degree
distribution P (k) are shown in each Figure.

Figure 2: Schematic diagram of the hierarchical type (top-left), its adjacency matrix (top-middle), degree distribution
P (k) (middle), the 3D viewgraphs of average degree 〈k〉 (top-right), average path-length L (middle-right) and clustering
coefficient C (bottom-right), and analytical results on several network parameters such as average degree 〈k〉, average
path-length L and clustering coefficient C (bottom-left) are shown.

3.1 Hierarchical type of n-Star network

The hierarchical type of n-Star network is shown in Figure 2
where the number of star nodes n = 3, the number of periph-

eral nodes N0 = 10, the number of total nodes N = 103 and
the level of hierarchy l = 10. For this set of parameters, 〈k〉
= 6.4078, L = 4.8213, C = 0.8009 andR = 4.8841. The con-
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figuration is shown at the top-left, the adjacency matrix and
degree distribution at the top-middle, the 3D viewgraphs of
average degree 〈k〉, average path-length L and clustering
coefficient C with a relationship of (n, l) are shown from
the top-right to bottom-right, respectively. The analytic re-
sults on these parameters are shown at the bottom-left. This
architecture is the same as that of Figure 1 (right) when l =
10. The average degree 〈k〉 almost increases in proportion
to n, and the average path-length L increases in proportion
to l, the clustering coefficient C keeps its high value of 0.8.
The degree distribution P (k) mainly shows a trimodal man-
ner with the degrees of k1, k2 and k3 (k1 > k3 > k2). The
clustering coefficientC at l = 1 coincides with that of a basic
n-Star network, i.e. Eq.(3).

3.2 Torus type of n-Star network
The torus type of n-Star network is shown in Figure 3 where
the number of star nodes n = 3, the number of peripheral
nodes N0 = 10, the number of total nodes N = 100 and
the level of hierarchy l = 10. For this set of parameters,
〈k〉 = 6.6, L = 3.9313, C = 0.7943 and R = 3.9980. Sim-
ilarly, the configuration is shown at the top-left, the adja-

cency matrix and degree distribution at the top-middle, the
3D viewgraphs of average degree 〈k〉, average path-length
L and clustering coefficient C with a relationship of (n, l)
are shown from the top-right to bottom-right, respectively.
The analytic results on these parameters are shown at the
bottom-left. This network is formed by connecting the high-
est level of l with the first level of l = 1 in the hierarchical
type of n-Star network shown in Figure 2. This architecture
is similar to the “Snake of Uroboros” shown at the center
of the configuration which is an analogy of hierarchical na-
ture from elementary particles to the Universe containing
elementary particles with different scales. The average de-
gree 〈k〉 almost increases in proportion to n, and the aver-
age path-length L increases in proportion to l, the clustering
coefficient C keeps its high value of 0.79. The degree dis-
tribution P (k) exactly shows a bimodal distribution manner
with the degrees of k1 and k2 (k1 > k2). Note that the for-
mulas of average path-lengths L are different depending on
the level of l with even or odd numbers more than 3, and the
clustering coefficients C can be calculated with the level of
l more than 3 which enables to make it the torus structure,
as shown in Figure 3.

Figure 3: Schematic diagram of the torus type (top-left), its adjacency matrix (top-middle), degree distribution P (k)
(middle), the 3D viewgraphs of average degree 〈k〉 (top-right), average path-length L (middle-right) and clustering
coefficient C (bottom-right), and analytical results on several network parameters such as average degree 〈k〉, average
path-length L and clustering coefficient C (bottom-left) are shown.
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3.3 Star type of n-Star network
The star type of n-Star network is shown in Figure 4 where
the number of star nodes n = 3, the number of peripheral
nodes N0 = 7, the number of total nodes N = 100 and
the level of hierarchy l = 10. For this set of parameters,
〈k〉 = 6.42, L = 3.042, C = 0.8028 and R = 3.1073.
Similarly, the configuration is shown at the top-left, the ad-
jacency matrix and degree distribution at the top-middle,
the 3D viewgraphs of average degree 〈k〉, average path-
length L and clustering coefficient C with a relationship of
(n, l) are shown from the top-right to bottom-right, respec-
tively. The analytic results on these parameters are shown
at the bottom-left. This network is formed by connecting

the higher (l-1) clusters with the first level (l = 1) cluster at
the center. This is a star-like architecture both in each level
and as a whole which shows a fractal (self-similar) struc-
ture. The average degree 〈k〉 almost increases in proportion
to n, and the average path-length L decreases as n increases,
saturating with the increase in l, and the clustering coeffi-
cient C keeps its high value of 0.80. The degree distribution
P (k) shows a trimodal manner with the degrees of k1, k2
and k3 (k1 > k2 > k3). Note that the formulas of average
path-lengths L and clustering coefficients C are calculated
with the level of l more than 3 which enables to make it the
star structure, as shown in Figure 4.

