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Abstract
The oscillometric method is the most commonly used automatic monitoring blood pressure measurement method nowadays.
Height-based and Slope-based criteria are the two general means used to determine the systolic and diastolic pressures; however
they are disputed for their accuracy. Thus, the auscultatory method continues to be the gold-standard for these measurements.
In this paper a newly developed cuff with piezofilm sensors and a pressure sensor to collect signals from the brachial artery is
investigated. Using Neural Networks to classify the acquired pressure signals in various regions, an algorithm is developed and
implemented in signal processing and heart beat/heart rate detection software. The algorithm is tested on 258 measurements
from 86 subjects and shows good conformance to the standards set out by the Association for the Advancement of Medical
Instrumentation and British Hypertension Society grade A criteria.
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1 Introduction
Blood pressure (BP) is an essential parameter in profes-
sional medical care especially for management of certain
illnesses, blood hypertension classification and patient mon-
itoring. BP measurement methods can be classified into two
groups, invasive (direct) and non-invasive (indirect). The
first involves inserting a catheter into the vascular system,
which brings high risks of embolism, arrhythmia, heart at-
tack and a certain percent of mortality;[1] however, the sec-
ond is safer, easier to use, and can be utilized in most situa-
tions.[2, 3] This research focuses on the second method.

In 1896 the Italian paediatrician Scipione Riva-Rocci
invented the air cuff sphygmomanometer measurement
method.[4] Mercury sphygmomanometers soon became the
gold-standard for non-invasive blood pressure (NIBP) mea-
surement. Environmental concern about mercury contam-
ination has highlighted the need to find a replacement for
traditional mercury sphygmomanometers. Aneroid sphyg-
momanometers are an option for manual sphygmomanom-
etry but aneroid devices have to be frequently calibrated.

Although there are many different NIBP measurement de-
vices commercially available, clinical use devices, which
are expected to have higher accuracy, are very expensive
and in certain sub-groups of populations, such as pregnant
women, these devices remain inaccurate. A clinical re-
view[5] showed that of 23 automated BP measurement de-
vices validated according to the British Hypertension Soci-
ety (BHS)[6] and Association for the Advancement of Med-
ical Instrumentation (AAMI)[7] standard protocols, five of
them were recommended for clinical use and only one (Om-
ron HEM-772C), when tested on elderly subjects, achieved
an A/A grading according to the BHS protocol.
The oscillometric method is based on the principle that the
pulsatile blood flow through an artery creates arterial wall
oscillations which are transmitted through the soft tissue to
the occluding cuff where they are detected as cuff pressure
oscillations. As the occluding cuff pressure is gradually re-
duced from above systolic (SP) to below diastolic (DP), the
SP, DP and the mean pressure (MP) can be estimated.[2, 8]

There is a general agreement that MP is determined from
the cuff pressure at which maximum oscillation amplitude
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is observed. Height-based and Slope-based criteria are the
two general means used to determine the SP and DP values;
however, the accuracy of these two criteria are regularly dis-
puted.

This paper describes an investigation into the synthesis of
various height- and slope-based metrics by pattern recogni-
tion methods to achieve the accurate determination of blood
pressure by the oscillometric method.

2 Experimental setup
2.1 Apparatus

Blood pressure was measured using an occlusive upper-
arm blood pressure cuff. Three different size cuffs (small,
medium and large) were used, as appropriate to the subject.
A DT4 piezoelectric sensor (Measurement Specialties, VA,
USA) was placed on the outside wall of each cuff in the cir-
cumferential direction as shown in Figure 1. One contact of
the DT4 sensor was connected to ground. The other contact
was connected to an operational amplifier. The cuff design
has two air hoses protruding from the bladder. One hose
was connected to a Medisave aneroid sphygmomanometer
while the second was connected to a Welch Allyn R© NIBP
module which was used for automatic inflation and defla-
tion of the cuff. The NIBP module was also connected to
an ADP1 semiconductor pressure sensor (Matsuchita Elec-
trical Works Ltd, Japan) via a tee-junction. The ADP1 was
powered using a 5V reference from a data acquisition card,
DAQCard-AI-16XE-50 (National Instruments, TX, USA),
in differential input mode, and both the output voltage cor-
responding to pressure and the voltage across the DT4 sen-
sor were measured using a differential analogue input on
the DAQCard. The schematic setup of the apparatus is illus-
trated in Figure 2. A LabView v6.1 Virtual Instrument (Na-
tional Instruments, TX, USA), was created for data record-
ing at a sampling rate of 250 Hz. Analysis of saved data
was performed in MATLAB R2012b (The Mathworks, MA,
USA).

