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Abstract 
This paper considers multiobjective linear programming problems where each coefficient of the objective functions is 
expressed by a random fuzzy variable. A new decision making model is proposed by incorporating the concept of fractile 
criteria optimization into a possibilistic programming model. An interactive fuzzy satisficing method is presented for 
deriving a satisficing solution for a decision maker efficiently by updating the reference membership levels. In the 
proposed method, it is shown that the transformed deterministic problems for obtaining Pareto optimal solutions can be 
solved by using some convex programming techniques. An illustrative numerical example is provided to clarify the 
proposed method. 
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1 Introduction 
In practical decision making situations, it is often required to make a decision on the basis of vague information or 
uncertain data. Stochastic programming [1-4] and fuzzy programming [5-7] have been developed for solving such decision 
making problems involving uncertainty. Stochastic programming, as an optimization method based on the probability 
theory, have been developing in various ways including two stage problems considered by Dantzig [8] and chance 
constrained programming proposed by Charnes and Cooper [9]. 

In most practical situations, however, it is natural to consider that the uncertainty in real world decision making problems 
is often expressed by a fusion of fuzziness and randomness rather than either fuzziness or randomness. For handling not 
only the decision maker’s vague judgments in multiobjective problems but also the randomness of the parameters involved 
in the objectives and/or constraints, Sakawa and his colleagues incorporated their interactive fuzzy satisficing methods for 
deterministic problems [7, 10] into multiobjective stochastic programming problems, through the introduction of several 
stochastic programming models such as expectation optimization [11, 12], variance minimization [12], probability maximi- 
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zation [12-14] and fractile criterion optimization [12], to derive a satisficing solution for a decision maker from Pareto optimal 
solution sets. 

In multiobjective stochastic programming problems, it is implicitly assumed that uncertain parameters or coefficients can 
be expressed as random variables in probability theory. This means that the realized values of random parameters under 
the occurrence of some event are assumed to be definitely represented with real values. 

However, it is natural to consider that the possible realized values of these random parameters are often only ambiguously 
known to the experts. In this case, it may be more appropriate to interpret the experts’ ambiguous understanding of the 
realized values of random parameters under the occurrence of events as fuzzy numbers. From such a point of view, a fuzzy 
random variable was first introduced by Kwakernaak [15], and its mathematical basis was constructed by Puri and Ralescu 

[16]. Studies on linear programming problems with fuzzy random variable coefficients, called fuzzy random linear 
programming problems, were initiated by Wang and Qiao [17] and Qiao et al. [18] as seeking the probability distribution of 
the optimal solution and optimal value. 

On the other hand, from a viewpoint of ambiguity and randomness different from fuzzy random variables [15-17], by 
considering the experts’ ambiguous understanding of means and variances of random variables, a concept of random fuzzy 
variables was proposed, and mathematical programming problems with random fuzzy variables were formulated together 
with the development of a simulation-based approximate solution method [19]. 

A recently published book of Sakawa et al. [20] is devoted to introducing the latest advances in the field of multiobjective 
optimization under both fuzziness and randomness on the basis of authors’ continuing research works. Special stress is 
placed on interactive decision making aspects of fuzzy stochastic multiobjective programming for human-centered 
systems under uncertainty in most realistic situations when dealing with both fuzziness and randomness. 

Under these circumstances, in this paper, in consideration of random fuzzy variables involved in the real-world decision 
making problems, we first formulate multiobjective linear programming problems involving random fuzzy variables. The 
main contribution of this paper is to provide a novel decision making methodology including a new model, solution 
concept and solution algorithm to deal with more realistic problems in the real world, by simultaneously considering 
various concepts such as fuzziness, randomness and interactive fuzzy programming, while most of previous papers dealt 
with either of the concepts or a part of them. 

In order to deal with the formulated random fuzzy multiobjective linear programming problems, we assume that the 
decision maker concerns about the probabilities that each of the objective function values is smaller than or equal to a 
certain target value. By considering the imprecise nature of the human judgments, we introduce the fuzzy goals of the 
decision maker for the probabilities. Then we adopt the fractile model to optimize the target variables under the condition 
that the degrees of possibility with respect to the attained probabilities are greater than or equal to certain permissible 
levels. Then, we present an interactive fuzzy satisficing method to derive a satisficing solution for the decision maker by 
updating the reference membership levels. It is shown that all of the problems to be solved in the proposed interactive 
method can be solved by using some convex programming techniques such as the sequential quadratic programming 
method [21, 22]. A numerical example is provided to illustrate the proposed method. 

2 Random fuzzy variables 
In the framework of stochastic programming, it is implicitly assumed that the uncertain parameter which well represents 
the stochastic factor of real systems can be definitely expressed as a single random variable. This means that the realized 
values of random parameters under the occurrence of some event are assumed to be definitely represented with real values. 
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Depending on the situations, however, it is natural to consider that the possible realized values of these random parameters 
are often only ambiguously known to the experts. In this case, it may be more appropriate to interpret the experts’ 
ambiguous understanding of the realized values of random parameters as fuzzy numbers. From such a point of view, a 
fuzzy random variable was first introduced by Kwakernaak [15], and its mathemati-cal basis was constructed by Puri and 
Ralescu [16]. 

