
www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

ORIGINAL RESEARCH

Development of agent-based system for monitoring
software resources in a network environment
Akinyokun O. C∗1, Ekuewa J. B.2, Arekete S. A.3

1Department of Physical Sciences, Landmark University, Omuaran, Nigeria
2Department of Computer Science, Federal Polytechnic Ede, Nigeria
3Department of Mathematical Sciences, Redeemer’s University, Redemption City, Nigeria

Received: July 21, 2014 Accepted: August 13, 2014 Online Published: September 11, 2014
DOI: 10.5430/air.v3n3p62 URL: http://dx.doi.org/10.5430/air.v3n3p62

Abstract
Mobile agent is becoming an emerging tool for monitoring and managing computer networks. Its usefulness in this regard
emanates from its ability to communicate with other agents and devices, and navigate a computer network to collect data and
take actions autonomously. In this research, an investigation of the use of an agent-based system to monitor the software tools
on the nodes of a computer network is carried out. The proposed framework adopts a multi-agent system approach combining a
static server agent with a mobile monitor agent which move around and extract data from each node via the server agent. The
system was tested in a computer network environment which is characterized by a Windows NT. The programming and mobility
infrastructure is the C#, an object-oriented and multifunctional programming scheme. The performance of the proposed agent-
based system and Remote MONitoring (RMON) system are simulated and the results obtained show the cost of service, query
time and delay overhead is lower in the agent-based system than that of RMON.

Key Words: Agent-based system, Mobile agent, Network monitoring, Software resources

1 Introduction
The term “agent” originated from the Greek word “agein”
which means to drive or to lead. Agent is used to describe
something that can produce an effect, for instance, a “dry-
ing agent” or a “shipping agent”. In Computer Science, an
agent denotes a computer system that is situated in some en-
vironment and is capable of autonomous actions, for exam-
ple, a software agent that can search and buy air tickets over
the Internet. Though, there can be several agents, in this
research, the term “agent” is restricted to a software agent.
Agents have become topical since the 1990s, in particular,
in discussions relating to distributed and autonomous de-
centralized systems.[1] Most of the technologies support-
ing agent-based systems emanated from distributed Artifi-
cial Intelligence research.[2, 3] The growing interest gener-
ated in the area of agent research is attributed to the sig-
nificant advantages inherent in such systems, which include
their ability to solve problems that may be too large for a

centralized single agent, provide enhanced speed and relia-
bility, and tolerate uncertain data and knowledge.

A computer network is a collection of physically separated
computers which are connected together primarily to search
for, share and exchange computer resources. The process
of monitoring software tools on servers and workstations in
a network is one of such tedious tasks of the network sys-
tem administrator. Monitoring and searching for resources
on the network often involved physical movement of the net-
work administrator from one computer to another.[4, 5] When
the human administrators are used for this function, their
work may involve monitoring, evaluating and analysis of
the various nodes attached to the network with a view to
resolving problems and ensuring optimal performance and
efficiency. This function can be tiring, stressful and cum-
bersome, especially in a large network. One significant lim-
itation of this manual approach is that human being cannot
monitor events on the network in real time, that is, as the

∗Correspondence: Akinyokun O. C; Email: akinwole2003@yahoo.co.uk; Address: Department of Physical Sciences, Landmark University,
Omuaran, Nigeria

62 ISSN 1927-6974 E-ISSN 1927-6982



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

events occur in nodes distant from where the administrator
is currently located. Being human, the network administra-
tor can also be bored and/or confused about which node to
monitor next. It is, therefore, apparent that manual network
management cannot satisfy the requirements of the modern
complex network systems. The limitations of the manual
approach necessitate the need to have intelligent software
that would autonomously search, detect and monitor net-
work resources on behalf of the network administrator.
Several agents have been described in literature. Certain
agents, such as, static agents are stationary and would not
need to migrate from place to place.[6] On the other hand,
some agents called mobile agents can migrate from one
node to another in a network to perform tasks on behalf
of the network administrator or a user.[4, 7–10] The Dis-
tributed Artificial Intelligence (DAI) community includes
the intelligent and multi-agent systems with their main fo-
cus on agents (stationary) placed at nodes or workstations
distributed over the network and cooperating to pursue a
common goal. Multi-agent systems consist of a number of
autonomous agents that cooperates or compete to achieve
some defined goal.[11, 12] Mobile agent can be intelligent
as well as being part of a multi-agent system, and as such,
the DAI community considers mobility an orthogonal or op-
tional property of an agent.[13–15]

The theories, concepts, frameworks, platforms, standards
and interoperability of mobile agents and their application
in network management, wireless sensor networks, mobile
devices, e-commerce, emergency response and other areas
have been discussed in details in.[12, 16–18] In a network, a
software agent can be dispatched from a server to any work-
stations to monitor software tools available without the sys-
tem administrator physically moving from one system to an-
other. In this research, an agent application is developed to
autonomously monitor and evaluate software tools in a com-
puter network.