Figure 1: Photo of cuff outside wall showing DT4
piezoelectric sensor element

Figure 2: Schematic setup of apparatus

The bell mode side of a 3MTM Littmann R© dual-head teach-
ing stethoscope was used to measure auscultatory blood
pressure. This stethoscope was used to allow two observers
to listen simultaneously.

2.2 Cuff pressure calibration
The voltage output from the ADP1 pressure transducer was
calibrated against the aneroid sphygmomanometer over the
range 20-250 mmHg and the ADP1 was found to have a lin-
ear characteristic between 0.5 to 3.5 V output. Calibration
was checked at 10 mmHg intervals between 250 mmHg and
20 mmHg. Regular calibration was performed throughout
the data collection period to verify the stability and the ac-
curacy of the output signal.

2.3 Data collection
Application for ethical approval was submitted and ap-
proved by the Auckland University of Technology Ethics
Committee (AUTEC-06/126). All participants were re-
quired to sign a written consent form. Only healthy sub-
jects aged 16 and above were invited for the study. 85 sub-
jects were enrolled and a set of three consecutive measure-
ments was obtained by two observers using the auscultatory
method on cuff deflation, with cuff inflation and deflation
automatically controlled by the NIBP module. Measure-
ments were repeated if either the SP or DP readings from
both observers differed by more than ± 5 mmHg. For those
subjects who had weak Korotkoff sounds, irregular heart
rate or other problems found during the measurement pro-
cess, the recorded data was not used in this research. Data
acquisition occurred simultaneously with auscultation.

2.4 Algorithm development
Figure 3 shows typical changes in DT4 and cuff pressure
sensor signals as cuff pressure is decreased from the supra-
systolic region to the sub-diastolic region. Automatic signal
processing algorithms were employed to quantify changes
in the shape of each pulse in the DT4 signal through cuff de-
flation. Pattern recognition using artificial neural networks
(ANN) was applied to determine SP and DP. Implementa-
tions are described in the next section.
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Figure 3: Typical changes in DT4 (a) and cuff pressure (b)
sensor signals during cuff deflation

3 Signal processing
The automatic blood pressure determination algorithm pro-
ceeded as follows: 1) The raw cuff pressure data was fil-
tered using a minimum mean-squared error finite impulse
response, low pass filter with corner at 20 Hz and order
2000. 2) The cuff pressure and DT4 time series were seg-
mented at each end-diastolic point, so that each segment
corresponded to one heartbeat. 3) Any baseline drift was re-
moved from the DT4 signal, to create a waveform (baselined
heartbeat, BHB) oscillating from zero. 4) For each BHB, a
set of features were calculated and associated with the cuff
pressure at the start of the heartbeat. 5) A first artificial neu-
ral network (ANN) classifier was trained to classify each
BHB, based on presented features, as above SP, below DP,
or between SP and DP. The ANN returned a value between
0 and 1 for each of the three outputs, with 1 representing a
positive classification. 6) A second ANN classified the out-
puts of the first ANN for three consecutive beats, generating
a single output indicating a pressure between SP and DP.
For a given measurement (that is, a sequence of heartbeats
and corresponding ANN outputs) the output of the second
ANN could be fitted by increasing and decreasing sigmoid
functions with cuff pressure as the abscissa and the classifier
output as ordinate. The cuff pressure at which the sigmoid
crossed a value of 0.5 was deemed to be the measured SP or
DP, for increasing and decreasing sigmoid functions respec-
tively.

4 ANN classification
4.1 Heart beat classification ANN
Piezo-sensor signals corresponding to each HB were deter-
mined as described in section 3, above. Twenty-one features
were extracted from each BHB in both frequency and time
domains. The extracted features were used as the input of
the first ANN.
To calculate time domain features, each individual HB was
normalized as a proportion of the oscillometric envelope.
The upper and lower bounds of the envelope were piece-
wise polynomial (spline) interpolations through the peaks
and troughs (respectively) of each HB. Features for each HB
extracted in the time domain were:

• Maximum envelope amplitude (1 feature)
• Sum of amplitude differences of all turning points in the
HB (1 feature)
• Area under each time domain signal (1 feature)
• Number of maxima in each normalized HB over thresh-
olds 0.1, 0.3, 0.5, 0.7 (4 features)
• Maximum increasing and decreasing rates of change, cal-
culated by taking a difference between any trough and suc-
ceeding peak (or peak and succeeding trough) and dividing
by the time between the trough and peak (2 features)
• Maximum increasing and decreasing gradient, calculated
by taking the difference between any two samples and di-
viding by the sampling period (2 features)
These time domain features are explained further in Figure
4.