From the expert’s experimental point of view, however, the experts may think of a collection of random variables to be 
appropriate to express stochastic factors rather than only a single random variables. In this case, reflecting the expert’s 
conviction degree that each of random variables properly represents the stochastic factor, it would be quite reasonable to 
assign the different degrees of possibility to each of random variables. For handling such an uncertain parameter, a random 
fuzzy variable was defined by Liu [19] as a function from a possibility space to a collection of random variables, which is 
considered to be an extended concept of fuzzy variable [23]. It should be noted here that the fuzzy variables can be viewed 
as another way of dealing with the imprecision which was originally represented by fuzzy sets. Although we can employ 
Liu’s definition, for consistently discussing various concepts in relation to the fuzzy sets, we define the random fuzzy 
variables by extending not the fuzzy variables but the fuzzy sets. 

Definition 1 (Random fuzzy variables) Let Γ be a collection of random variables. Then, a random fuzzy variable ܥሚ̅ is 
defined by its membership function ߤ஼ሚ̅ : Γ → ሾ0,1ሿ.  (1) 

In Definition 1, the membership function ߤ஼ሚ̅ assigns each random variable γത ∈ Γ to a real number ߤ஼ሚ̅ሺγതሻ. It should be 

noted here that if Γ is defined as Թ, then (1) becomes equivalent to the membership function of an ordinary fuzzy set. In 

this sense, a random fuzzy variable can be regarded as an extended concept of fuzzy sets. On the other hand, if Γ is defined 

as a singleton Γ ൌ ሼγതሽ and ߤ஼ሚ̅ሺγതሻ ൌ 1, then the corresponding random fuzzy variable ܥሚ̅ can be viewed as an ordinary 

random variable. 

When taking account of the imprecise nature of the realized values of random variables, it would be appropriate to employ 
the concept of fuzzy random variables. However, it should be emphasized here that if mean and/or variance of random 
variables are specified by the expert as a set of real values or fuzzy sets, such uncertain parameters can be represented by 
not fuzzy random variables but random fuzzy variables. 

As a simple example of random fuzzy variables, we consider a Gaussian random variable whose mean value is not 

definitely specified as a constant. For example, when some random parameter γത is represented by the Gaussian random 

variable ܰሺݏ௜, 10ଶሻ where the expert identifies a set ሼݏଵ, ,ଶݏ ,ଵݏଷሽ of possible mean values as ሺݏ ,ଶݏ ଷሻݏ ൌ ሺ90,100,110ሻ, if 
the membership function ߤ஼ሚ̅ is defined by  

ሻߛ஼ሚ̅ሺ̅ߤ ൌ ۔ە
ۓ 0.5, if ,ሺ90ܰ~ߛ̅ 10ଶሻ0.7, if ,ሺ100ܰ~ߛ̅ 10ଶሻ0.3, if ,ሺ110ܰ~ߛ̅ 10ଶሻ0 , otherwise,   (2) 

then ܥሚ̅ is a random fuzzy variable. More generally, when the mean values are expressed as fuzzy sets or fuzzy numbers, 
the corresponding random variable with the fuzzy mean is represented by a random fuzzy variable. 

3 Multiobjective random fuzzy linear programming 
As the first attempt to deal with multiobjective linear programming problems in which each coefficient of the objective 
functions is expressed by a random fuzzy variable, in this paper, we formulate the following multiobjective random fuzzy 
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 linear programming problems:  minimize minimizesubject⋮࢞ሚଵ̅ܥ to ࢞ܣ࢞ሚ௞̅ܥ ൒ ,࢈ ࢞ ൒ 0ۙۘۖ
ۖۗ

   (3) 

where ࢞ ൌ ሺݔଵ, … , ሻ்	௡ݔ  is an ݊-dimensional decision variable column vector, ܣ  is an ݉ ൈ ݊  matrix, ࢈  is an ݉ ൈ 1 

constant column vector, and ܥሚ௟̅௝ ൌ ൫ܥሚ௟̅ଵ, … ,  ሚ௟̅௝ is aܥ ሚ௟̅௡൯ is a random fuzzy variable coefficient vector. Here, assume thatܥ

Gaussian random variable whose mean value is an L-R fuzzy number ܯ෩௟௝ characterized by the membership function 

ெ෩೗ೕሺ߬ሻߤ ൌ ൞ܮ ൬௠೗ೕିఛఈ೗ೕ ൰ if ݉௟௝ ൒ ܴ߬ ൬ఛି௠೗ೕఉ೗ೕ ൰ if ݉௟௝ ൏ ߬,   (4) 

where the shape functions L and R are nonincreasing continuous functions from ሾ0,∞ሻ to ሾ0,1ሿ, ݉௟௝ is the mean value, 

and ߙ௟௝  and ߚ௟௝  are positive numbers which represent left and right spreads. Figure 1 illustrates an example of the 

membership function ߤெ෩೗ೕሺ߬ሻ. 