2 Development of agent-based system
The mathematical model for agent-based system is pre-
sented in Section 2.1. Section 2.2 presents the architecture
and design of the agent-based system.

2.1 Mathematical model of agent-based system
A mathematical model[19] using push migration strategy has
been adopted in this research. In that model, when an agent
migrates to a new location or node, it carries all its code,
data and all state information along. The migration process
is divided into the following three parts.
1) Mobile Agent (MA) starts off from the server (home)
platform, Sh and migrates to the first target node in a given
hierarchy.
2) Mobile agent migrate from target node Nk to Nk+1,
where k=1,2,. . . ,m-1.

3) Mobile agent migrates back to its home platform.
Accordingly, the total network load of MA is segmented into
the following three parts:
1) The load of MA denoted by Bh while migrating from Sh

to N1.
2) The load accumulated of MA denoted by Bm while it
moves through the target nodes
3) The load of MA denoted by Bf while it moves from the
last target node to home node.
The total network load denoted by L is therefore given as:

L = Bh + Bm + Bf (1)

Let a set of target nodes to be visited defined as:

N = {N1, N2, N3, · · ·Nm} (2)

A mobile agent is composed of the code, data and state in-
formation, which are donated by c, d and s respectively.
Let the code be composed of n-classes, therefore, the total
length of the code in bytes is:

Bc = c1 + c2 + c3 + · · ·+ cm−1 + cm (3)

Bc remains constant throughout its life time. Assume the
length of data in bytes of MA at take-off is dh and at
each node visited, accumulates additional data denoted by
dk,k=1,2,3,. . . ,m. Again, assume the length of the state in-
formation in bytes is Bs and this is constant throughout the
agent life-time. Then, the load Bh of MA from home to the
first target node is calculated as:

Bh = Bc + dh + Bs (4)

When MA migrates from Nk to Nk+1 with k=1,2,. . . ,m-1,
it has a network load of

BM = Bc + dh + Bs (5)

When the agent migrates to its home, the load is given by:

Bf = dh + Bs (6)

The agent-based system comprises a server which connects
to a number of workstations. The server is composed of
typical computer hardware devices such as main memory,
secondary memory, printer, scanner, switches, modems, net-
work ports and so on. There are also some categories of soft-
ware such as network operating system, frontend software,
backend software and utility software. The workstation en-
vironment on the other hand comprised of some hardware
devices and software systems of, perhaps, lesser capacity
than that of the server.

Published by Sciedu Press 63



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

2.2 Architecture of agent-based system
The agent-based system adopts a multi-agent approach: the
static agent, otherwise referred to as Server Agent (SA) and
the mobile agent referred to as Monitor Agent (MA) to-
gether with their underlying software and hardware infras-
tructure. The architecture of the system is composed of a
backend and frontend engine. The backend engine is made
up of the server and workstations. The frontend engine
provides the framework for launching and migration of the
monitor agent. The architecture of the agent-based system
for monitoring software tools is conceptualized in Figure 1.
The platform for the take-off of the monitor agent at the

source and the platform for its landing at the target worksta-
tions are their respective operating systems. In monitoring
of software tools, the model conceives to main issues. One,
a system has to monitor the software tools on workstations
in the network, and secondly, a system has to report back to
the server where the request is made. A static agent (server
agent) is responsible for monitoring at its locality while a
mobile agent (monitor agent) is responsible for visiting each
node, activating the server agent, getting the information on
the software tools and reporting back to the server. The two
agents are integrated to make the proposed system as de-
picted in Figure 2.

Figure 1: Architecture of the Agent-Based System

2.2.1 Server agent
The server agent is a backend static agent. It executes only
on the system where it is installed. It must be installed on
both the server and all the workstations in the network. The
server agent must be running on all the computers in the net-
work to enable the monitor agent to go into any workstation
to do its job and report back to the server which is making
such request. The server agent is responsible for performing
the following functions:
1) Provide an interface for the user or system administrator
to specify requests to the monitor agent.
2) Create monitor agent on behalf of the user or system ad-
ministrator.
3) Provide avenue for the user to specify travel plan.