Figure 4: Time domain signal features. * indicates a
maximum above the threshold. Maximum envelope
amplitude is given by a. The sum of amplitude differences
between turning points is given by a+b+c+d

To calculate frequency domain features, each individual
normalized HB was windowed using a Hanning window,
where the window length was about 70%-80% of the mean
beat rate from the start of the beat. Windowing was applied
to derive a pseudo-periodic signal. Features then extracted
in the frequency domain were:
• Average magnitude of frequency components in the fre-
quency ranges 5-35Hz, 10-35Hz, 15-35Hz, 20-35Hz and
25-35Hz (5 features)
• Average of the power spectral density in the same fre-
quency ranges (5 features)
A total of 21 feature values, 10 and 11 values from the fre-
quency and time domains, respectively, were extracted from
each HB for off-line ANN training and testing purpose.
Feature extraction was followed by rescaling relative to the
same feature for all BHB in the same measurement. All
features were approximately within one order of magnitude
of each other as calculated, so further rescaling was not per-
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formed. The resulting sets of scaled features represented the
input patterns to the first ANN.
Target values for ANN training were determined based on
the cuff pressure corresponding to the start of each BHB.
For the first ANN, a topology with a single hidden layer was
chosen and the number of neurons in the hidden layer was
selected from 1 to 30 in the design process. Hidden layer
nodes utilised a tan-sigmoid transfer function. Output layer
nodes utilised a log-sigmoid transfer function. Figure 5(a)
is a schematic of the first ANN. Weights were initialised us-
ing a pseudo-random seed that was held constant for each
topology (number of hidden layer nodes) to allow compara-
bility.[9] Results are presented for an ANN topology with 3
hidden layer neurons.

Figure 5: Heart beat classification network (a) and blood
pressure determination network (b). Function f is a
tan-sigmoid, function g is log-sigmoid

4.2 Blood pressure determination ANN
The three element output vectors of the first ANN were used
as the input to the second ANN. Output vectors from three
consecutive beats formed the nine-element input vector for
the second ANN, as shown in Figure 5. From the designed
target all HB at cuff pressure between SP and DP should
have an output of 1, otherwise 0.
The second ANN had a single hidden layer neuron with tan-
sigmoid transfer function. A log-sigmoid transfer function
was used to calculate the output. Figure 5(b) shows the sec-
ond ANN.
Blood pressures were selected from the output vector of the
2nd ANN. Every output contained values between 0 and 1.
Hard classification was performed by rounding ANN out-
puts.[10] To increase robustness in the presence of large
pulses caused by body motion the first HB of the first three
consecutive HB with output of 1s was selected for SP. The
last HB of the last three consecutive HB with output of 1s
was selected for DP. An alternative selection method tested
was to select one HB higher than the output as determined

by the process just described. The results were compared to
the standard protocols

4.3 Design and training of the NN
An ANN needs to go through the training process and adjust
weights until the network output matches the target. There
are four steps in the training process.[9] 1) Assemble the
training data – the feature inputs extracted from each HB. 2)
Design the network object – design and initialise the neural
network. 3) Train the network – modify weights. 4) Simu-
late the network – compare the output and target values by
applying new input data. Both ANN were trained using the
BFGS Quasi-Newton method. Training was terminated on
reaching a performance error goal of 0.1%, or ratio values of
0.1. The error rate for the ANN was determined by the pro-
portion of correctly classified HB across the entire data set.
A good ANN should have both training and testing errors as
low as possible and as close as possible.

5 Algorithm validation
5.1 Initial design and validation
Initial validation was performed using data from 76 sub-
jects, for which there were 3 measurements each. 2/3 of
the aggregated measurements were randomized to the test-
ing data set. Validation was performed on the remaining 76
measurements. The results are presented in Bland and Alt-
man plots and a table to show the mean, SD and the percent-
age of the measurement error. The validation result which
Passed/Failed the AAMI protocol and the grades obtained
according to the BHS protocol were also included in the ta-
ble.
After initial design and validation, a first ANN structure
with 3 hidden layer neurons was selected as shown in Figure
5. Referring to Tables 1 and 2, “Net 1” is the BP selection
result from the 1st ANN; “Net 2_1” is the BP selection re-
sult from the 2nd ANN with original BP selection method;
“Net 2_2” is the BP selection result from 2nd ANN with
one HB shifting method and “Net 2_3” is the BP selection
result from 2nd ANN with one HB shifting method on the
SP selection and original selection on the DP selection.
The training and testing errors from 1st ANN were 13.36%
and 14.99%, respectively. The training and testing errors
from 2nd ANN were 8.93% and 8.18%, respectively. Table
1 summarises the ANN results compared to the AAMI and
BHS standard protocols. Figure 6 shows the Bland Altman
plot of the BP estimation to compare ANN classification re-
sults from Net 2_3 and Auscultatory algorithm results. The
target and the output values simulated by both 1st and 2nd
ANN are shown in Figure 7.
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Figure 6: Bland and Altman plot of 21 input data sets with 3 hidden layer neurons in the ANN and Auscultatory result
comparison from 76 testing measurements