Figure 4: Schematic diagram of the star type (top-left), its adjacency matrix (top-middle), degree distribution P (k)
(middle), the 3D viewgraphs of average degree 〈k〉 (top-right), average path-length L (middle-right) and clustering
coefficient C (bottom-right), and analytical results on several network parameters such as average degree 〈k〉, average
path-length L and clustering coefficient C (bottom-left) are shown.

3.4 Star-Torus type of n-Star network

The star-torus type of n-Star network is shown in Figure 5
where the number of star nodes n = 3, the number of pe-
ripheral nodes N0 = 7, the number of total nodes N = 100
and the level of hierarchy l = 10. For this set of parameters,
〈k〉 = 8.04, L = 2.86061, C = 0.8143 and R = 2.9418.
Similarly, the configuration is shown at the top-left, the ad-
jacency matrix and degree distribution at the top-middle, the

3D viewgraphs of average degree 〈k〉, average path-length
L and clustering coefficient C with a relationship of (n, l)
are shown from the top-right to bottom-right, respectively.
The analytic results on these parameters are shown at the
bottom-left. This network is formed by integrating the torus
type in Figure 3 with the star type in Figure 4. This architec-
ture is like a wheel structure. The average degree 〈k〉 almost
increases in proportion to n, saturating with the increase in
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l, and the average path-length L decreases as n increases,
saturating with the increase in l, the clustering coefficient C
keeps its high value of 0.81. The degree distribution P (k)
shows a trimodal manner with the degrees of k1, k2 and k3

(k1 > k2 > k3). Note that the formulas of average path-
lengths L and clustering coefficients C are calculated with
the level of l more than 4 which enables to make it the star-
torus structure, as shown in Figure 5.

Figure 5: Schematic diagram of the star-torus type (top-left), its adjacency matrix (top-middle), degree distribution P (k)
(middle), the 3D viewgraphs of average degree 〈k〉 (top-right), average path-length L (middle-right) and clustering
coefficient C (bottom-right), and analytical results on several network parameters such as average degree 〈k〉, average
path-length L and clustering coefficient C (bottom-left) are shown.

3.5 Fractal type I of n-Star network
The fractal type I of n-Star network is shown in Figure 6
where the number of star nodes n = 3, the number of pe-
ripheral nodes N0 = 7, the number of total nodes N = 100
and the level of hierarchy l = 10. For this set of parameters,
〈k〉 = 9.12, L = 2.7394, C = 0.8277 and R = 2.8315.
Similarly, the configuration is shown at the top-left, the ad-
jacency matrix and degree distribution at the top-middle, the
3D viewgraphs of average degree 〈k〉, average path-length
L and clustering coefficient C with a relationship of (n, l)
are shown from the top-right to bottom-right, respectively.
The analytic results on these parameters are shown at the
bottom-left. This network is formed by integrating the n

clusters at the center with the N0 peripheral clusters which
is self-similar (i.e. fractal) to the structure in each cluster
with the n star nodes and N0 peripheral nodes. The average
degree 〈k〉 almost super-linearly increases as n increases,
independent of the increase in l, and the average path-length
L tends to saturate as l increases, the clustering coefficient
C keeps its high value of 0.82. The degree distribution P (k)
shows a trimodal manner with the degrees of k1, k2 and k3
(k1 > k2 > k3). Note that the formulas of average path-
lengths L and clustering coefficients C can be calculated
with the level of l more than n which enables to make it the
fractal type I structure.
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Figure 6: Schematic diagram of the fractal type I (top-left), its adjacency matrix (top-middle), degree distribution P (k)
(middle), the 3D viewgraphs of average degree 〈k〉 (top-right), average path-length L (middle-right) and clustering
coefficient C (bottom-right), and analytical results on several network parameters such as average degree 〈k〉, average
path-length L and clustering coefficient C (bottom-left) are shown.