4) Launch the monitor agent and migrate it to the next work-
station in the itinerary.
5) Keep track of the monitor agent in order to service any
special request from other agent servers.
6) Process information results from the workstations visited
before presenting it to the user or system administrator in a
Graphical User Interface (GUI).
7) Provide computer resources at both the server and at the
workstations for the monitor agent.
8) Provide an enabling execution environment for the mon-
itor agent.
9) Provide an environment for the mobile Agent Communi-
cation Language (ACL) necessary for the incoming monitor
agent to be able to run its code to monitor the software tools.

64 ISSN 1927-6974 E-ISSN 1927-6982



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

Figure 2: Agent Mobility Model

2.2.2 Monitor agent

The monitor agent is a mobile agent dispatched from the
server to other workstations in the network. It goes into the
network to identify the software tools on the workstations
or servers whose identities are known. At each workstation,
the monitor agent interacts with server agent at each node
to collect information about the available software tools.
The information collected at each node with its identities
is placed in the database container of the monitor agent for
onward movement to the next workstation. This process is
repeated until the last node is visited, at which point, the
monitor agent migrates back with all software information
in its database container to the server that launched it. At
the target workstation, the operating system provides a plat-
form for interaction between the server agent and the moni-
tor agent. The server agent gets into the files of the operating
system to collect the information about the software tools
on it and places it in the database container of the monitor
agent. The database container of the monitor agent is used
to update the source server agent from where the collected
information is displayed on the screen or printed out for the
system administrator.

2.2.3 Mobility facility
Mobility is the core property in a mobile agent concept
whereby the agent has the ability to migrate or transport
itself from one node to another within the same environ-
ment or from node to another node in a different environ-
ment autonomously. The model envisages a mobility frame-
work which supports transporting the mobile agent from
the server to the workstation, between the workstations and
back to the server. Theoretically, migration between the
workstation should be unidirectional, that is, if the moni-
tor agent leaves the workstation W1 for workstation W2, it
should not return to W1, on the other hand, it should move
to the next workstation W3 in the itinerary or return to the
server if the last workstation has been visited. The move-
ment of the mobile agent in the network is depicted in the
model in Figure 3.
After the service is started and the server agent is initiated,
the mobile agent is launched and initialized. When authen-
tication is successful, the mobile agent is migrated to the
workstation where it interacts with the server agent at that
node and obtains software tools data. Mobile agent then mi-
grates to the next node and the same process is repeated till

Published by Sciedu Press 65



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

the last node is visited. Mobile agent returns to the server,
display result and archive it. Finally, the server agent deac-

tivates the returned monitor agent.

Figure 3: Mobile Agent Migration Flowchart

3 System implementation of agent moni-
tor

The agent-based system requires a network which supports
both server and workstations of suitable configurations in
a local area network. The Windows NT operating system
was used for availability and efficiency. However, the sys-
tem will operate well in Linux, UNIX and Solaris operating
system environment.
The agent-based system adopted the Microsoft Access re-
lational database as the tool for storing system information
because it is readily available and cheap to obtain. More-
over, it works seamlessly with other window based tools
which were used to implement the system. MS-Access can
also exchange data with other relational database systems
such as Oracle, SQL Server and Sybase. MS-Access em-
ploys a facility called the Microsoft Distributed Transac-
tions Coordinator (MSDTC) which enables clients to make
changes to multiple databases at the same time, supports
a wide variety of clients that enables users to insert, up-
date, delete and query data stored in databases and works
perfectly with Non-Microsoft Access programs, thereby en-

abling programmers the greater flexibility in creating inter-
faces that meet their specific network needs.

The frontend provides the interface for the agent to monitor
the software tools on the network. The interface software
is necessary to assist in Human-Agent-Interaction (HAI).
Though in theory, any language can be used to implement
mobile agents, a number of languages are known to offer
support for agent programming. These include Java, Tele-
script and Agent TCL. In this research, the C# program-
ming language was used. C# is a simple, modern, general
purpose, multi-paradigm and object-oriented programming
language which can be used to develop software compo-
nents suitable for deployment in distributed environments.
It is suitable for writing applications for hosted and embed-
ded systems, ranging from the very large programs that use
sophisticated operating system, down to the very small ones
having dedicated functions. C# can be easily harnessed with
Microsoft Access and Windows NT operating platform of
the mobile agent as well as with the mobility software. It
incorporates features such as menus, forms and command
buttons for interactive programming, and these features out-

