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ABSTRACT

This article presents the entire process of developing an agent-based system for the glycemic control of patients in the Intensive
Care Unit (ICU). The agent’s goal is to monitor and recommend treatment to keep the patient’s blood glucose within the target
range, avoiding complications in the health of patients and even decreasing rates of morbidity and mortality in the ICU. The
process of developing the agent-based solution was presented, starting from the understanding of the problem, including a brief
review of the literature, going through the pre-project and modelling through the Tropos methodology, until the implementation.
The agent inference mechanism is based on production rules and intuitionistic fuzzy logic. An illustration of use, with the
collaboration of a specialist intensive care physician, shows how agents behave in a real situation of monitoring and controlling
the blood glucose of patients admitted to the ICU, interacting with all elements of the proposed architecture. Finally, feedback
from health professionals indicate the system can assist in the glycemic control of patients in the ICU having advantages over
traditional monitoring systems.
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1. INTRODUCTION
The Intensive Care Unit (ICU) is considered a high-risk
care setting, where carelessness or medical errors can cause
deaths or complications to patients’ health. According to the
National Health Surveillance Agency, the ICU is a key area
intended for the admission of critically ill patients, who re-
quire continuous specialized professional attention, specific
materials, and technologies necessary for diagnosis, monitor-
ing, and therapy. An ICU can be divided into areas according
to the age group and even the specialty to be treated. In
addition to being composed of several professionals form-
ing a multidisciplinary team that must contain: specialist
physicians, nurses, physiotherapists, among other health pro-
fessionals.[1] Considering the hospital environment, the ICU
is the most complex unit to be managed, as it is the place

where patients with the most critical condition and who de-
serve greater care are concentrated. Therefore, improving
productivity and cost, consequently, the care and treatment
of patients are the main current challenges for care in the
ICU, where personalization and automation of care offer
opportunities to cause significant impacts.[2]

The present work will initially take into account glycemic
control, whose main function is to maintain the patient’s
blood sugar (glucose) level in a target range.[3] Both hy-
perglycemia and hypoglycemia, high or low amount of glu-
cose in the blood, respectively, are frequent problems in
ICU patients. Studies show that intensive glycemic control
reduces multiple organ failure, systemic infections, the pa-
tient’s length of stay in hospitals or ICUs, and even cases of
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mortality in critically ill patients, highlighting the need for
strict control.[4] Although[5] recommend ideal blood glucose
(target range) between 140 to 180 mg/dL, some authors in-
cluding the specialist who contributes to this work say that
this value may vary depending on the hospital in which it is
applied. However, regardless of which is the ideal value the
most important thing is to keep the monitoring. According to
[6], the effective control of glycemia in the ICU environment
has the potential to decrease the morbidity and mortality
rates and the length of stay of the patient.

To improve the quality of patient care and even avoid medical
error in the ICU, mechanisms such as protocols, checklists,
and medical rounds at the bedside are indicated in the mon-
itoring of patients and must be done by the intensive care
physician and professionals working in this environment,
such as nurses and physiotherapists. One of the ways to
monitor patients in the ICU is through the application of
the FAST HUG. This is a simple and significant mnemonic,
which highlights seven of the main areas that must be fol-
lowed by the health team for each patient in the ICU: Feeding,
Analgesia, Sedation, Thromboembolic prevention, Head of
the bed elevated, stress Ulcer prophylaxis, and Glucose con-
trol. Such verification must take place during medical rounds,
at which time the multidisciplinary team monitors the patient
at the bedside. It is recommended that it happen at least
once a day and ideally, whenever any of the professionals
attend to the patient. The fact that it is a mnemonic helps the
professional to remember the seven essential items that must
be checked.[3]

Aiming to enhance the efficiency of FAST HUG, includ-
ing glycemic control, the automation of processes combined
with the use of Artificial Intelligence (AI) resources is very
attractive. During the literature review, it was possible to find
works that propose AI-based systems for glycemic control in
the ICU,[7] as well as applying Multiagent System (MAS) for
glycemic control,[8] and even focusing the ICU context.[9, 10]

However, none of the researched studies contemplates the
use of MAS for glycemic control in the ICU.

