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Abstract  
Maximum likelihood and neural classifiers are two typical techniques in image classification. This paper investigates how 
to adapt these approaches to hyperspectral imaging for the classification of five kinds of Chinese tea samples, using visible 
light hyperspectral spectroscopy rather than near-infrared. After removal of unnecessary parts from each imaged tea 
sample using a morphological cropper, principal component analysis is employed for feature extraction. The two 
classifiers are then respectively applied for pixel-level classification, followed by modal-filter based post-processing for 
robustness. Although the samples look similar to the naked eye, promising results are reported and analysed in these 
comprehensive experiments. In addition, it is found that the neural classifier outperforms the maximum likelihood 
classifier in this context. 
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1 Introduction 
Through acquiring information from the contiguous electromagnetic spectrum, hyperspectral imaging enables more 
accurate and detailed information extraction than either standard colour imaging or the human eye as these can only 
identify weighted sums of visible light. In general, a hyperspectral image contains spectral information across a large 
range of spectral bands as well as spatial information about a scene, thus it is referred to as a three dimensional hypercube 
(two spatial dimensions and one spectral dimension). Due to the abundance of information in a hypercube, hyperspectral 
imaging lends itself to many practical applications. 

In the past, applications of hyperspectral imaging usually tended to be complex and large, e.g. remote sensing, wide area 
surveillance and aircraft-based systems [1, 2]. With the emergence of desktop based sensors and camera systems in recent 
years, hyperspectral imaging has significantly advanced. Consequently, it has opened vast opportunities for more 
challenging applications including those in pharmaceuticals [3], agriculture [4] and food quality testing [5], where lab-based 
hyperspectral imaging analysis has become feasible.  
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More recently, applying hyperspectral imaging for food quality control and analysis has attracted increasing attention. 
Typical applications include fruit/vegetable quality evaluation [6-8], meat and fish freshness analysis [9-11] and food 
composition mapping [12], where near-infrared (NIR) hyperspectral spectroscopy is widely employed. This is because NIR, 
sampled between 700 nm and 2500 nm, allows spectra to be acquired in three modes in terms of reflection, transmission 
and transflection. More importantly, with the vibration modes in absorbing infrared radiation in different ways, this 
technique responds to key food components such as C-H, O-H and N-H molecular bonds [12]. Although NIR hyperspectral 
spectroscopy is widely used in food analysis, the imaging system is much more expensive than one using visible light for 
hyperspectral imaging. This paper aims to extend the work done in [13] which tests the effectiveness of food-related 
analysis using visible hyperspectral spectroscopy to classify five different kinds of Chinese tea samples. The reasons tea 
samples were chosen for classification are three fold: firstly, this topic has rarely been investigated [14]; secondly, 
consumption of tea is a world-wide popular activity; and thirdly, tea price varies significantly in terms of brand and 
associated grades. Since conventional methods for tea analysis and classification need subjective input from domain 
experts, hyperspectral imaging provides a unique means for objective and consistent quality control even when the 
samples under examination appear quite similar to each other. Certainly, HSI research has the potential to benefit a huge 
number of customers through quality analysis and control, such as identifying inferior or even fake products from famous 
brands. 

In hyperspectral imaging, several machine learning and pattern recognition approaches have been proposed for 
classification. These include artificial neural network (ANN) [15], support vector machine (SVM) [14], minimum distance 
classifier (MDC) [16] and maximum likelihood classifier (MLC) [16] et al. In principle, all these techniques can be applied in 
the system described in this paper. In [13], only MLC was considered. This paper extends this work by also considering 
ANN. Implementation of these two classifiers and a comparison of their performance are presented in detail in the 
following sections. 

The remaining parts of the paper are organised as follows. Section 2 describes data preparation for pre-processing along 
with spectrum-based feature extraction and selection. Section 3 discusses how these features are applied for classification, 
where spatial filtering is introduced as post-processing for improved robustness. Experimental results and quantitative 
evaluations are presented in Section 4. Finally, concluding remarks are drawn in Section 5. 