66 ISSN 1927-6974 E-ISSN 1927-6982



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

perform the interactive facilities provided by Java or C++.
For the mobility software needed for mobile agent, several
choices are available, which include Java, Telescript, Obliq,
AgentTcl, and C#. C# has been adopted as the mobility
software in this research. Though C# was not specifically
designed for writing mobile agents, but it has most of the
necessary capabilities for mobile agent implementation. It
has built-in language thread and synchronization functions
that are very secured which make programs to run on dif-
ferent platforms in the network. C# programs are compiled
to byte-codes (binary instructions) that run on any platform
under the Microsoft Common Language Runtime (CLR)
which makes C# programs highly portable. It has built-in
services which facilitate the mobility of codes such as ob-
ject remote and serialization. It has security mechanisms
built into the Microsoft Common Language Routine (CLR)
instruction set to prevent programs from being accessed out-
side their environment. Sending an object over the wire is
therefore a snap with C#.
Access is granted to the mobile agent monitor by typing
ADMIN as username and 4190 as password. The login
screen shot is presented in Figure 4. The system allows the
user three trials in the login procedure, after which it termi-
nates the access process if the login fails. When the login is
correct, the welcome screen is activated. After the correct
Administrator’s name and Password or PIN have been en-
tered, the login option is clicked to move to the next stage
which is the welcome screen module shown in Figure 5.

Figure 4: Login Module

Figure 5: Welcome Screen

For the Agent Monitor to identify and connect the comput-
ers on the network, all the computers must be configured by
IP (Internet Protocol) address to each computer. The IP ad-
dress can be assigned manually (static) or dynamically by
the use of Dynamic Host Configuration Protocol (DHCP).
This is used in a wireless Ad hoc network. The nodes on the
network request configuration settings using the DHCP such
as IP address, a default route and DNS server addresses.
Once the client implements these setting, the host is able to
communicate on that network. DHCP provides IP addresses
automatically so there is no need for manual configuration
of IP addresses in the nodes. In this research work, DHCP
for dynamic assignment of IP addresses to computers on the
network was used because:
1) Dynamic configuration reduces the stress of configuring
each and every connected computer on the network.
2) It eliminates the problem of IP conflict that sometimes
arises while using static/manual IP address configuration.
3) It reduces the expenses incurred in terms of cables and
other accessories needed in wired network.
4) It is portable and can be easily used on mobile equip-
ments.
5) Most of today’s computers have built-in DHCP and ad-
hoc settings that facilitates for dynamic configuration of IP
addresses.
The conceptual diagram for illustrating dynamic configura-
tion of IP address using DHCP is presented in Figure 6.

Figure 6: Welcome Screen

The Figure 7 shows the Agent server interface and how it
acquires the IP address of the target computer to start listen-
ing for an incoming connection from client agents on nodes.
DHCP configuration approach was used to make it possible

Published by Sciedu Press 67



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

for the server connection to get client agent IP address im-
mediately they attempt to establish a connection to it. It is
mandatory for all monitor agents on the network to know
the server IP address. The server does not need to know the
monitor agent IP before it connects, but the monitor agent
needs to, since it is possible for the server agent to easily
retrieve monitor agent IP address and the port from its con-
nection information. The Figure 8 shows how the IP address

assigned to the server can be located in the network. Both
server agent and monitor agents allow entry of IP address for
their communication because, the IP address can change as
the computer devices use change. The agent program adopts
the IP address entry approach to make the program flexible,
dynamic, and easy to implement to prevent hard-coding IP
addresses in the program.

Figure 7: Configure IP Address for the Server Agent

Figure 8: Server Agent Configured and Ready to Communicate with Agents

68 ISSN 1927-6974 E-ISSN 1927-6982



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

Figure 9 shows the mobile agent helper program on the tar-
get computers. The program helps the agent to gather the
required system information, installed programs and task
manager running applications for the agent to collect be-
fore moving to the next target computer if there is a need for
that, depending on the Code/Data Instruction specified for
the mobile agent from the server.

Figure 9: System Information Gathering Agent on Client
Computer

The Figure 10 shows a notification popup on the taskbar to
notify the user that the server agent has been started listening
and waiting for connections from the agent nodes. Figure
11 shows the server agent before listening to node agents.
The “Start Listening” button triggers the server agent to ac-
cept incoming connections and also respond to them. Before
the connection starts, the user on the server-side must pre-
configure the listening IP address on which the node agents
are to connect. Only agents that are able to connect to the
server through the IP address are those the server agent will
mount while working on the network to gather information.

Figure 10: Diagnostic System Server Initialization

The Figure 12 depicts a server agent after setting up con-
nections for the nodes to connect. The server agent has
Agents List box that contains all the node agents that are
able to connect to the server successfully. With the list box,
the agent on the server-side can easily communicate with
all nodes or a specific agent on a selected node. The “Re-
quest from ALL NODES” button initiates a mobile agent
walk-through among all the agents on the network and in-
structs them to gather and prepare their system information
for the server agent. The “Request from Selected Node”
button makes it possible for server agent to interact and get
system information from a particular node without interfer-
ing with the rest. The user on the server can select a node on
the Agents List box and then command the agent to connect

to the node, gather needed information and return back to
the server.