3.6 Fractal type II of n-Star network

The fractal type II of n-Star network is shown in Figure 7
for the number of star nodes n = 5, the number of periph-
eral nodes N0 = 15, the number of total nodes N = 100
and the level of hierarchy l = 5. For this set of parameters,
〈k〉 = 8.7, L = 2.6141, C = 0.84142 and R = 2.7293.
Similarly, the configuration is shown at the top-left, the ad-
jacency matrix and degree distribution at the top-middle, the
3D viewgraphs of average degree 〈k〉, average path-length
L and clustering coefficientC with a relationship of (n,N0)
are shown from the top-right to bottom-right, respectively.
The analytic results on these parameters are shown at the
bottom-left. This network is formed by integrating the n
stars at the center with the n peripheral clusters where each
star node is commonly used as each star node at the center
as well as in each peripheral cluster. The average degree
〈k〉 almost linearly increases as n increases, and the average
path-length L tends to saturate as n increases, and the clus-
tering coefficient C keeps its high value of 0.84. The degree
distribution P (k) shows a trimodal manner with the degrees
of k1, k2 and k3 (k1 > k2 > k3). Note that the formulas
of average path-lengths L and clustering coefficients C can
be calculated with the level of l always equal to n which

enables to make it the fractal type II structure.

4 Analysis of hierarchical network architec-
tures

4.1 Analysis of Small-Worldness
We analyzed several types of the hierarchical structures of
n-Star network from the viewpoint of small-worldness R.
The value R for the basic n-Star network is always 2 inde-
pendent of network parameters such as L and p. If the value
L increases, p decreases, and vice versa. For the other kinds
of complex networks, the R values are always more than 2.
Therefore, how far the value R for a network is from 2 be-
comes the measure of small-worldness. The closer the value
R becomes to 2, the smaller the network is. By calculating
the values R for several kinds of the hierarchical structures
shown in Figures from 2 to 7, the results are shown in Ta-
ble 1 using an adequate set of network parameters such as
n,N0, N and l for a fair comparison with each other. Clus-
tering coefficients C and assortativities r (described in the
next subsection) are also shown in this Table. According to
the results in Table 1, the degree of small-worldness R in-
creases in the order of entry from the top among all types of
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the hierarchical structures except the basic n-Star network,
i.e. the hierarchical type, torus type, star type, star-torus
type, fractal type I and fractal type II. Furthermore, the 3D
viewgraphs of the values R for all types of the hierarchy are

shown in Figure 8 with the combination of n and l except
for the case of the fractal type II because n is always equals
to l in this case.

Figure 7: Schematic diagram of the fractal type II (top-left), its adjacency matrix (top-middle), degree distribution P (k)
(middle), the 3D viewgraphs of average degree 〈k〉 (top-right), average path-length L (middle-right) and clustering
coefficient C (bottom-right), and analytical results on several network parameters such as average degree 〈k〉, average
path-length L and clustering coefficient C (bottom-left) are shown.

4.2 Analysis of assotativity r
We newly analyze the degree correlation. The degree corre-
lation is called “assortativity” in complex networks. Assor-

tativity r is defined[6] as follows :

r =
∑M

(u,v)∈E kukv −M−1(1/2
∑M

(u,v)∈E(ku + kv))2

1/2
∑M

(u,v)∈E(k2
u + k2

v)−M−1(1/2
∑M

(u,v)∈E(ku + kv))2
, (6)

where M is the total number of links, ku and kv are de-
grees at node u and node v, respectively. Assortativity is
a measure of how much two degrees at two adjacent nodes
are similar to each other; for examples, when a hub node
tends to be adjacent to another hub node, or a node with a
few degrees tends to be adjacent to another node with a few
degrees, the network is assortative (i.e. positively correla-
tive); on the other hand, a hub node tends to be adjacent

to a node with a few degrees, and vice versa, the network
is disassortative (i.e. negatively correlative). We calculated
the assortativity r for all kinds of the hierarchical n-Star net-
works with the relationship of (n, l), as shown in Figure 9,
as well as in Table 1 (the rightmost column) for the typical
set of network parameters.

According to Table 1, the n-Star network is strongly dis-
assortative (negatively correlative). Among the six hierar-
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chical networks except the n-Star network, the fractal type
II is the most disassortative. The hierarchical type and the

torus type are intermediately disassortative. The star type,
star-torus type and fractal type I are the least disassortative.