Considering that MAS is an intelligent distributed approach,
suitable for modular, changeable, and complex applications,
with characteristics such as autonomy, integration, reactiv-
ity, and flexibility, it becomes an interesting solution for
modelling large-scale health systems, since these can be con-
sidered as a collection of entities or autonomous agents that
interact to achieve a common goal.[8] Regarding the knowl-
edge of the agents, this can be built from the knowledge of a
specialized intensive care physician. Concerning knowledge
in the medical field, it can contain uncertainties, and the Intu-
itionist Fuzzy Logic (IFL) has great potential. According to

[9], the health decision area is predominantly characterized
by the prevalence of inaccurate information, since accessible
information is generally vague, inadequate, or incorrect.

In this scenario, we propose a solution that is capable of mon-
itoring and recommending treatment for glycemic control of
critical patients in the ICU, through a MAS using IFL. The
proposed system is called MAS4GC - Multiagent System
for Glycemic Control. In this article, we present the entire
development process of the MAS for glycemic control of
patients in the ICU followed by an illustration of use. The
rest of the manuscript is organized as follows. In Section
2 we present the methodology of the development process
involving studies, design, modelling, and implementation; in
Section 3 the results are presented through an illustration of
the use of MAS4GC; in Section 4 a discussion contemplates
the proposal in the research scenario, comparing it with other
works currently available in the literature; finally, the final
considerations are presented in Section 5.

2. METHODS
The MAS4GC development process is represented in Figure
1. This process was divided into four main steps, namely:
problem definition, pre-project of agents, modelling, and
implementation.

2.1 Problem definition
The problem was defined by contextualizing the current sce-
nario in the form of in-depth research of the concepts related
to the proposal and a literature review, which will be covered
in the discussion section, confronting what was found about
the proposal of this work.

Considering the medical field, concepts of ICU manage-
ment were studied, more specifically through the mnemonic
FASTHUG and glycemic control. Then the concepts refer-
ring to MAS, with a focus on modelling that took place by
the Tropos methodology. The reasoning of agents was also
studied, highlighting production rules and inference mech-
anisms. Since uncertain data is involved in the reasoning
process, fuzzy logic and IFL were addressed. Finally, the
technologies used for implementation were presented.

2.1.1 Glycemic control
During the studies about glycemic control, two important
points were highlighted: monitoring (frequency of blood
collection for blood glucose measurement), and treatment,
allowing the glycemic level to be maintained in the target
range (range of values minimum and maximum blood glu-
cose levels, namely target range or normoglycemia). Such
values vary in the literature according to the region and even
between hospital institutions. Considering the lack of stan-
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dard among the values that regulate the glycemia of patients
in the ICU, this work will use values based on the knowl-
edge of Dr. Sérgio Eduardo Soares Fernandes, a specialist
in intensive care of patients in the ICU. Thus, values were

defined about glycemic rates, collection intervals, and dosage
as shown in Tables 1 and 2.

Figure 1. The MAS development method

Table 1. The scale of glycemic values
 

 

Code Episode Values (mg/dL) 

hypoS Severe Hypoglycemia 0 to 49 

hypoM Mild Hypoglycemia 50 to 99 

normalBG Normal blood glucose (target range) 100 to 200 

hyperM Mild Hyperglycemia 201 to 250 

hyperS Severe Hyperglycemia 251 to 300 

hyperVS Very Severe hyperglycemia above 301 

 

Table 2. Indications for collection and treatment
 

 

Code Monitoring (collect) Treatment (applications) 

hypoS 6 to 24 x day 4 ampoules of 50% glucose IV 

hypoM 3 to 6 x day 2 ampoules of 50% glucose IV 

normalBG 1 to 3 x day Keep watching 

hyperM 3 to 6 x day 2 units of regular SC insulin 

hyperS 6 to 24 x day 4 units of regular SC insulin 

hyperVS 24 to 48 x day 6 units of regular SC insulin 

 

As shown in Table 1, each patient’s glycemic value range is
represented by a code related to the episodes. Episode means
the situation in which the blood glucose of the patient is. It
refers to a value range that represents the amount of sugar
the patient has in his blood system using the unit mg/dL
(mass concentration). The codes (e.g. hypoS, hypoM) will
be used to represent the knowledge of the agents and the
system implementation variables.