Figure 11: Server Agent before listening to Nodes

Figure 13 displays a notification message dialog box on the
server to notify user on the server-side of new incoming sys-
tem diagnostic reports from the node agents. After clicking
“Ok” button, the server collates and processes the incom-
ing data, and it generates a report for each node agent in
PDF format. The PDF format is chosen to preserve the pro-
cessed system information from alteration and to make it
portable and organized. PDF file is generated and it con-
tains information about the system such as; Machine Name,
Operating System, OS Build Version, Network, Monitor
Size, CPU Summary and the Drive information. It also an-
alyzes the running application in each computer memory,
their PID (Process Identity), the Maximum Memory to con-
sume (Working Allotted) and the Memory consumed.
The following are the benefits of the system to the adminis-
trator:
1) Assessment of system based on software availability on
each system from a remote location without visit to the sys-
tem itself. This will enable the system administrator to know
the performance in terms of software of each system.
2) Know the list of software application installed on each
node.
3) List of applications that are currently running on each
node and the memory space occupied.
4) Get a comprehensive diagnostic information of each node
in the network which include: machine name, operating sys-
tem and its build version, the boot mode, the monitor size,
the processor name and its speed, the hard drive capacity
and its format (File Allocation Table (FAT) or New Technol-
ogy File System (NTFS)) which enable the operating system
to control how data is stored and retrieved.

Published by Sciedu Press 69



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

Figure 12: Server Accepts Connection from Node Agent

Figure 13: Server Accepts Connection from Node Agent

4 Performane evaluation of mobile agent
and rmon

In this section, an attempt is made to justify the perfor-
mance of the proposed mobile agent with Remote MONitor-

ing (RMON), which is a form of remote procedure calls. In
justifying the advantage of the development of agent-based
monitor of software tools, three parameters were tested by
comparing the gains of mobile agent system with the ex-
isting RMON system that uses Remote Procedure Calls

70 ISSN 1927-6974 E-ISSN 1927-6982



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

(RPCs). The three parameters that were evaluated are:
1) Cost of service against number of requests per service:
the total time it takes in executing series of predefined task
such as requests and responses to services from source and
destination computers respectively.
2) Query time against number of requests per service: the
average number of requests that can be deployed in a ser-
vice. The optimization of such requests that can be deployed
in a service depends on the technique employed in the mod-
eling.
3) Service delay overhead against number of requests per
service: the total amount of time it takes a service before it
is being attended to during execution.
The following are defined as they apply to the simulation
analysis:
1) Service: This is the series of activities involved in exe-
cution of a defined task. It involves one or more requests
from a source computer to a destination computer and one
or more responses in the reverse direction.
2) Request: This is a particular activity within a service, for
example, searching a database during information retrieval.
3) Data size: This represents the size (in bytes) of the data
to be transmitted on the network.

4.1 Costs of service
In measuring the cost of service, an attempt was made to
evaluate what it costs to execute a service given different
number of requests per service. In generating a cost model,
two resources that are incured in the process of running a
service are bandwidth and time. Bandwidth, measured in
bits per second (bps), refers to the amount of data transmit-
ted or received per unit of time over the network. Hence, the
more the size of data that is transmitted over the network in
unit of time, the more the bandwidth requirement. Also the
time durations of completing a service would affect the cost
of service. Thus, cost of service, C is defined as a function
of the total bandwidth required in bits per second (B) and
service time (T ) in seconds.
A mobile agent executes a service by moving the mobile
agent code and all the requests in the service to the desti-
nation computer, executes all the requests and then returns
to the source with a single response to all the requests. As-
suming the size of the mobile agent code is x bytes, then for
request and response operations, the total size of the mobile
agent code that is transmitted over the network will be 2x
bytes. The size of the individual requests in the service is
assumed to be the same and equal to y bytes. Therefore, for
n requests in the service, the total size required is ny bytes.
The size of response is assumed to be z bytes. Therefore,
the total size of data transmitted for the MA denoted by Dm

is given by Equation 7.

Dm = 2x + ny + z (7)

To calculate the time it takes to transmit the data, it is as-
sumed that the bandwidth of the network is p bps, and that
p bits are transmitted per second. Thus, to transmit the total
size of data denoted by Dm in Equation (7), it would take
time Tm given by Equation 8.