2 Data preparation and feature extraction 
This approach for tea classification has three stages: data preparation and pre-processing, feature extraction and selection 
and finally classification. The first two stages are discussed in detail as follows.  

2.1 Data preparation and pre-processing 
In total five different types of tea were used in the experiments: China Black (Tea 1), Lung Ching (Tea 2), Tikuanyin (Tea 
3), Yunnan (Tea 4) and Jasmine (Tea 5). All the tea samples were imaged using an Andor Luca EMCCD camera with a 
Specim V8E spectrograph attached. Samples were placed on a Zolix KSA 11-200S4N motorised stage and illuminated 
with an Armley 150W Halogen lamp. 

For each type of tea, two samples were placed into the compartments of an ice cube tray and imaged simultaneously to 
generate a hypercube. Since each tea was imaged twice, 10 hypercubes were produced from the five types of tea. Each 
hypercube was then scaled using a white and dark reference image so each pixel has a value in the range 0 to 1. For each 
hypercube, there were 256 spectral bands, however not all of these bands contained information; some were just noise due 
to camera and the spectrograph not having the same spectral range. This redundant data in each hypercube was removed 
leaving 170 bands in the range 400 – 800 nm. 
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There were a substantial number of non-tea pixels in each of the acquired hypercubes, which were mainly from the 
container holding the tea samples whilst the data was captured, i.e. the ice cube tray. Therefore, these pixels were excluded 
so that only valid tea samples remained for classification. To this end, the hypercubes were cropped so that only the tea 
data was processed. 

Rather than using manual image cropping, each hypercube was converted to a binary image and a morphological opening 
was performed with a rectangular structuring element of size 70 by 80 pixels, leaving just two white boxes of tea. The sizes 
and the locations of these white boxes were then used to crop the hypercube and valid tea samples were extracted as a 
region of interest in the centre of the cropped cube. The size of each region of interest used was 39 by 51 pixels. This 
process is shown in Figure 1. 

 

Figure 1. Pre-processing to extract regions of interest 

After applying the above cropping process to all 10 hypercubes where each contained two samples from the same tea, 20 
different samples were produced. This resulted in 4 samples for each of the 5 teas. Images of these samples at the spectral 
band of 790 nm are shown in Figure 2. As can be seen at this spectral band, some of the tea samples appear quite similar to 
each other, such as Tea 3 (in the third row), Tea 4 (in the fourth row) and also Tea 1 (in the first row). This shows how 
difficult it is to classify these samples if only one grey level intensity is available, i.e. using a conventional method. 

 

Figure 2. All 20 tea samples, each row contains 4 samples for one tea 

2.2 Feature extraction and selection 
Since a hypercube contains data derived from a range of contiguous spectral bands, there is a significant volume of highly 
correlated data, especially in adjacent bands. Processing this high volume of data is computationally expensive and due to 
the high correlation, potentially inefficient. Therefore, it is essential to extract uncorrelated components as features from 
this highly correlated data for both efficiency and effectiveness. To achieve this, Principal Component Analysis (PCA) 
was employed. 
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PCA is a method used to transform correlated data into a number of uncorrelated variables, known as principal 
components [16]. The first principal component contains as much of the variance of the data as possible; each subsequent 
component contains as much of the remaining variance as possible whilst being orthogonal to all previous components. 
Since most of the information is stored in the first few principal components, the other components can be discarded with 
very little loss of information. This allows a hypercube to be greatly reduced in size, whilst still retaining most of the 
information allowing efficient processing. In other words, PCA can be used for both feature extraction and feature 
selection, and has been widely applied in hyperspectral image analysis [17]. 