Basically, for glycemic control, there are two procedures to
be performed: collection and application. Collection refers
to the number of times the patient’s blood glucose should

be collected on the day. Application refers to the drug to be
applied (insulin or glucose) by which route (intravenous - IV
or subcutaneous - SC), as well as the amount/dose should
make up the patient’s treatment. In Table 2, in addition to
the code indicating the glycemic episodes, for each episode,
the frequency of collection on the day and the indication of
recommended treatment are shown.

2.2 Pre-project of agents
The model design started through the pre-project of agents,
where the PEAS model (Performance, Environment, Actua-
tors, and Sensors) was defined for each agent. As presented
in [11], the PEAS consists of identifying the performance
measure, the environment, the actuators and sensors of the
agents. Besides, based on the objectives of each agent, it
is also possible to describe the mechanisms by which they
will perceive the information and how they will act in re-
sponse to such stimuli. In this sense, a MAS project needs
the modelling of the system to define the behaviour and rea-
soning of the agents, as well as which tools will be used in
the implementation.

The proposed MAS is composed of three agents that interact
with each other and also with a web system called Glycon
(Patient Glycemic Management System), used as an interface
for collecting blood glucose and patient data. The agents’
objective is to collect, analyze data from the Glycon database,
and provide important information to health professionals
working in the ICU regarding the blood glucose levels of
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the patients. In the sequence, there is a description of the
MAS4GC agents, followed by the PEAS model for each
agent according to Tables 3-5.

Table 3. PEAS of the PAA agent
 

 

PEAS Description 

Performance Check if the predictions are within a margin of error of 

4mg/dL (+/-) per hour in advance with a percentage of 

correct answers of 80%. 

Environment Hospital ICU with characteristics: partially observable, 

stochastic, sequential, static, discrete, multiagent. 

Actuators collect and analyze data (patient and blood glucose), 

compare with previous data and predict next blood 

glucose levels, share the evaluation report with the other 

agents. 

Sensors Glycon database and/or Internet of Things (IoT) 
module. 

 

Table 4. PEAS of the PTA agent
 

 

PEAS Description 

Performance Maintain the glycemic level in the target range 

for 80% of the time. 
Environment Hospital ICU with characteristics: partially 

observable, stochastic, sequential, static, 
discrete, multiagent. 

Actuators Analyze the patient's situation, calculate new 
treatment, indicate control measure (indicate 
new glycemic treatment or send an alert of 

special situations). 
Sensors Patient evaluation report provided by PAA. 

 

Table 5. PEAS of the AMA agent
 

 

PEAS Description 

Performance Maintain the glycemic level in the target range 

for 80% of the time. 
Environment Hospital ICU with characteristics: partially 

observable, stochastic, sequential, static, 
discrete, multiagent. 

Actuators Analyze the Glycon collection plan, change the 
collection plan, indicate a new collection plan 
to Glycon. 

Sensors Patient evaluation report provided by PAA. 

 
• PAA (Patient Analyzer Agent): the patient’s analytical

agent has as main objective to collect the patient’s data
and their respective glycemia, whenever new data is
inserted or updated in the Glycon Database. The agent
must analyze such data and make a report assessing
the patient’s situation against existing previous data.
This will allow the agent to calculate and make pre-
dictions of how the patient’s next blood sugar will be.
This report will be sent to PTA and AMA agents.