Tm = 2x + ny + z

p
(8)

Assuming that the cost of transmitting p bps in 1 second is
q units, then for a continuous transmission over a period of
time Tm, the cost of transmission, Cm is given by Equation
9.

Cm = q(2x + ny + z)
q

(9)

In RMON, executing a service consists of carrying individ-
ual requests in a service and a corresponding response. For
requests in a service, the size of the requests is ny, and since
n responses would be sent back, the size of the responses
will be nz. Thus, the total size of data transmitted over the
network for RMON is:

Dr = 2x + ny + nz = 2x + n(y + z) (10)

Let us assume a network with a bandwidth p bps, the time
Tr required to transmit Dr as in 10, then becomes:

Tr = (2x + n(y + z))
p

(11)

Furthermore, assuming that the cost of p bps transmission in
1 second is q units, then for a continuous transmission over
a period of time Tr, the cost of transmission, Cr is derived
in equation 12.

Cr = q(2x + n(y + z))
p

(12)

From equations 9 and 12, we can see that Cm < Cr, that is,
mobile agent is more cost effective than RMON.

4.2 Query processing
In this research work, the investigation of how the MA and
the RMON schemes execute queries is carried out. For
ease of analysis, assume that the resources which the two
schemes evaluate from the server of a network has a cen-
tral storage. Hence, during a service, there are one or more
queries at the node. For the RMON scheme, a unique query
is carried per unit time for execution. Thus, in a service with
n requests, there would be n queries. For the MA scheme,
since all the requests are carried out in batches and executed
at the node, then repeated requests are not going to be ex-
ecuted twice. It is only the number of unique requests that
would be executed. For example, one may have some of

Published by Sciedu Press 71



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

the requests that are the same; hence they would only be
executed once. Thus, for MA scheme, we expect that for
n requests, there would be m number of queries where m
is less than n(m < n).For the RMON architecture, how-
ever, if there were n requests per service, then the number
of queries would also be n.

4.3 Service delay overhead
Service delay overhead is the overall delay that is associated
with a service. The delay associated with the execution of
a request for service is classified into three namely: trans-
fer delay, waiting time and service time. It is assumed that
no other job is running, therefore, competition for processor
time does not occur, and hence, some delays such as inter-
rupts due to other jobs were not present.
The Transfer Delay is the time interval from the generation
of the last bit of packet at the information source and when
the last bit is recieved at the destination. The main delay
components are:
1) Queuing delay.
2) Time at the source interface buffer before the packet is
processed for transmission.
3) Processing delay involved as the protocol interpreter is
managing the transmission of the packet.
4) Propagation time required to transmit a packet through
the network.
5) Waiting time at the buffer associated with the destination
station and,
6) Processing delay at the destination station.
The Waiting Time is the time interval between the arrival of
a request at the destination and the beginning of its execu-
tion. The waiting time in this case is not due to other jobs
but due to the execution of the previous request in the ser-
vice. The Service Time is the time between the start and the
end of execution of a particular request in a service. For the
MA scheme, the transfer delay is only suffered once during
the request operation. However, each of the unique requests
would have to be processed one at a time and thus each re-
quest suffers some waiting and service time.
Given n requests per service with m unique requests gener-
ated, the transfer delay for the request operation is denoted

by T . For the first request, there is no waiting time since
the request is the first one, hence, waiting time for the first
request denoted by w1 is zero. For the second request, the
waiting time is equivalent to the service time of the first re-
quest denoted by s1. Similarly, for the third request, the
waiting time is equivalent to the service time of both the first
and second requests that s1 + s2. Assuming that the service
time for each request is the same, therefore, the sum of the
waiting times follows an arithmetic progression with a com-
mon difference s1 or s2. The total waiting time denoted by
W is then found to be:

W = (m(2w1 + s1(m− 1)))/2 (13)

It should be recalled that w1 = 0, the expression becomes

W = (m(s1(m− 1)))/2 (14)

Since s1 = s2 = · · · = sm, then the total service time
denoted by P is given by:

P = ms1 (15)

Also, during response operation, the MA also suffers a
transfer delay denoted by R. Therefore, the total service de-
lay overhead for MA scheme is: MA(delay) = P +W +S

Since P = T + R

MA(delay) = T + W + S + R (16)

If we assume equal delay is suffered during request and re-
sponse operation then T = R

P = 2T = 2R (17)

Therefore, combining equations 14, 15 and 17, MA(delay)
is give by:

MA(delay) = 2T +(m(si(m˘1)))/2+msi, (i = 1, 2, 3, · · · , m) = 2T +(m2si +msi)/2, (i = 1, 2, 3, · · · , m) (18)