Let 
1 2{ , , ..., }N=X x x x  be a hyperspectral image of N spectral bands. Applying PCA to X  will result in a new list

{ , ,..., }
1 2 M=Y y y y , where | [1, ]k k M∈y  refers to the thk  principal component. Although in theory PCA can generate 

N  principal components, usually only the first 10-20 components are kept thus M N<< . These remaining components 

then form a feature vector and are used for classification as discussed in the next section. 

3 Classification 
MDC and MLC are both straightforward approaches for classification. In MDC, a sample is assigned to the class with 
which it has minimum distance to one or all of the samples in that class, which is often used for template matching [18]. 
Since MDC does not consider the distribution of the samples in the class, it may generate poor results especially when the 
distribution is biased [16]. MLC, on the other hand, can overcome this drawback as it considers both the mean and 
covariance of each class in the training data. This allows the direction as well as the distance from the mean of each class 
to be taken into account offering an improved performance. In addition, MLC can be easily adapted to work with problems 
of different numbers of classes and variables making it ideal for this study. Consequently, MLC is selected as one classifier 
for this system. 

ANN is also chosen as a classifier that can be directly compared with MLC. ANNs are mathematical models that are based 
on a biological neural system. They contain weighted connections between neurons that transform an input into an output. 
The network is trained by looking at pairs of inputs and outputs and adjusting the weights to minimise the error between 
the network output and a known target. This makes them ideal in a classification problem such as this one. 

Implementation details of the two selected classifiers for tea classification are presented below. 

3.1 Implementation of MLC and ANN 

The five types of tea are defined as five classes. The MLC is trained by calculating the mean vector, im  and covariance 

matrix, iC  for the tea data in each class, iω  where [1,5]i ∈ . Each pixel, x , of the testing set is then classified into the 

class of the maximum likelihood by 

 ij >        ω jii ≠∈  allfor  )(g)(gif xxx
 (1) 

 )(  )( |-ln=)(g -1T
iiiii --|- mxCmxCx  (2) 

Regarding the neural classifier, the principle how it works in this system is explained as follows. For a given input vector 
T

1 2( , ,..., )dx x x=x , the output of a single neuron z  is determined as  

 )()(
1

T  =
−=−=

d

i ii bxwgbgz xw
 

(3) 
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where 
T

1 2( , ,..., )dw w w=w denotes a weight vector, ( )g ⋅  refers to an activation function to decide whether the 

perceptron should fire or not. The sigmoid function 1( ) (1 )xSig x e− −= +  is the most popular used activation function. 

The same process used to compute the output of a single neuron can be used to calculate the output of the whole network in 
a topological manner. This means that for each neuron, its inputs from other neurons must be computed before determining 
its output. Consequently, the weight vector and the bias associated to each connection and each node will influence the 
results, and they can be determined in training or learning process as follows.  

Before training the ANN, the topology of the ANN must be specified, and the feed-forward ANN is used. A feed-forward 
ANN is a multi-layer perceptron (MLPP) which contains three or more layers of neurons, i.e. one input layer, one output 

layer and at least one hidden layer. With a given training set, a specified activation function and a learning ratio γ  where 

(0,1)γ ∈ , the learning process for supervised training using the well-known back-propagation algorithm can be described 

in the following three stages. 

First, the initial weights and bias are set randomly between [ 1,1]−  to attain a group of outputs 
( )tz  at 1t =  referring to the 

first round of iteration. Then, an error function is decided as ( ) 2

1
( ) ( ) / 2

M t
i ii

t y zε
=

= −  using the sum of squared error 

between the estimated output z  and the target output y . Finally, the error signal at the output units is propagated 
backwards through the whole network to update the weights using the gradient descent rule 

 ( )
( )ij

ij

tw t
w

εγ ∂Δ = −
∂

 (4) 

where ijw  refers to a weight between the thj  node in a given layer and the thi  node in the following layer. With updated 

weights, 1t t= +  can be set to start a new iteration until the network converges. This can be measured by using a small 

change ratio of ( )ε ⋅  or a given number of iterations. 