 

Figure 1. An example of the membership function ߤெ෩೗ೕሺ߬ሻ 
It must be emphasized here that, for ordinary multiobjective linear programming problems, coefficients of these objective 
functions are often affected by the economic conditions varying at random. In such cases, they can be regarded as random 
variables. Moreover, considering that the experts' ambiguous understanding of means and variances of random variables, 
it is more appropriate to interpret them as random fuzzy random variables. In such circumstances, the problems should be 
formulated as multiobjective random fuzzy linear programming problems.  

Now let Γ be a collection of all possible Gaussian random variables ܰሺݏ, ݏ ଶሻ whereߪ ∈ ሺെ∞,∞ሻ and ߪଶ ∈ ሺ0,∞ሻ. Then, ܥሚ௟̅௝ is expressed as a random fuzzy variable with the membership function  ߤ஼ሚ೗̅ೕ൫̅ߛ௟௝൯ ൌ ቄߤெ෩ഥ೗ೕ൫ݏ௟௝൯|̅ߛ௟௝~ܰሺݏ௟௝, ௟௝ଶሻቅߪ , ∀ ௟௝ߛ̅ ∈ Γ. (5) 

Using the Zadeh’s extension principle, each objective function ܥሚ௟̅࢞ is expressed as a random fuzzy variable characterized 
by the membership function 

ത௟ሻݑሺ࢞஼ሚ೗̅ߤ ≜ supࢽഥ೗ ቐ minଵஸ௝ஸ௡ߤ஼ሚ೗̅ೕ൫̅ߛ௟௝൯ቮݑത௟ ൌ෍̅ߛ௟௝ݔ௝௡
௝ୀଵ ቑ , ∀ ,ത௟Γݑ  (6) 

where ࢽഥ௟ ൌ ሺ̅ߛ௟ଵ, . .  .௟௡ሻߛ̅
By substituting (5) into (6), the membership function of a random fuzzy variable corresponding to the objective function ܥሚ௟̅࢞ in (3) is rewritten as 
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ത௟ሻݑሺ࢞஼ሚ೗̅ߤ ≜ sup࢙೗ ቐ minଵஸ௝ஸ௡ߤெ෩೗ೕ൫ݏ௟௝൯ቮݑത௟~ܰቌ෍ݏ௟௝ݔ௝௡
௝ୀଵ ,෍ߪ௟௝ଶݔ௝ଶ௡

௝ୀଵ ቍቑ,  (7) 

where ࢙௟ ൌ ሺݏ௟ଵ, … ,  .௟௡ሻݏ
Observing ܥሚ௟̅࢞ is expressed as a random fuzzy variable with the membership function ࡯ߤ෩ഥ೗࢞ defined by (7), it is significant 

to realize that the fuzzy random programming models cannot be applied. 

Assuming that the decision maker (DM) concerns about the probability that each of the objective function values ܥሚ௟̅࢞ is 

smaller than or equal to a certain target values ௟݂, we introduce the probability ܲ൫߱หܥሚ௟ሺ߱ሻ࢞ ൑ ௟݂൯ which is expressed as a 

fuzzy set ෨ܲ௟ with the membership function  ߤ௉෨೗ሺ݌௟ሻ ൌ sup௨ഥ೗ ቄ࡯ߤ෩ഥ೗࢞ሺݑത௟ሻቚ݌௟ ൌ ܲሺ߱|ݑത௟ሺ߱ሻ ൑ ௟݂ሻቅ, (8) 

where ௟݂ , ݈ ൌ 1,… , ݇ are the initial target values specified by the DMs as constants. 

Considering the imprecise nature of the DMs’ judgments for the probabilities ෨ܲ௟  with respect to the random fuzzy 

objective values ࡯෩ഥ௟࢞, ݈ ൌ 1,… , ݇, we introduce the fuzzy goals ܩ෨௟, ݈ ൌ 1,… , ݇ such as `` ෨ܲ௟ should be greater than or equal 

to a certain value.’’ Such fuzzy goals ܩ෨௟, ݈ ൌ 1,… , ݇ can be quantified by eliciting corresponding membership functions  

ߤ ෨ீ೗ሺ݌ሻ ൌ ቐ 0 if ݌ ൑ ሻ݌௟଴݃௟ሺ݌ if ௟଴݌ ൑ ݌ ൑ ௟ଵ1݌ if ௟ଵ݌ ൑ ݌ , ݈ ൌ 1,… , ݇ (9) 

where ௟݃ሺ݌ሻ, ݈ ൌ 1,… , ݇ are nondecreasing functions. Figure 2 illustrates a possible shape of the membership function for 

the fuzzy goal ܩ෨௟. 