• PTA (Propose Treatment Agent): this agent is respon-
sible for analyzing the evaluation report generated by
the PAA verifying whether the patient needs treatment

(e.g., glucose or insulin application, dose, type of appli-
cation, frequency of applications). Besides, it should
try to find any irregularity pattern in blood glucose
rates to identify any factor that may affect the patient,
such as possible infection, for example. Finally, PTA
issue alerts to the Glycon system to assist health profes-
sionals through this information. Health professionals
may accept or not the suggestion of making glucose
or insulin applications.

• AMA (Adjust Monitoring Agent): this agent receives
the patient’s report sent by the PAA agent to analyze
the current blood glucose collection plan referring to
the frequency at which blood glucose collections took
place. Based on this, check if it is in an acceptable
range. If not, this agent will prepare a new collection
plan with more spaced or closer frequencies. Like
the PTA, it will issue alerts to the Glycon system to
assist health professionals. It is worth mentioning that
the professional will be responsible for accepting the
suggestions for a new plan or maintaining the existing
one in the system.

2.3 Modelling
After defining the pre-project of the agents with the PEAS,
the MAS was modelled using the Tropos methodology for
agent-oriented software development based on the i* frame-
work (I STAR - Intentional STrategic Actor Relationships
modelling). Tropos allows us to model the functionalities of
an application based on objectives, through five diagrams:
early requirements, late requirements, architectural design,
detailed design, and implementation.[12] This design order
was followed to contemplate the evolution of the MAS mod-
elling process. To model the first three, the online tool piStar
(online iStar modelling) was used. And to represent the
detailed design and implementation, UML diagrams were
used. The initial requirements diagram shown in Figure 2
identifies the stakeholders in the domain and defines them
as actors: patient, health professionals, Glycon, and agents.
The model addresses the dependencies and exchanges of
resources between entities.

The process begins with the patient being admitted to the ICU
receiving the care of health professionals, more specifically
it involves blood glucose collection. Then the professional
informs such data, in addition to the patient data to the Gly-
con system to store in the database. Once the patient’s data
and blood glucose are stored, the agents can collect, analyze,
and consequently, if necessary, inform a new treatment pro-
posal. This proposal is sent to the Glycon system, making
it available to health professionals who can carry out the
appropriate treatment on the patient.
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Figure 2. Tropos diagram for the early requirements

About the late requirements diagram (see Figure 3), it is pos-
sible to see an expanded model from the early requirements
that contains the decompositions of the actor health profes-
sionals in doctors, nurses, and others, because in an ICU en-
vironment these agents can accompany the patients including
collecting the blood glucose levels and possible applications
of glucose and insulin. Due to the detail that this diagram

receives concerning the previous one, it is now possible to
observe which agents will compose such a model. Besides,
their dependencies to the objectives and the resources shared
between them can be observed too. This diagram allows a
general idea of the system that will be developed as well as
to define the functional and non-functional requirements.

Figure 3. Tropos diagram referring to the late requirements

The late requirements can be further explored in the architec-
tural design diagram (see Figure 4), where a global view of
the system is presented. In addition to all the actors involved
in the environment, it is possible to observe the agents, their
tasks (representing the functional requirements), as well as
the dependencies and relationships with the other actors in-

volved in the entire process. In this case, the agent system is
represented by the MAS4GC actor that represents the agents
who collect, analyze and provide information such as col-
lection plans, propose treatments and send different alerts
regarding the patient’s health situation.
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Figure 4. Tropos diagram referring to the architectural design

Considering the detailed design, the MAS4GC architecture
will be presented. In the interface module it is possible to
observe that the data are retrieved by a health professional
working in the ICU (e.g., doctor, nurse) and are inserted in the
Glycon web system database. The agent module comprises a
middleware that will have a MAS implementation framework
using JADE (Java Agent DEvelopment framework). JADE
uses the FIPA (Foundation for Intelligent Physical Agents)
standard communication protocol to communicate with the
agents.[13] The PAA agent will be responsible for retrieving
the information from the web interface and sending it to other
agents to perform their tasks. The agents’ knowledge con-
tains a knowledge base with inference rules, built with the aid
of an intensive care physician, and an inference mechanism.
The IoT module brings greater autonomy to the solution. In
this way, monitoring and treatment can be performed using
blood glucose monitors and infusion pumps, respectively.