Table 1: Several network parameters such as 〈k〉 , L,R,C and r for all types of the hierarchical structures for a typical
set of parameters such as n,N0, l and N , where n is the number of star nodes, N0 is the number of peripheral nodes, l is
the level of hierarchy, N is the total number of nodes, 〈k〉 is average degree, L is average path-length, R is the degree of
small-world, C is clustering coefficient and r is assortativiry.

 

 

Network n N0 l N <k> L R C r 

n-Star NW 3 97 1 100 5.88 1.94 2.0 0.971 -0.980 

Hierarchy 3 10 10 103 6.41 4.82 4.88 0.801 -0.476 

Torus 3 10 10 100 6.60 3.93 4.00 0.794 -0.467 

Star 3 7 10 100 6.42 3.04 3.11 0.803 -0.081 

Star-Torus 3 7 10 100 8.04 2.86 2.94 0.814 -0.139 

Fractal Ⅰ 3 7 10 100 9.12 2.74 2.83 0.828 -0.129 

FractalⅡ 5 15 5 100 8.70 2.64 2.73 0.841 -0.704 

 

Figure 8: Analysis of the small-world index R for several hierarchical structures of n-Star networks.
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Figure 9: Analysis of assortativity r for several hierarchical structures of n-Star Networks

5 Application to hierarchical structure of
global airline networks

We consider an airline network using the fractal type II as
an example of real-world applications of the hierarchical n-
Star networks. The characteristic that an airline network
should meet is as follows: A current world airline network
is formed around hub airports. It is thought that a world hub
airport is formed based on the relationships such as the geo-
graphical position (latitude, longitude, altitude on each con-
tinent to which each city belongs), population, importance
in the economic aspect and geographical distance (distance
along the geodesic line) from the other hub airports. In other
words, there are more flights between hub airports and their
outskirts cities with "preferential attachment", and it is well
known to be a “scale-free network” having degree distri-
bution with power-law, which is often modelled by the BA
model.[22]

When a direct route linking between a hub airport and its
outskirts airports exists, a current airline network is very
convenient. On the other hand, when a direct route linking
between a hub city and its outskirts airports doesn’t exist, it
is not so convenient because the number of transits would
increase at the hub airport.

Therefore, there are two different strategies between Boeing
and Airbus companies (both are two major airplane vendors
in the world) to deal with above situation; the former com-
pany (Boeing) takes a strategy to use mid-sized airplanes for
connecting airports directly with each other, which is called
the “Point-to-Point” strategy. On the other hand, the latter
company (Airbus) takes a strategy to connect hub airports
with each other using big airplanes like jumbo jets, and then
to transit to their neighboring airports using small airplanes,
which is called the “Hub & Spoke” strategy.

The “Point-to-Point” strategy is superior from a viewpoint
of direct access flight, but there is room for improvement
about the small-world characteristics as a whole network.
On the other hand, the “Hub & Spoke” strategy is superior
from a viewpoint of the small-world characteristics, but it is
inferior to the “Point-to-Point” strategy with direct access.
Therefore, both strategies have both merit and demerit.

The airline network based on the n-Star network is close to
the “Hub & Spoke” strategy from the viewpoint of having
the star airports with their peripheral airports, and is also
close to the “Point-to-Point” strategy from the viewpoint of
having peripheral links. Therefore, the n-Star-based airline
network has both merits of the two different strategies.
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It is necessary for neighboring airports on each continent to
link with star airports in other continents if an airline net-
work is based on the n-Star network, but a local airport on a
continent usually tends to connect with another local airport
on another continent through its nearest hub airport on the
same continent. Therefore, it would naturally form a hier-
archical structure of network when the number of airports
increases in the world.

6 Experimental results and discussions
According to the small-world characteristics based on theR
values, the airline network can be formed, as shown in Fig-
ure 10, based on the fractal type II with the best value of
R among the various hierarchical types of networks in Ta-
ble 1. The peripheral links are formed based on the impor-
tance between airports, i.e. the n-Star network in the frac-
tal type II is equivalent to the n-Star network with neigh-
boring links as denoted by dotted lines in Figure 1 (left).
The top 100 ranking cities in the world are extracted from
the city database.[34] As five star airports, Tokyo, Chicago,
Frankfurt, Sydney and Johannesburg are selected from each