For the RMON scheme, requests are transferred and exe-
cuted one at a time hence, creating an overhead in transmis-
sion delay. However, total waiting time here is zero since a
request completes execution before the next is transferred.
Therefore, the following applies for the RMON scheme.
The total transfer delay denoted by P is given by:

P = n(T + R) (19)

Since each request consists of a request-response pair where
T = R, then,

P = 2nT = 2nR (20)

The total waiting Time (W) is zero. Also since s1 = s2 =
72 ISSN 1927-6974 E-ISSN 1927-6982



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

· · ·+ sn, then the total service time P is given by:

P = nsi, (i = 1, 2, 3 · · · , n) (21)

Therefore, the total service delay overhead for the RMON
scheme is given by:

RMON(delay) = 2nT +nsi, (i = 1, 2, 3 · · · , n) (22)

4.4 Cost of service versus number of request per
service

The mathematical basis for the number of requests per ser-
vice developed in Equations 9 and 12 that represent the
cost of services for the mobile agent monitor and existing
RMON schemes respectively is being applied here. The
variation of cost with number of requests per service is be-
ing simulated. The size of agent codes is assumed to be
5 bytes, size of request y and response z is fixed at 1 byte
each. The bandwidth size p is assumed to be 5Kbps and cost
of transmitting at 5Kbps for 1sec q is assumed 1 unit. The
result of the simulation is as shown in Figure 7. It is clear
that when the number of requests increased, the advantage
of MA over RMON is more pronounced.

Figure 14: Service Cost of MA against RMON

4.5 Query time versus number of requests per ser-
vice

From the analysis done in the query optimization, a query
time is assigned to each of the unique queries involved in ex-
ecuting a service in the two schemes. For simplicity, assume
a uniform query time of 1 second for each of the requests.
The result obtained is as shown in Figure 15. The mobile
agent scheme optimizes querying time as the number of re-
quests per service increases because it is able to eliminate
repeated requests and thereby reduce the number of queries
to be executed at remote locations.

4.6 Service delay overhead versus number of re-
quest per service

The service delay overhead against the number of request
per service for the two schemes was measured. Equations
19 and 22 were adopted for mobile agent and RMON re-
spectively. In the simulation, it was assumed that time delay
=10secs, service time = 2secs. The result of the simulation
depicted in Figure 16 shows that the MA scheme generates
a lower service delay overhead than the RMON scheme. At
18 out of the 20 samples simulation runs, the mobile agent
perform better resulting in 90% efficiency.

Figure 15: Query Time Versus Number of Requests

Figure 16: Service Delay Versus Number of Requests per
Service

5 Conclusions
In this paper, an agent-based system has been developed
to monitor software tools available on the nodes of a com-
puter network. The agent system employs the multi-agent
paradigm in which agents interact and cooperate with each
other to achieve a common goal. The static server agent
seats on each node and collects the data on software tools.
The mobile monitor agent then moves into the workstation
and interacts with the server agent, receives the data and
moves to the next node or the server where the reports are
displayed and achieved. The advantage of the agent-based
system is that it can monitor each node and identify the soft-
ware tools installed on them on real-time basis. Information

Published by Sciedu Press 73



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

obtained can be used by the system administrator to take
critical decisions. In a large network environment, the work
of monitoring software tools can be a tasking one. The pro-
posed system would assist the system administrator to func-
tion more efficiently. In future this work can be expended to
involve configuration management, fault detection and se-
curity.
An attempt is made to justify the performance of the pro-
posed mobile agent with Remote MONitoring (RMON),
which is a form of remote procedure calls. In justifying
the advantage of the development of agent-based monitor
of software tools, three parameters were tested by compar-

ing the gains of mobile agent system with the existing Re-
mote Monitoring (RMON) system that uses Remote Proce-
dure Calls (RPCs). The three parameters that were evaluated
are:
1) Cost of service against number of requests per service
of the agent system were shown to be lower than that of
RMON.
2) Query time against number of requests per service of the
agent system were shown to be lower than that of RMON.
3) Service delay overhead against number of requests per
service of the agent system were shown to be lower than
that of RMON.

References
[1] Arai T and Ota J. “Motion Planning of Multiple Mobile Robots us-

ing Virtual Impedance”. Journal of Robotics Mechatronics. 1966;
8(1): 67-74.

[2] Guttman, R.H and Maes P. “Agent-Mediated Integrative Negotiation
for Retail Electronic Commerce”, Proceedings of AMET’98. 1998:
77-90. Available from: http://ecommerce.media.mit.edu/

[3] Feridum, M and Krause, J. “A Framework for Distributed Manage-
ment with Mobile Components”, Computer Network. 2001; 35: 25-
38. http://dx.doi.org/10.1016/S1389-1286(00)00147-X

[4] Imianvan A.A. "Development of Mobile Agent for Evaluating the
Use of Bandwidth in a Computer Network", PhD Thesis in the De-
partment of Computer Science, Federal University of Technology,
Akure, Nigeria. 2009.