At this stage, diagrams representing the line of reasoning
of the specialist physician when providing care and conse-
quently treating a patient were also drawn up. Such diagrams
represent the flow of decisions that the doctor makes ac-
cording to what is identified by the patient. These decisions
represent the specialist’s knowledge, which during the imple-
mentation phase are converted into inference rules to form
the knowledge base to be used by the inference mechanism.

The inference rules follow the doctors’ reasoning and the
agents must conclude using them. This approach is defined
by [14] as deductive reasoning based on symbolic AI. It
is worth mentioning that deductive reasoning agents would
correspond to an agent with a symbolic representation of a
logical formula with syntactic manipulation corresponding to
logical deduction or proof of theorems. Three diagrams were
created that represent the knowledge that each of the agents
should have. Figure 6 represents the knowledge of the PAA
agent where its main function is to determine the patient’s
situation. First, it checks whether the blood glucose collected
is the first, if it is, its range is checked, and the standard pro-
cedure based on the basic rule is carried out (presented in
Tables 1 and 2). If there are already other blood glucose
values collected, the agent will be responsible for making the
comparison (i.e., initially employing a linear regression) to
predict the next blood glucose to make adjustments for the
best treatment and frequency of collections for that patient.

Figure 7 illustrates the procedure that the AMA agent must
perform based on the situation determined by the PAA to
check in which range the patient’s blood glucose is. It makes
the calculation and suggests to the system that the frequency
of the collections be increased or decreased, causing more or
fewer collections over time.
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Figure 5. Detailed design diagram of MAS4GC agents

Figure 6. Diagram of knowledge representation of the PAA agent
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Figure 8 represents the actions of the PTA. In this case, it
must first check the patient’s glycemic status sent by the
PAA, analyze what the trend is, and according to its value
calculate which treatment is the most suitable: apply glucose,
insulin or simply keep the patient under observation.

Figure 7. Diagram of knowledge representation of the
AMA agent

Representing the implementation phase, the class diagram
includes the classes that will be used by the Glycon web
system for data capture and by the agents. Figure 9 presents

the classes used to classify the objects involved in the model
with their characteristics through attributes and methods. The
relationship between these classes can be seen through as-
sociations. In the model, four classes were used, where the
Paciente class receives information regarding the patient at
the time of his hospitalization. Personal health data and other
data that can interfere with the glycemic situation, in addition
to an initial plan for blood glucose collections are part of the
class diagram.

The Glicemia class gathers attributes related to blood glucose
collections, including mainly the glycemic value. The Ap-
plicacao class includes data related to the glucose or insulin
doses that the patient received during his hospitalization.
The RelatorioAvaliacao class is responsible for modelling
the data referring to the decisions that agents will take dur-
ing the patient’s hospitalization as a treatment suggestion,
indication of possible complications, and even better blood
glucose collection times for good patient monitoring. The
names of the classes, attributes, and methods were kept in
Portuguese to maintain the fidelity in the nomenclature about
the implementation.

Figure 8. Diagram of knowledge representation of the PTA agent

2.4 Implementation
In the implementation phase, the development of codes takes
place. This stage was divided into three parts: interface im-
plementation, agent implementation, and agent knowledge
implementation.

2.4.1 Interface implementation
The Glycon web system (Glycemic control online) has the
main objective to receive the patient’s data and blood glucose

for the health professionals to deal with it (insert, update, and
list). However, the two most important tasks of the system
are to record blood glucose levels and the possible applica-
tions of glucose or insulin that the patient may have received.
Such information is listed and presented through graphics in
a kind of patient’s dashboard as shown in Figure 10.
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Figure 9. Class diagram of the MAS4GC system

Figure 10. Patient Glycemic Management System Screen - Glycon
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Glycon is developed in Javascript through the React.js (front-
end) and Node.js (back-end) frameworks. Its database
uses the MongoDB Managed Database System (DBMS),
a non-relational DBMS (NoSQL - Not Only SQL) available
through the Atlas web tool. MongoDB is document-oriented,
and the organizational structure of the data generates a JSON
(JavaScript Object Notation) type document containing keys
and values where the attributes and respective data are struc-
tured. Glycon is currently hosted on the Heroku Cloud Ap-
plication Platform.