continent, and the n-Star network structure is also formed
on each continent around each star airport. The average
degree 〈k〉 is 15.5 which corresponds to the average num-
ber of different flight routes per airport. The average path-
length L(dist) is 1.410 which corresponds to about 8,980
km in the unit of radius of Earth, about 6,368km. The
average number of transits is 1.421 because the average
path-length L(step) is 2.421 which corresponds to the num-
ber of transits plus one. The R(step) value calculated by
R(step) ≡ L(step)+p = L(step)+〈k〉 /(N−1) is 2.577.
These values are summarized in Table 2 with comparison of
the networks based on the scale-free network (BA model)
and n-Star network. In comparison with the current scale-
free network with almost the same value of 〈k〉, the value of
L(dist) is smaller by 9.3% than that of the scale-free net-
work while the value L(step) is close to that of the scale-
free network, i.e. the small-worldnessR is as good as that of
the current scale-free network. Also, in comparison with the
basic n-Star network with almost the same value of 〈k〉, al-
though the value of L(step) increases by 27.0%, the value of
L(dist) slightly decreases by 0.84%, which may be consid-
ered as the merit of hierarchical structure of n-Star network.

Figure 10: A global airline network based on the fractal type II. For reference, the original fractal type II of n-Star
network in Figure 7 is also shown in the upper region of this figure. As five star airports, Tokyo (No.6), Chicago (No.9),
Frankfurt (No.11), Sydney (No.15) and Johannesburg (No.67) are selected from the top 100 ranking cities[34] on each
continent, and each n-Star network structure is formed around each star airport on each continent. The load concentration
on the star airports and some specific airports are moderately distributed, as shown in the bottom-right region of this
figure.
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In summary, the airline network based on the fractal type II
is advantageous in terms of L(dist) compared to the current
scale-free (the BA model) network and the basic n-Star net-
work with the comparable number of transits L(step) and
the small-worldness R(step) of the current scale-free net-
work. The difference in L(dist) between the fractal type
II and the scale-free networks is significantly large because
the travel time as well as the jet fuel consumption in propor-
tion to the average distance L(dist) will be reduced while
keeping the same convenience (i.e. L(step)) as the current
airline network.
Generally speaking, there is a tendency of concentrating
loads on star airports if we design a star type airline net-
work. However, the loads of concentration on the star air-
ports in the fractal type II airline network are moderately
distributed, as shown in Figure 10 (bottom-right) where the
loads of several airports such as New York (No.1), Lon-
don (No.2), Tokyo (No.6), Zurich (No.7), Atlanta (No.31),
Moscow (No.58), São Paulo (No.62) and Jiangsu (No.84)
are controlled under less than 10 times at maximum of the
average loads by 100 airports.

Table 2: Comparison of performance in global airline
networks based on different types of networks

 

 

Network/para-
meter 

Fractal type II 
network 

Scale-free 
(BA model) 

n-Star 
network 

<k> 15.5 15.41 15.52 
L(dist) 1.410 1.516 1.422 
L(step) 2.421 2.417 1.907 
R(step) 2.577 2.573 2.064 

 

7 Conclusions
We have extended the n-Star network to several hierarchical
structures and analyzed the features of each network theo-

retically using network parameters such as the total number
of nodes, average degree, average path-length, degree distri-
bution and assortativity (degree correlation), etc. Also, we
defined a degree of small-world, called “small-worldness”
which is a simple measure of linear combination of av-
erage path-length (corresponding to efficiency of network
topology) with link probability (corresponding to cost of
network). Using this measure, any types of networks in-
cluding hierarchical types are evaluated in terms of net-
work topology. As the n-Star network is proved to be the
smallest-world in this sense having the minimum value of
small-worldness 2 while the other networks can be evalu-
ated how far their values are from the minimum value of
2. Among several types of the hierarchical structures of n-
Star network, we found that the fractal type II is the best
in this sense. Based on this knowledge, the fractal type II
of n-Star network-based world airline network architecture
was proposed, and simulation experiments were performed
with comparison of the current airline network and the basic
n-Star network-based airline network. As a result, the pro-
posed hierarchical structure is more suitable for real world
because the shorter average cruising distance than the other
two kinds of networks is realized with the comparable num-
ber of transits to the current airline network with scale-free
property. Future studies will focus on application of the
proposed hierarchical architectures of n-Star network to the
fields of communication networks, logistics networks, util-
ity networks and power networks, etc. in the real world.
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