3.2 Spatial filtering for post-processing 
It is worth noting that the classifiers above uses pixel-based classification, meaning that classification is applied to each 
pixel of the hypercube which is represented by a vector of principal components. To remove outliers, spatial modal 
filtering is applied to the classified result hence each pixel is assigned to the class to which the majority of its neighbouring 
pixels belong. In fact, it is found that the spatial filtering here has significantly improved the classification accuracy. In 
addition, each class is assigned a colour so that the results can be visually evaluated. The classification results are 
presented and analysed in detail in the next section. 

4 Results and discussions 
To verify the effectiveness of the proposed method, quantitative evaluation was carried out and is presented in this section. 
Experiments were performed and the effect of different settings on the classification accuracy is discussed. Basically there 
were three important parameters in the system, i.e. training percentage, modal filter size and number of principal 
components used. Details on how these parameters are altered and their effects on the classification accuracy are 
discussed. 
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4.1 Test with different training percentages 
As shown previously in Figure 2, there were 5 tea classes, and each contained four blocks of pixel based samples. If 1-3 
block(s) of pixels are used for training and the remaining used for testing, the training percentage will be either 25%, 50% 
or 75%. For a given training percentage, say 25%, one block of the pixels from each class was used for training and the 
others for testing, thus four groups of training/testing results were produced for cross validation. The average accuracy was 
then obtained as a measurement of the overall performance. 

Table 1. MLC cross validated confusion matrices 
Predicted (25% Training, 75% Testing)  

Tea 1 Tea 2 Tea 3 Tea 4 Tea 5 
Actual Tea 1 71% 0% 5% 18% 6% 

Tea 2 0% 95% 0% 0% 5% 
Tea 3 9% 2% 47% 34% 8% 
Tea 4 5% 0% 6% 87% 2% 
Tea 5 11% 14% 1% 0% 74% 

Predicted (50% Training, 50% Testing) 
Tea 1 Tea 2 Tea 3 Tea 4 Tea 5 

Actual Tea 1 71% 0% 4% 20% 5% 
Tea 2 0% 95% 0% 0% 5% 
Tea 3 8% 1% 46% 37% 7% 
Tea 4 4% 0% 5% 89% 2% 
Tea 5 12% 13% 1% 0% 74% 

Predicted (75% Training, 25% Testing) 
Tea 1 Tea 2 Tea 3 Tea 4 Tea 5 

Actual Tea 1 72% 0% 3% 21% 4% 
Tea 2 0% 96% 0% 0% 4% 
Tea 3 8% 1% 45% 39% 7% 
Tea 4 4% 0% 5% 90% 2% 
Tea 5 13% 11% 1% 0% 75% 

Table 2. ANN cross validated confusion matrices 
Predicted (25% Training, 75% Testing)  

Tea 1 Tea 2 Tea 3 Tea 4 Tea 5 
Actual Tea 1 79% 0% 11% 4% 5% 

Tea 2 1% 83% 2% 2% 12% 
Tea 3 13% 0% 74% 12% 1% 
Tea 4 6% 0% 14% 79% 0% 
Tea 5 7% 5% 2% 2% 84% 

Predicted (50% Training, 50% Testing) 
Tea 1 Tea 2 Tea 3 Tea 4 Tea 5 

Actual Tea 1 80% 0% 10% 5% 4% 
Tea 2 1% 94% 0% 0% 5% 
Tea 3 9% 0% 74% 16% 1% 
Tea 4 5% 0% 11% 84% 0% 
Tea 5 6% 6% 2% 1% 85% 

Predicted (75% Training, 25% Testing) 
Tea 1 Tea 2 Tea 3 Tea 4 Tea 5 

Actual Tea 1 83% 0% 9% 5% 2% 
Tea 2 1% 93% 0% 0% 6% 
Tea 3 9% 0% 74% 16% 1% 
Tea 4 5% 0% 11% 85% 0% 
Tea 5 5% 5% 2% 2% 86% 