2.4.2 Agent implementation
The JADE framework will be used to implement the agents.
JADE is a MAS development middleware written in the Java
programming language.[15] It was defined following the spec-
ifications of the FIPA and through a set of tools that support
the debugging and deployment phase. The JADE framework
can be distributed between machines on multiple platforms
and its configuration can be changed at runtime allowing the
creation of new agents, including mobile agents from one
machine to another, as long as these machines have installed
JRE5 (Java Run Time).

One of the great advantages of JADE is the compliance with
the FIPA specification, facilitating integration with other
agent services. Native services of JADE are life cycle man-
agement, message transport, and yellow and white pages
service, as well as some optional services such as agent-
software integration, ontology service, and agent-man inter-
action. The Message Transport Service (MTS) is responsible
for delivering messages exchanged between agents on the
same platform or between platforms. All FIPA agents have
access to at least one MTS and only messages addressed to
the agents can be sent due to security mechanisms. Accord-
ing to the FIPA specification, the JADE framework includes
two special features: AMS (Agent Management System) and
DF (Directory Facilitator) which are automatically activated
when JADE is started. AMS is an agent management system
that controls access and use of the platform, dealing with
the creation, completion, and other stages of the agents’ life
cycle. The DF offers the yellow pages service for agents,
acting as a centralized database whose entries associate an
agent with its services.[13]

2.4.3 Implementation of knowledge agents
To implement the inference rules, Drools, a Business Rule
Management System (BRMS) tool is the option.[16] Drools
provide a reasoning system with inference mechanisms in-
cluding forward and backward-chaining allowing the eval-
uation of business rules and processing of complex events.
The production rules are structured in conditions and actions
(IF-THEN). The Drools engine stores, processes and evalu-

ates data to execute business rules or user-defined decision
models. The basic function of the Drools mechanism is to
match received data or facts to the conditions of the rules and
determine how to execute the rules. It will be through this
tool that the rules illustrated by the diagrams in Figures 6, 7,
and 8 will be executed. Drools and JADE are open-source
and use Java language for implementation, an important char-
acteristic that contributes to the development of applications
that combine MAS with deductive reasoning agents.

3. RESULTS
In this section, MAS4GC is illustrated presenting how the
agents behave in a real situation of monitoring and con-
trolling the blood glucose of patients admitted to the ICU.
Glycemic control is one of the processes performed during
the application of the FAST HUG, where the health pro-
fessional makes a bedside visit to the patient, collects his
blood glucose and according to the value, makes the most
appropriate decision based on his knowledge. In the case of
MAS4GC, the professional inserts the data into the system,
and knowledge-based agents using production rules suggest
a treatment that health professionals can accept or not such
recommendation. In the sequence, a usage scenario based on
the model created will be presented.

The scenario starts when the health professional collects
the patient’s blood glucose, this can happen on two occa-
sions: (i) as soon as the patient is admitted to the ICU, or
(ii) during medical rounds. In the case of this experiment,
patient data will be randomly generated using a biochemi-
cal patient simulator, with and without glycemic problems.
It is also important to simulate patients with normal blood
glucose to make sure that in these cases the agent will not
recommend any treatment. After generating patient data,
as well as the value of your blood glucose at the moment,
this value is inserted into the Glycon database through its
graphical interface (during the testing phase an API was in
charge of generating data and inserting automatically into
the database).