 

Figure 2. An example of a membership function ߤ ෨ீ೗ሺ݌ሻ of a fuzzy goal ܩ෨௟ 
Recalling that the membership function is regarded as a possibility distribution, the degree of possibility that the 

probability ෨ܲ௟ attains the fuzzy goal ܩ෨௟ is expressed as  Π௉෨೗൫ܩ෨௟൯ ≜ sup௣೗ minሼߤ௉෨೗ሺ݌௟ሻ, ߤ ෨ீ೗ሺ݌௟ሻሽ , ݈ ൌ 1,… , ݇. (10) 

Figure 3 illustrates the degree of possibility Π௉෨೗൫ܩ෨௟൯. 

 

Figure 3. The degree of possibility Π௉෨೗൫ܩ෨௟൯ 



www.sciedu.ca/air                                                                                                         Artificial Intelligence Research, 2013, Vol. 2, No. 4 

                                        ISSN 1927-6974   E-ISSN 1927-6982 80

Now, assuming that the DM would like to minimize the objective functions ࡯෩ഥ௟࢞, ݈ ൌ 1,… , ݇ under the condition that the 
degrees of possibility with respect to the attained probabilities are greater than or equal to certain permissible levels, we 
consider the multiobjective programming problem  minimize ଵ݂⋮minimizesubject to ଵ݂Π௉෨೗൫ܩ෨௟൯ ൒ ݄௟, ݈ ൌ 1,… , ࢞ܣ݇ ൒ ,࢈ ࢞ ൒ 0, ۙۘۖ

ۖۗ
 (11) 

where ݄௟, ݈ ൌ 1,… , ݇ are permissible possibility levels specified by the DM. 

To consider the imprecise nature of human judgments for the target variables ௟݂ , ݈ ൌ 1,… , ݇, by introducing the fuzzy 

goals characterized by the nonincreasing concave and continuous membership functions ߤ௟, ݈ ൌ 1,… , ݇, we consider the 
fuzzy multiobjective programming problem  maximize ଵሺߤ ଵ݂ሻ⋮maximizesubject to ௞ሺߤ ௞݂ሻΠ௉෨೗൫ܩ෨௟൯ ൒ ݄௟, ݈ ൌ 1,… , ࢞ܣ݇ ൒ ,࢈ ࢞ ൒ 0, ۙۘۖ

ۖۗ
 (12) 

It should be noted here that (12) involves the possibility constraints Π௉෨೗൫ܩ෨௟൯ ൒ ݄௟, ݈ ൌ 1,… , ݇, solution methods for 

ordinary mathematical programming problems cannot be directly applied. Fortunately, however, the following theorem 

holds for the constraints Π௉෨೗൫ܩ෨௟൯ ൒ ݄௟, ݈ ൌ 1,… , ݇ in (12). 

Theorem 1 Let ϕ denote a probability distribution function of the standard Gaussian random variable ܰሺ0,1ሻ. Then, Π௉෨೗൫ܩ෨௟൯ ൒ ݄௟, ݈ ൌ 1,… , ݇ in (12) is equivalently transformed into  

෍൛݉௟௝ െ ௝௡ݔ௟௝ൟߙሺ݄௟ሻ⋆ܮ
௝ୀଵ ൅ Φିଵ ቀߤ ෨ீ೗⋆ ሺ݄௟ሻቁඩ෍ߪ௟௝ଶݔ௝ଶ௡

௝ୀଵ ൑ ௟݂,	 (13) 

where ܮ⋆ሺ݄௟ሻ is a pseudo inverse functions defined as ܮ⋆ሺ݄௟ሻ ൌ supሼܮ|ݐሺݐሻ ൒ ݄௟, ݎ ൒ 0ሽ and Φିଵ is the inverse function 

of Φ. 

Proof 

From (10), the possibility constraints Π௉෨೗൫ܩ෨௟൯ ൒ ݄௟ in (12) or (12) are equivalently replaced by the conditions that there 

exists a ݌௟ such that ߤ௉෨೗ሺ݌௟ሻ ൒ ݄௟ and ߤ ෨ீ೗ሺ݌௟ሻ ൒ ݄௟, namely,  

sup࢙ത೗ minଵஸ௞ஸ௡ ቄߤெ෩೗ೕೖ൫ݏ௟௝൯| ௟݌ ൌ ܲሺ߱|ݑത௟ሺ߱ሻ ൑ ௟݂ሻ, ௝௡ݔ௟௝ݏത௟~ܰቌ෍ݑ
௝ୀଵ ,෍ߪ௟௝ଶݔ௝ଶ௡