Under different training percentages, Table 1 and Table 2 show the cross validation results for the five types of tea for 
MLC and ANN respectively. Looking at just the MLC performance, firstly, it can be seen that the classification accuracies 
for Tea 2 and Tea 4 were always very high, i.e. no less than 87%, which means these two tea samples were remarkably 
different from the others. Secondly, the accuracy for Tea 3 was the worst at around 46%, and this shows that Tea 3 was the 
least identifiable. Thirdly, it is interesting to see that the classification accuracy did not improve with the increasing 
training percentage. This means that more training samples made no additional contribution to the estimate of the class 
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mean vector ࢏࢓ and covariance matrix ۱௜ . One reason might be that at a training percentage of 25% ࢏࢓ and ۱௜  had 
already been accurately estimated, especially since PCA was used. 

The performance of ANN, on the other hand, was noticeably better. The classification accuracy was high for all teas at all 
percentages, i.e. no less than 74%. The accuracy of Tea 2 and Tea 4 was actually slightly lower than when using MLC but 
the accuracy of Tea 3 as significantly higher. Unlike the MLC method, the overall classification accuracy did increase with 
the training percentage. This improvement however, was only slight and was outweighed by the extra computational costs 
of using more training data. 

Since each pixel was assigned a colour during classification, a visual representation of the classification results was also 
produced. One of the testing results for MLC and ANN (at training percentage of 25%) is shown in Figure 3. From Figure 
3, it can clearly be seen how these teas were misclassified with MLC. Although a few pixels in Tea 3 were wrongly 
classified as Tea 4, more pixels were classified as Tea 3 than as any other. Therefore, it was possible to classify the whole 
cube as Tea 3 and allow correct classification using MLC. Such a strategy could also have been applied to each of the 
cubes in such a context. With the ANN result, however, the high classification percentage made it easy for each tea to be 
classified with only a small number of pixels being wrongly classified in each case.  

 

Figure 3. Classification result at training percentage of 25% from MLC (left) and ANN (right) classifiers. 

4.2 Test with Different Sizes of Modal Filter 
Different sizes of modal filter were tested to evaluate their performance as post-processing. The training percentage was 
varied as in the previous section and the results were averaged to produce the plots shown in Figure 4. The filter size was 
increased from 1 (no filter) to 15 × 15 pixels. In the case of MLC, it can be seen that increasing the filter size improved 
classification performance up to a size of around 11 × 11 pixels. Increasing the filter size beyond this had little effect on the 
performance. In addition, a modal filter of the size more than 11 × 11 pixels may degrade the performance for Tea 2, Tea 
3 and Tea 4; although for Tea 5 the performance was significantly improved when the filter size increases. This 
demonstrates that the post-processing may have conflicting effects on different teas. As a result, it may be necessary to 
apply a specially designed structuring element, perhaps similar to the shape of a tea leaf, rather than the square one used in 
this test [19]. In the case of ANN, the modal filtering had a significant effect. Increasing the filter size up to 13 × 13 pixels 
improved classification accuracy, but after 7 × 7 pixels, this improvement was very slight and is outweighed by the extra 
computational cost of using a larger structuring element. Increasing the filter size beyond 11 × 11 pixels had a negative 
impact on Tea 4 and beyond 13 ×13 pixels it started to negatively affect Tea 1 and Tea 2 also. 

Modal filtering provides a method of increasing the accuracy of both classifiers, but in particular, ANN performance sees 
notable improvement for all classes. 
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Figure 4. Classification accuracy under different modal filter sizes from MLC (left) and ANN (right) classifiers. 

4.3 Test with different numbers of principal components 
A similar test was also applied to various numbers of principal components. The number of principal components was 
varied from 1 to 10, using an average of the results at the same training percentages as in the previous section. The 
classification accuracy for this test is shown in Figure 5 for both MLC and ANN. 

 

Figure 5. Classification accuracy under different numbers of principal components from MLC (left) and ANN (right) 
classifiers. 