[5] Arekete, S.A. “Development of a Mobile Agent for Monitoring and
Evaluation of Activities of Users in a Network Environment”. PhD
Thesis, Department of Computer Science, Federal University of
Technology, Akure. 2013.

[6] Akinyokun, O. C. “Catching and Using the Virus”. The journal of
the Institute of the Management of Information Systems (IMIS),
London, United Kingdom. 1997; 7(6): 12-17.

[7] Akinyokun O. C. and Imianvan A. A. “Experimental Study of Band-
width Management in a Computer Network Environment”. Proceed-
ings of Allied Academies International Conference, Orland, USA.
2010. PMid:20543357

[8] Imianvan A. A, Akinyokun O. C, Obasohan E. E. and Obi J. C. “Pro-
totype of an Intelligent Trade Agent”. World Journal of Applied Sci-
ence and Technology. 2011; 3(2): 40-47.

[9] Arekete S. A, Akinyokun O.C, Olabode O. and Alese B.K. “De-
sign of a Mobile Agent for Monitoring Users Activities”. Computer
Engineering and Intelligent Systems. 2013; 4(2): 33-48. Available
from: www.iiste.org

[10] Arekete S.A. and Akinyokun O.C. “Implementation Techniques of
Mobile Agent for Monitoring Activities of Users”. WebPub. 2013;
1(3): 38-54, Available from: http://www.researchwebpub.org/wjsr

[11] Wooldridge M. “An Introduction to Multi-Agent Systems”, John
Wiley & Sons Limited England. 2002..

[12] Manvi, S. S and Venkataram, P. “Application of Agent Technology
in Communication: a Review”, Computer Communication Journal,
Elsevier. 2004; 27: 1493-1508. http://dx.doi.org/10.1016/
j.comcom.2004.05.011

[13] Wooldridge M and Jennings N.R. “Intelligent Agent: Theory and
Practice”. In Knowledge Engineering Review. 1995; 10(2): 115-
152. http://dx.doi.org/10.1017/S0269888900008122

[14] Lange, D and Oshima, M. “Seven Good Reasons for Mo-
bile Agents”, Communications of the ACM. 1999; 42(3).
http://dx.doi.org/10.1145/295685.298136

[15] Tveit. “A Survey of Agent-Oriented Software Engineering”.
2001. Available from: http//www.abiody.com/jfpa/
publications/AgentOrientedSoftwareEngineering

[16] Silva L.M., Soares G. Martins P, Batista V and Santos V. “Com-
paring the Performance of Mobile Agent Systems: a Study of
Benchmarking”, Computer Communications. 2000; 23(8):769-778.
http://dx.doi.org/10.1016/S0140-3664(99)00237-6

[17] Cucurull J, Martí R., Navarro-Arribas G, Robles S, Overeinder
B, Borrell J. “Agent Mobility Architecture Based on IEEE-FIPA
Standards”, Computer Communications. 2009; 32(4): 712-729.
http://dx.doi.org/10.1016/j.comcom.2008.11.038

[18] Manzoor U. and Nefti, S. “QUIET: A Methodology for Au-
tonomous Software Deployment using Mobile Agents”, Journal
of Network and Computer Applications. 2010; 33(6): 696-706.
http://dx.doi.org/10.1016/j.jnca.2010.03.015

[19] El-Gamal Y Khalid E and Magdy S. “A Comparative Performance
Evaluation Model of Mobile Agent Versus Remote Method Invoca-
tion for Information Retrieval”. World Academy of Science, Engi-
neering and Technology. 2007: 286-291.

74 ISSN 1927-6974 E-ISSN 1927-6982

http://dx.doi.org/10.1016/j.comcom.2004.05.011
http://dx.doi.org/10.1016/j.comcom.2004.05.011
http//www.abiody.com/jfpa/publications/AgentOriented Software Engineering
http//www.abiody.com/jfpa/publications/AgentOriented Software Engineering

	Introduction
	Development of agent-based system
	Mathematical model of agent-based system
	Architecture of agent-based system
	Server agent
	Monitor agent
	Mobility facility


	System implementation of agent monitor
	Performane evaluation of mobile agent and rmon
	Costs of service
	Query processing
	Service delay overhead
	Cost of service versus number of request per service
	Query time versus number of requests per service
	Service delay overhead versus number of request per service

	Conclusions