௝ୀଵ ቍቑ ൒ ݄௟	 (14) 

and ௟݌ ൒ ߤ ෨ீ೗⋆ ሺ݄௟ሻ , where ௟࢙ ൌ ሺݏ௟ଵ, … , ௟௡ሻݏ  and ߤ ෨ீ೗⋆ ሺ݄௟ሻ  is a pseudo inverse function defined as ߤ ෨ீ೗⋆ ሺ݄௟ሻ ൌ sup൛݌௟หߤ ෨ீ೗ሺ݌௟ሻ ൒ ݄௟ൟ. This implies that there exists a vector ሺ݌௟, ,௟࢙   ത௟ሻ such thatݑ

minଵஸ௞ஸ௡ߤெ෩೗ೕ൫ݏ௟௝൯ ൒ ݄௟, ௝௡ݔ௟௝ݏത௟~ܰቌ෍ݑ
௝ୀଵ ,෍ߪ௟௝ଶݔ௝ଶ௡

௝ୀଵ ቍ , ௟݌ ൌ ܲሺ߱|ݑത௟ሺ߱ሻ ൑ ௟݂ሻ, ௟݌ ൒ ߤ ෨ீ೗⋆ ሺ݄௟ሻ,		 (15) 
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which can be equivalently transformed into the condition that there exists a vector ሺ࢙௟,   ത௟ሻ such thatݑ

௟௝൯ݏெ෩೗ೕ൫ߤ ൒ ݄௟, ݆ ൌ 1,… , , ݊, ௝௡ݔ௟௝ݏത௟~ܰቌ෍ݑ
௝ୀଵ ,෍ߪ௟௝ଶݔ௝ଶ௡

௝ୀଵ ቍ , ܲሺ߱|ݑത௟ሺ߱ሻ ൑ ௟݂ሻ, ௟݌ ൒ ߤ ෨ீ೗⋆ ሺ݄௟ሻ.		 (16) 

In view of (4), it follows that  

൫ݏ௟௝൯ ൒ ݄௟ ⟺ ௟௝ݏ ∈ ൣ݉௟௝ െ ,௟௝ߙሺ݄௟ሻ⋆ܮ ݉௟௝ ൅ ܴ⋆ሺ݄௟ሻߚ௟௝൧, (17) 

where ܮ⋆ሺ݄௟ሻ  and ܴ⋆ሺ݄௟ሻ  are pseudo inverse functions defined as ܮ⋆ሺ݄௟ሻ ൌ supሼܮ|ݐሺݐሻ ൒ ݄௟ሽ  and ܴ⋆ሺ݄௟ሻ ൌsupሼܮ|ݐሺݐሻ ൒ ݄௟ሽ. Hence, (16) is rewritten as the equivalent condition that there exists a ݑത௟ such that  

ܲሺ߱|ݑത௟ሺ߱ሻ ൑ ௟݂ሻ, ௟݌ ൒ ߤ ෨ீ೗⋆ ሺ݄௟ሻ, ത௟~ܰቌ෍൛݉௟௝ݑ െ ௝௡ݔ௟௝ൟߙሺ݄௟ሻ⋆ܮ
௝ୀଵ ,෍ߪ௟௝ଶݔ௝ଶ௡

௝ୀଵ ቍ.					 (18) 

Since ܲሺ߱|ݑത௟ሺ߱ሻ ൑ ௟݂ሻ is transformed into  

߱ۇۉܲ ተተ
௟ሺ߱ሻݑ െ ∑ ൛݉௟௝ െ ∑௝௡௝ୀଵටݔ௟௝ൟߙሺ݄௟ሻ⋆ܮ ௝ଶ௡௝ୀଵݔ௟௝ଶߪ ൑ ௟݂ െ ∑ ൛݉௟௝ െ ∑௝௡௝ୀଵටݔ௟௝ൟߙሺ݄௟ሻ⋆ܮ ௝ଶ௡௝ୀଵݔ௟௝ଶߪ  (19) 					ۊی

in consideration of  

ത௟ݑ െ ∑ ൛݉௟௝ െ ∑௝௡௝ୀଵටݔ௟௝ൟߙሺ݄௟ሻ⋆ܮ ௝ଶ௡௝ୀଵݔ௟௝ଶߪ ~ܰሺ0,1ሻ,  (20) 

(18) is equivalently transformed as  

ϕۇۉ ௟݂ െ ∑ ൛݉௟௝ െ ∑௝௡௝ୀଵටݔ௟௝ൟߙሺ݄௟ሻ⋆ܮ ௝ଶ௡௝ୀଵݔ௟௝ଶߪ ۊی ൒ ߤ ෨ீ೗⋆ ሺ݄௟ሻ  (21) 

where ϕିଵ is the inverse function of ϕ. 

This completes the proof of the theorem. 