In general, increasing the number of components helped to improve the classification accuracy. For Tea 2 and Tea 4, the 
accuracy was over 70% even with only the first two components in both MLC and ANN cases. This again shows that these 
two teas were relatively more distinguishable. For Tea 5, MLC required the first 8 components to achieve an accuracy of 
around 70% where ANN only required the first 3. Tea 3 required the first 8 components for MLC classification to achieve 
an accuracy of nearly 50% but only the first 5 components were needed for ANN. This shows that performance of MLC 
and ANN is similar at lower component numbers, but ANN starts to outperform MLC as the component number increases. 
This on one hand indicates the difference among these tea samples and classification methods. On the other hand, it might 
be useful to apply subsequent feature selection dependent on the classification algorithm leading to more robust 
classification. 

4.4 Optimising the ANN Classifier 
Unlike MLC, ANN has one additional important parameter which may affect the classification accuracy: the number of 
nodes in the hidden layer. Currently, this is set as 10. When this number was varied from 4 to 15, the overall accuracy was 
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quite similar, i.e. slight improvement of accuracy with more hidden nodes. However, a much smaller number of hidden 
nodes, no more than 3, produced very poor accuracy of less than 50%. Consequently, the 10 nodes selected for the hidden 
layer is a reasonable trade-off between performance and accuracy.  

4.5 Cohen’s Kappa 
So far, only the classification percentage has been used as a measure of performance. This measure does not compensate 
for the fact that some pixels could be correctly classified due to random chance. Cohen’s Kappa, κ, takes into account the 
probability of chance agreement and is calculated as follows: κ ൌ ୔୰ሺୟሻି୔୰ሺୣሻଵି୔୰	ሺ௘ሻ                                                                                     (5) 

where Prሺaሻ is observed agreement and Prሺeሻ is the probability of random agreement [20]. Table 3 summarises Cohen’s 
Kappa for the classified results before and after modal filtering, respectively.  

Table 3. Cohen's Kappa under different training ratios with or without modal filtering 

Training Percentage Classifiers 
Cohen's Kappa 

No modal filter With 5×5 modal filter 

25 
MLC 0.69 0.80 

ANN 0.77 0.92 

50 
MLC 0.69 0.80 

ANN 0.72 0.89 

75 
MLC 0.69 0.80 

ANN 0.80 0.95 

It is interesting to note that Cohen’s Kappa coefficient is insensitive to different training percentages for MLC, both with 
and without filtering whereas the coefficient increases with training percentage for ANN. This can be explained by the fact 
that MLC classification accuracy is not improved by increasing classification percentage and so it follows that Cohen’s 
Kappa would also not see an improvement.  

As expected, Cohen’s Kappa increases with the introduced modal filtering. With 5 × 5 modal filtering, all the Cohen’s 
Kappa coefficients are high, showing that there is good classification agreement. 

5 Conclusion 
Food quality control and evaluation is an important application of hyperspectral imaging. In this paper, two classifiers, 
MLC and ANN, are applied for the classification of five Chinese tea samples, where PCA is employed for feature 
extraction. According to quantitative evaluations from the comprehensive experiments reported, several key findings are 
summarised as follows. Firstly, the overall performance of ANN is about 10% better than that of MLC. Secondly, more 
training data does not naturally improve the classification accuracy of MLC, though it does bring slight improvement to 
ANN. However, this improvement will usually be outweighed by the extra computational cost. Thirdly, modal filtering 
has a significant positive effect on the classification performance of both MLC and ANN, where the average gain is about 
10%. In general, increasing the filter size improves classification performance, although for some teas a filter larger than 
11 × 11 pixels may occasionally produce negative effect. Finally, MLC required 8 principal components to achieve a 
satisfactory classification rate for all teas, whereas ANN only required the first 5. In both cases more than 10 principal 
components offered no improvement to the accuracy of classification. 
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