Figure 7: 1st and 2nd ANNs simulated output for subject 45, recording 3, by using 21 input data sets.

Table 1: Results from 21 input data sets compared to the standard protocols by using different BP selection methods.
 

 

21 

Inputs 

Systolic Pressure Diastolic Pressure Standard (SP / DP) 

Measurement 

Error 
Absolute difference (%) 

Measurement 

Error 
Absolute difference (%) AAMI  BHS 

Net mean SD ≤ ±5  ≤ ±10 ≤ ±15 mean SD ≤ ±5 ≤ ±10 ≤ ±15 Pass/Fail Grades  

1 -3.15 6.01 63.16 90.79 94.74 -0.53 5.53 68.42 96.05 98.68 P/P B/A 

2_1 -2.97 5.45 65.79 92.11 97.37 0.69 4.96 68.42 96.05 100 P/P A/A 

2_2 0.46 5.46 73.68 97.37 97.37 3.77 5.05 56.58 86.84 100 P/P A/B 

2_3 0.46 5.46 73.68 97.37 97.37 0.69 4.96 68.42 96.05 100 P/P A/A 
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5.2 Final validation
New measured data from 10 additional subjects, involving
30 measurements, was collected to add up to 86 subjects,
involving 258 measurements, for the algorithm final valida-
tion. The finalised ANNs were kept similar without using
the new measured data for further training. Table 2 shows

the ANN results from the total of 258 measurements and
compared to the AAMI and BHS standard protocols. Fig-
ure 8 shows the Bland Altman plot of the BP estimation to
compare ANN classification results from Net 2_3 and Aus-
cultatory algorithm results.

Table 2: Results from 21 input data sets compared to the standard protocols by using different BP selection methods on
86 subjects, 258 measurements

 

 

21 

Inputs 

Systolic Pressure  Diastolic Pressure  Standard (SP / DP) 

Measurement 

Error 
Absolute difference (%)  

Measurement 

Error 
Absolute difference (%)  AAMI  BHS 

Net mean SD ≤ ±5  ≤ ±10 ≤ ±15 mean SD ≤ ±5 ≤ ±10 ≤ ±15 Pass/Fail Grades  

1 -3.17  8.33  64.73  91.09  96.51  0.12  7.30  66.67  89.15  96.90  F/P A/A 

2_1 -2.06  5.21  72.48  92.25  98.45  1.77  6.17  63.95  89.53  96.12  P/P A/A 

2_2 1.44  5.27  71.32  96.51  98.06  5.02  6.33  45.35  81.40  94.96  P/F A/C 

2_3 1.44  5.27  71.32  96.51  98.06  1.77  6.17  63.95  89.53  96.12  P/P A/A 

 

Figure 8: Bland Altman plot of the BP estimation to compare ANN classification results from Net 2_3 and Auscultatory
algorithm results

6 Discussion
6.1 Data collection
A total of 94 subjects participated in this research. 8 were
excluded as stated: 2 did not contribute 3 data sets within
the difference of ± 5 mmHg between observers, in 1 case
the Korotkoff sounds heard fell below 20 mmHg, 1 had
an irregular HR, 2 were under medication and another sub-
ject had had heart valve surgery in the past. One withdrew
due to the discomfort of cuff pressure. The AAMI standard
recommended that when using the auscultatory monitoring
method for comparison, at least 10% of SP and DP values
should fall outside the range from 100 to 160 mmHg and 60
to 100 mmHg respectively. 10% of the total subjects should
have an arm size above 35 cm and below 25 cm in circum-

ference. None of the 86 subjects had SP greater than 160
mmHg and DP greater than 100 mmHg. 14.7% of subjects
had SP less than 100 mmHg and 17.8% of subjects had DP
less than 60 mmHg. In this research, there was only 1 sub-
ject (1.2%) that had an arm size greater than 35 cm and 11
subjects (12.8%) had an arm size less than 25 cm. None of
the subjects had hypertension. Not many people with an arm
size greater than 35 cm were available and some of them did
not want to participate in this research. Therefore, this re-
quirement was not met.