Due to Theorem 1, the fuzzy multiobjective programming problem (12) is equivalently transformed into 

maximizemaximize ଵሺߤ ଵ݂ሻ⋮ߤ௞ሺ ௞݂ሻsubject	to ෍൛݉௟௝ െ ௝௡ݔ௟௝ൟߙሺ݄௟ሻ⋆ܮ
௝ୀଵ 	൅ Φିଵ ቀߤ ෨ீ೗⋆ ሺ݄௟ሻቁඩ෍ߪ௟௝ଶݔ௝ଶ௡

௝ୀଵ ൑ ௟݂,	݈ ൌ 1, … , ࢞ܣ݇ ൒ ,࢈ ࢞ ൒ 0 ۙۖۖ
ۖۘ
ۖۖۖ
ۗ
							 (22) 

or equivalently  
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maximize ଵߤ ቀܼଵஈ,ிሺ࢞ሻቁ⋮maximize ௞ߤ ቀܼ௞ஈ,ிሺ࢞ሻቁsubject to ࢞ܣ ൒ ,࢈ ࢞ ൒ 0,ۙۖۘ
ۖۗ				 (23) 

Where 

ܼ௟ஈ,ிሺ࢞ሻ ൌ෍൛݉௟௝ െ ௝௡ݔ௟௝ൟߙሺ݄௟ሻ⋆ܮ
௝ୀଵ ൅ Φିଵ ቀߤ ෨ீ೗⋆ ሺ݄௟ሻቁඩ෍ߪ௟௝ଶݔ௝ଶ௡

௝ୀଵ 		 (24) 

From the viewpoint of reliability assurance, considering that the DM often feels that the attained probability ݌௟ should be 

greater than or equal to at least 1/2, it would be natural to assume that ߤ ෨ீ೗ሺ݌௟ሻ ൒ 0 for any ݌௟ ൒ 1/2, ݈ ൌ 1,… , ݇. Then, 

each of the objective functions ܼ௟ஈ,ிሺ࢞ሻ, ݈ ൌ 1,… , ݇ is convex due to the property of ϕିଵ ቀߤ ෨ீೖ⋆ ሺ݄௞ሻቁ ൒ 0. 

Observing that (23) can be regarded as a multiobjective programming problem, a complete optimal solution that 
simultaneously minimizes all of the objective functions does not always exist when the objective functions conflict with 
each other. Thus, instead of a complete optimal solution, a solution concept of Pareto optimality plays an important role in 
multiobjective programming [7]. However, in general there exist an infinite number of Pareto optimal solutions if the 
feasible region is not empty. In real-world decision making problems, to make a reasonable decision or implement a 
desirable scheme, the decision maker should select one point from among the set of Pareto optimal solutions [7]. 

In order to generate a candidate for the satisficing solution which is also Pareto optimal, the DM is asked to specify the 

reference membership levels of ߤ௟ሺ ௟݂ሻ, ݈ ൌ 1,… , ݇ s. For the reference membership levels ̂ߤ௟, ݈ ൌ 1,… , ݇ specified by the 
DM, the corresponding Pareto optimal solution, which is, in the minimax sense, nearest it to the requirement or better than 
that if the reference membership levels are attainable, is obtained by solving the augmented minimax problem  

minimize max௟ୀଵ,…,௞ ቄ̂ߤ௟ െ ௟ߤ ቀܼ௟ஈ,ிሺ࢞ሻቁ ൅ߩ෍൬̂ߤ௟ െ ௟ߤ ቀܼ௟ஈ,ிሺ࢞ሻቁ൰௞
௟ୀଵ ൡ

subject	to ࢞ܣ ൑ ,࢈ ࢞ ൒ ૙ ۙۘۖ
ۖۗ				 (25) 

or equivalently  minimize to	subjectݒ ଵߤ̂ െ ଵߤ ቀܼଵஈ,ிሺ࢞ሻቁ	 ൅ ௟ߤ෍൬̂ߩ െ ௟ߤ ቀܼ௟ஈ,ிሺ࢞ሻቁ൰௞
௟ୀଵ ൑ ௞ߤ̂																					⋮ݒ െ ௞ߤ ቀܼ௞ஈ,ிሺ࢞ሻቁ ൅ ௟ߤ෍൬̂ߩ െ ௟ߤ ቀܼ௟ஈ,ிሺ࢞ሻቁ൰௞
௟ୀଵ ൑ ࢞ܣ		ݒ ൑ ,࢈ ࢞ ൒ ૙, ۙۖۖۖ

ۘۖ
ۖۗۖ										 (26) 

where ߩ is a sufficiently small positive number. 

From the assumption that the membership functions ߤ௟, ݈ ൌ 1,… , ݇ are nonincreasing and concave, letting ௟݃ሺ࢞ሻ ൌ ௟ߤ̂ െߤ௟ ቀܼଵஈ,ிሺ࢞ሻቁ, for any ࢞ଵ and ࢞ଶ satisfying ࢞ܣ ൑ ࢞ ,࢈ ൒ 0 and any ߣ ∈ ሾ0,1ሿ, the convexity property of ௟݃ሺ࢞ሻ is shown as  
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 					 ௟݃ሺ࢞ߣଵ ൅ ሺ1 െ ଶሻ ൌ࢞ሻߣ ௟ߤ̂ െ ௟ߤ ቀܼ௟ஈ,ிሺ࢞ߣଵ ൅ ሺ1 െ  ଶሻቁ࢞ሻߣ