Assume that John S. was hospitalized at noon with blood
glucose at 120 mg/dL. After identifying a new record in
the database, the PAA agent collects his information and
begins its analysis based on the rules presented in Figure 6,
triggering Rule 1:

Rule 1: IF collect = 1 AND glycemia = normalBG THEN
alert: keep-watching

This is the first blood glucose collected from the patient and
it is in the target range (100-200 mg/dL). The recommenda-
tion, in this case, is to keep watching the patient, dispensing
any type of treatment, and adjustments in the monitoring
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of his blood glucose is recommended to be done every six
hours. Thus, at 6 pm new blood glucose from the patient is
collected and inserted into the Glycon and now the value is
190 mg/dL, triggering Rule 2:

Rule 2: IF collect > 1 AND glycemia = normalBG THEN
alert: keep-watching

This time, more than one blood glucose is collected and
the PAA agent can make a comparison between the values
and generate the forecast of the next blood glucose. In this
case, as much as the glycemia is still in the target range, it
approached the limit of 200mg/dL and therefore the agent
sends the patient’s evaluation report to the AMA agent. AMA
estimates how long blood glucose will still be found in target
and indicates that the frequency of collections should be in-

creased (more collections should be done in less time), and
suggests that the next collection should be made in one hour.
As suggested by the AMA agent, the professional makes a
new collection at 7 pm and inserts its value in the Glycon.
With this, the PAA agent identifies a hyperM (Mild Hyper-
glycemia), because its glycemia is at 240 mg/dL, triggering
Rule 3:

Rule 3: IF collect > 1 AND glycemia = hyperM THEN
alert:2 units of regular SC insulin

The PAA agent sends the report to the AMA agent so that
it can adjust the frequency of blood glucose collections and
also to the PTA agent since there is the need to carry out a
treatment, which in this case is the application of two units
of regular subcutaneous insulin (see Figure 11).

Figure 11. PTA agent treatment recommendation (Glycon)

Also, the PTA agent will do a calculation to identify pos-
sible trends in maintaining hyperglycemia, stability (target
range), or even, due to an overload of the drug, causing
hypoglycemia. In addition to calculating the ideal dose to
re-establish the patient’s target blood glucose range. As
a recommendation, the AMA agent suggested that a new
collection be made after one hour. Then, at 8pm a new col-
lection was performed, and the blood glucose pointed to 150
mg/dL, returning to the target range. The PAA agent after
elaborating his calculations identified a stabilization in the
patient’s blood glucose and recommended observation and a
new collection in six hours, triggering Rule 4:

Rule 4: IF collect > 1 AND glycemia = normalBG THEN
alert: keep-watching

Two new collections were performed at 2 am and 8 am (the
following day) and showed blood glucose levels in the target
range, 130 and 140 mg/dL respectively. Figure 12 presents
the collections, applications, graph illustrating all the moni-
toring and treatment of the patient’s blood glucose through-
out the test period.

This process is repeated for all patients whenever new blood
glucose is collected. A single patient case was presented,
but the agents will not be limited to the decisions presented,
they will be able to exchange information and cooperate to
find patterns and detect possible problems in patients’ health
by crossing data from all patients in the ICU. The entire
process of this simulation was followed up and validated by
the specialist.
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Figure 12. Simulation of the patient’s blood glucose treatment (Glycon)

4. DISCUSSION

The decisions to be made by health professionals about treat-
ment plans and blood glucose monitoring of patients in the
ICU are complex involving uncertainty, mainly because it is
a very dynamic environment relating not only glycemic prob-
lems in the treatment. Also, constant patient monitoring is
needed. Thus, it is desirable to automate the process includ-
ing other essential elements of the FAST HUG verification,
creating decision support tools with adequate recommenda-
tions to assist health professionals.

Nevertheless, the purpose of this work is to present the entire
process of developing a solution based on intelligent agents
that does the glycemic control of critical patients hospitalized
in an ICU through knowledge-based agents. In short, the
work presents a solution that involves the development of
MAS, IFL, and glycemic control in ICU. According to the
research carried out in the current literature, no work found
contemplates all these items, as can be seen in Table 6.