The AAMI standard recommended that for the ausculta-
tory measurement, two trained observers should have 100%
of simultaneous measurements within a difference of 10
mmHg, and 90% or more within 5 mmHg. In order to
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enhance the credibility of the data since the two observers
in this research were not professionally trained, the differ-
ence agreement between observers was tightened to 100%
of measurements within 5 mmHg. At the end of this re-
search, a total of 294 measurements had been taken from 86
subjects. A total of 36 measurements had a difference of
more than 5 mmHg between observers and the rest of the
258 measurements were used for testing the final algorithm.

6.2 Signal processing
The algorithm tries to find the start of each HB, corre-
sponding to the end-diastolic point. Artefacts on the DT4
sensor signal, possibly due to movement or even ectopic
beats mean that the end-diastolic point is not always cor-
rectly identified. In this case, the following pulse may be
very small, or decrease below the baseline, causing non-
comparable features with correctly identified beats. This
would affect either the network training, or validation. As
a partial mitigation against the effects of artefacts, each HB
was windowed by using the Hanning window to reduce the
start and end of each HB to zero. Although a band-pass filter
and FFT functions were also evaluated for this purpose, the
Hanning window produced the best result for the require-
ment of this research.

6.3 Heart beat / Rate determination
HBs were easily detected by applying a second order But-
terworth low pass filter with a corner frequency at 1.3 Hz
from the first 9 subjects of measurements. When measure-
ments increased to 76 subjects, the developed HB detection
algorithm was not able to detect the HB for all cases using
the same corner frequency. Therefore, variable corner fre-
quencies from 0.5 Hz to 2 Hz were designed to perform the
HB detection for all subjects. This variation worked well
for all healthy subjects involved in this research. However,
it is understood that measurements from diseased subjects
such as bradycardia (slow heart) or tachycardia (rapid beat-
ing) and subjects not in a resting situation may need another
automatic HB determination method.

6.4 Pressure selection
The pressure value selected for each HB was the pressure at
the point on the upstroke of the oscillation signal. An exam-
ple of a measured pressure signal is shown in Figure 9. The
Korotkoff sounds should be heard approximately when the
cuff pressure matches the BP. However, in the method used,
the cuff pressure deflated continuously, except for upward
oscillations induced by the BP. The upstroke of the pressure
was defined as the pressure value for that HB for uniformity.

Figure 9: An example of pressure signal measured from
subject 5, recording 1

6.5 Classification
Feature extraction of significant information from the mea-
sured signal data is the most difficult but crucial part of the
ANN classification algorithm. It can affect the success or
failure in the analysis. The selected features were chosen
based on visually observed signal changes among pulses.
There were only 53 HBs used in the sub-diastolic pressure
region for training and 26 HBs for testing the ANNs during
the algorithm development. Since there were so few HBs
in the sub-diastolic pressure region it was difficult to apply,
train and validate the algorithm for DP determination. The
reason for the small number of HBs in the sub-diastolic re-
gion was because the software truncated the last few seconds
of measured signal due to noise in this period, which could
be significant, and in some cases larger than the actual sig-
nal. Further investigation showed that the noise signals were
caused by the movement of the subjects: Every time the
observers noted the DP from the subject, observers would
proceed to record the BP for that subject before stopping
the recording. Frequently, the subjects would presume the
measurement was complete and start to move their arms or
clench their fists, resulting in the recorded noise. After this
problem was discovered, observers were advised to record
BP after completing recording to minimise the noise sig-
nals. The final algorithm therefore used the whole recorded
signal without chopping any of the noise signals at the end.
This made more data available in the sub-diastolic pressure
region.
The outside sensor signal was selected for the analysis. This
sensor gave a clear signal and a similar pattern for most of
the measurements. Signals measured from the pressure sen-
sor also contained more noise signals after filtering than the
signals measured from the outside sensor.

7 Conclusion
Standard Auscultatory BP measurement procedures were
performed based on the AAMI requirement. Algorithm de-
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velopments were completed for signal processing, HB/HR
detection and cuff pressure selection for each HB. The fi-
nal algorithm used two ANNs in series to select blood pres-
sures. This algorithm achieved a grade A for both SP and
DP according to the BHS protocol. The mean differences
(SD) between the observers and the developed algorithm

were 1.44 (5.27) mmHg and 1.77 (6.17) mmHg for SP and
DP respectively, which also fulfilled the AAMI criteria. In
conclusion, this algorithm was successfully developed and
recommended for further clinical trials with the wider adult
population.
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