൑ ௟ߤ̂ െ ௟ߤ ቀܼߣ௟ஈ,ிሺ࢞ଵሻ ൅ ሺ1 െ  ଶሻቁ࢞ሻܼ௟ஈ,ிሺߣ

൑ ௟ߤ̂ െ ௟ߤߣ ቀܼ௟ஈ,ிሺ࢞ଵሻቁ െ ሺ1 െ  ଶሻ࢞௟ܼ௟ஈ,ிሺߤሻߣ
ൌ ߣ ൬̂ߤ௟ െ ௟ߤ ቀܼ௟ஈ,ிሺ࢞ଵሻቁ൰ ൅ ሺ1 െ ሻߣ ൬̂ߤ௟ െ ௟ߤ ቀܼ௟ஈ,ிሺ࢞ଶሻቁ൰ 		 

(27) 

Recalling that the sum of convex functions is also convex, one finds that each of the left-hand side functions of the 

constraints in (26), expressed as ௟݃ሺ࢞ሻ ൅ ∑ߩ ௜݃ሺ࢞ሻ௞௜ୀଵ , is also convex, which implies that (26) can be solved by a 

traditional convex programming technique such as the sequential quadratic programming method [21, 22]. 

Following the above discussions, we can now construct an interactive algorithm for deriving the satisficing solution for the 
DM from among the Pareto optimal solution set. 

Interactive fuzzy satisficing method 
Step 1: Ask the DM to specify the membership functions ߤ ෨ீ೗ and the permissible possibility levels ݄௟, ݈ ൌ 1,… , ݇. 

Step 2: Set the initial reference membership levels at 1s, which can be viewed as the ideal values, i.e., ̂ߤ௟, ݈ ൌ 1,… , ݇. 

Step 3: For the current reference membership levels ̂ߤ௟, ݈ ൌ 1,… , ݇, solve the corresponding minimax problem (25). 

Step 4: The DM is supplied with the corresponding Pareto optimal solution ࢞∗. If the DM is satisfied with the current 

membership function values ߤ௟ ቀܼ௟ஈ,ிሺ࢞∗ሻቁ , ݈ ൌ 1,… , ݇ , then stop. Otherwise, ask the DM to update the reference 

membership levels ̂ߤ௟, ݈ ൌ 1,… , ݇, and return to step 3. 

It should be stressed for the DM that any improvement of one membership function value can be achieved only at the 

expense of at least one of the other membership function values for the fixed permissible possibility levels ݄௟, ݈ ൌ 1,… , ݇.  

4 Numerical example 
In order to illustrate the proposed interactive fuzzy satisficing method, as a numerical example of (3), consider the 
two-objective random fuzzy linear programming problem formulated as:  

minimize minimize࢞ሚଵ̅ܥ to	subject࢞ሚଶ̅ܥ ࢞ଵࢇ ൑ ܾଵࢇଶ࢞ ൑ ܾଶࢇଷ࢞ ൑ ܾଷ࢞ ൌ ሺݔଵ, ,ଶݔ ,ଷݔ ,ସݔ ,ହݔ ,଺ݔ ,଻ݔ ,଼ݔ ,ଽݔ ଵ଴ሻ்ݔ ൒ ૙.ۙۖۘۖ
ۖۗۖ			 (28) 

The numerical example was performed on a personal computer (processor: Intel Core 2 Duo 2.66GHz, memory: 2GB, OS: 
Windows XP), and a Microsoft Visual C++ 9.0 C-Compiler was used. 
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Table 1 shows values of coefficients of constraints ܽ௜, ݅ ൌ 1,2,3 and ܾ௜ ൌ 1,2,3 and Table 2 shows values of parameters of 

random fuzzy variables ݉௟௝, ߙ௟௝ and ߪ௟௝ଶ , ݈ ൌ 1,2, ݆ ൌ 1,2,3,4,5,6,7,8,9,10, where triangular fuzzy numbers are assumed 

for ߤெ෩೗ೕሺ߬ሻ. 
Table 1. Values of coefficients in constraints 

 ଷ 3.00 2.00 6.00 1.00 3.00 0.00 0.00 0.00 0.00 0.00 100ࢇ ଶ 0.20 0.40 0.50 0.10 1.20 0.80 1.00 0.20 0.20 0.60 12.5ࢇ ଵ 1.00 3.00 4.00 2.00 5.00 2.00 2.00 1.00 3.00 6.00 60ࢇ ࢈ ૚૙࢏ࢇ ૢ࢏ࢇ ૡ࢏ࢇ ૠ࢏ࢇ ૟࢏ࢇ ૞࢏ࢇ ૝࢏ࢇ ૜࢏ࢇ ૛࢏ࢇ ૚࢏ࢇ 