Table 6. Comparison between related work approaches
 

 

Reference MAS IFL Blood Glucose Control ICU 

[8]  x  x  

[17]    x x 

[6]   x x 

[18] x x  x 

[10] x   x 

[9] x x  x 

[7]   x x 

MAS4GC x x x x 

 

In [8] three agents were defined to control and monitor the
glycemic and diet of Type-2 diabetic patients. Using data
from the patients’ daily diet and blood glucose, the system
makes recommendations for appropriate diets. Despite the
work uses MAS and performs glycemic control, it was not
applied in the ICU context. In the works of [6], [7],[17] the
focus was to create an autonomous blood glucose controller
(artificial pancreas) for ICU patients but does not apply MAS.
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In [10] it was presented an agent-based architecture with
real-time decision support for managing high-risk newborns
admitted to the ICU-N. The agents have the objective of
capturing data (physiological, measurements, and exams) of
the neonate in the act of their hospitalization and provide the
degree of risk to the health professional. The work presents
a MAS applied to the ICU but does not include glycemic
control.

Finally, the solution proposed by [9],[18] uses MAS and IFL.
The authors propose to determine the degree of risk of pa-
tients in the ICU after entering their physiological data into
the system. The evaluation of the prototype’s effectiveness
was tested in a real case study involving 16 patients from a
Polyclinic in Tunisia. The prototype proved to be efficient.
The solution is the most similar to this work, but it was not
applied in the context of glycemic control. Also, only a risk
estimate is offered and not continuous patient assessment.

Another fact that differentiates this work from the cited ones
is that none presents a complete development method, a
task not trivial involving several processes. To facilitate
understanding, the method was divided into four stages as
presented in Figure 1. In addition to the method used in
the design development process, such research will also con-
tribute to the system that can be applied in the ICU, helping
health professionals in their diagnoses and treatments.

The MAS4GC system has three agents to perform data anal-
ysis, propose a treatment, and adjust the patient’s blood glu-
cose monitoring. The analysis agent also sends data to a
system that intermediates the data with a human being, who
in turn performs the necessary procedures on patients. Never-
theless, new agents may be added in the future to complement
such tasks and even to cover other elements of FAST HUG,
such as feeding, for example. The illustration of the approach
presented shows that the use of MAS with production rules
is an adequate solution to operate in complex environments
such as the ICU.

Consulting the health professionals, they cite that the
MAS4GC system can substitute the instructions in medi-
cal ICU in patients’ prescription related to most of the usual

cases with some advantages over traditional monitoring sys-
tems: it will be faster, adjustable, has breakpoint alerts, and
presents the timeline in a visual chart. According to the spe-
cialist intensive care physician feedback, the system behaved
as expected in the illustrated scenario indicating that it will
be able to contribute to the health professionals since it em-
ulates the specialist knowledge. Besides, the integration of
new agents can result in discoveries making treatment faster
and efficient.

5. CONCLUSION
This work presents the entire developing process of a MAS
for glycemic control of patients in the ICU. The problem was
taken into account through a literature review where possible
methods and techniques of AI were raised through recent
work. It became evident that the use of the combination of
the MAS approach with IFL-based production rules is inno-
vative and shows promise in medical environments, where
agents can cooperate and act autonomously in a complex
environment such as an ICU. Knowledge-based on infer-
ence rules replicates the knowledge of a specialist intensive
care physician, and the use of IFL favours the variation and
imprecision of the treated data.

The MAS4GC illustration of use showed how the agents be-
have in a real monitoring scenario controlling the blood glu-
cose of patients admitted to the ICU. This process illustrates
how all system architecture components interact to achieve
the main objective of monitoring and treating patients with
glycemic attention. After simulating treatments, the data
were analyzed by the specialist intensive care physician who
concluded that the recommendations were satisfactory. Also,
it is intended to validate such data through statistical cal-
culations, more specifically, calculating the relative risk of
having blood glucose levels outside the target range.

As future work, we intend to implement the modelled
MAS4GC, test it, and analyze the system in a real ICU
environment, with the help and collaboration of a medical
team to prove the efficiency of the proposed solution. An-
other ambition is to add the IoT module to the project so that
it becomes fully autonomous.
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