Table 2. Values of ࢐࢒࢓, હ࢐࢒ and ો࢐࢒૛  

ଶ௝࢓ ଵ௝ െ2.00 െ3.00 െ2.00 െ1.00 െ1.50 െ2.50 െ4.00 െ3.00 െ0.50 െ3.00࢓ ૚૙࢒෤ࢉ ૢ࢒෤ࢉ ૡ࢒෤ࢉ ૠ࢒෤ࢉ ૟࢒෤ࢉ ૞࢒෤ࢉ ૝࢒෤ࢉ ૜࢒෤ࢉ ૛࢒෤ࢉ ૚࢒෤ࢉ   0.20 0.40 0.50 0.10 1.20 0.80 1.00 0.20 0.20 0.60 હଵ௝ 0.30 0.60 0.30 0.30 0.30 0.60 0.90 0.60 0.30 0.30 હଶ௝ 0.10 0.20 0.30 0.05 0.60 0.30 0.50 0.10 0.10 0.30 ોଵ௝ଶ  0.90 2.10 2.70 1.90 3.10 2.30 2.20 0.90 1.80 2.50 ોଶ௝ଶ  0.10 0.10 0.20 0.05 0.40 0.30 0.40 0.10 0.10 0.60 

Through the use of this numerical example, it is now appropriate to illustrate the proposed interactive fuzzy satisficing 
method. 

For illustrative purposes, assume that the DM subjectively determines the membership functions (9) for the probabilities ෨ܲଵ and ෨ܲଶ as linear ones by assessing ݌ଵ଴ ൌ ଶ଴݌ ,0.1 ൌ ଵଵ݌ ,0.2 ൌ ଶଵ݌ ,0.9 ൌ 0.5 and  

݃ଵሺ݌ሻ ൌ ݌ െ 0.10.8 , ݃ଶሺ݌ሻ ൌ ݌ െ 0.20.3 .  (29) 

Also assume that the DM specifies the permissible possibility levels as ݄ଵ ൌ 0.8 and ݄ଶ ൌ 0.8. 

Table 3. Interaction process ۷ܖܗܑܜ܋܉ܚ܍ܜܖ ૚ܜܛ ૛܌ܖ ૜ߤ̂ ܌ܚଵ 1.0 1.0 0.9 ̂ߤଶ 1.0 0.6 0.6 ߤଵሺ ଵ݂ሻ 0.62 0.77 0.73 ߤଶሺ ଶ݂ሻ 0.61 0.37 0.44 ݔଵ 1.95 3.71 4.13 ݔଶ 3.71 3.21 1.80 ݔଷ 3.39 4.82 1.92 ݔସ 0.58 3.62 1.68 ݔହ 0.82 0.03 2.67 ݔ଺ 3.34 3.50 4.14 ݔ଻ 3.30 3.47 1.14 ݔ 6.32 4.48 4.54 ଼ݔଽ 0.54 0.41 0.34 ݔଵ଴ 1.44 0.05 1.36 ଵ݂ െ72.47 െ84.11 െ75.66 ଶ݂ 10.08 12.46 11.14 
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For the permissible possibility levels ݄ଵ ൌ ݄ଶ ൌ 0.8, the corresponding augmented minimax problem is solved, and the 
obtained result is shown at the column labeled “1st” in Table 3. DM is not satisfied with these values of objective 
functions, and the DM updates the reference membership levels as (1.0, 0.6) for improving the values of objective 

functions ߤଵሺ ଵ݂ሻ at the expense of ߤଶሺ ଶ݂ሻ. For the updated reference membership levels, the corresponding augmented 
minimax problem is solved, and the obtained result is shown at the column labeled “2nd” in Table 3. 

A similar procedure continues until the DM is satisfied with the values of objective functions. In this example, we assume 
that the satisficing solution for the DM is derived in the third interaction.  

It should be emphasized here that, in the proposed interactive fuzzy satisficing method, through a series of update 
procedures of the reference membership levels, it is possible to obtain a satisficing solution for the DM from among the 
Pareto optimal solution set. 

5 Conclusions 
By considering the experts' ambiguous understanding of means and variances of random variables, in this paper, we first 
formulated random fuzzy multiobjective linear programming problems. For tackling the formulated problems, it has been 
assumed that the decision maker concerns about the probabilities that each of the objective function values is smaller than 
or equal to a certain target value. By introducing the fuzzy goals of the decision maker for the probabilities and assuming 
that the decision maker is willing to maximize the degrees of possibility with respect to the attained probability, an 
interactive fuzzy satisficing method has been presented for deriving a satisficing solution for the decision maker by 
updating the reference membership levels. It should be emphasized here that the augmented minimax problems for 
obtaining Pareto optimal solutions can be solved through some convex programming techniques such as the sequential 
quadratic programming method. An illustrative numerical example was provided to demonstrate the feasibility of the 
proposed method. However, further computational experiences should be carried out for several types of numerical 
examples. From such experiences the proposed computational method must be revised. As a subject of future work, 
applications of the proposed method to the real world decision making situations should be considered in the near future. 
Extensions to other stochastic programming models will be considered elsewhere. Also extensions to integer 
programming problems involving random fuzzy variable coefficients will be required in the near future. 
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