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ABSTRACT

Biological and automated vision systems which use digital video for navigation depend on the video to be of sufficient quality in
order to extract reliable information that can inform the guidance and/or other decision-making processes. Although systems are
available for detection and mitigation of digital distortions (e.g., compression, packet loss), detection and mitigation of natural
distortions such as glare, rain, and fog have received much less attention. In this paper, we address the issue of glare detection in a
single captured frame. We propose an algorithm which uses a combination of simple and efficient photometric, colorimetric, and
GPS features to detect the location and spatial extent of glare within captured images. Specifically, feature maps using lightness,
saturation, contrast, and color distance are computed, combined, and then, refined based on the sun’s predicted location from the
GPS information. In addition, we present a new ground-truth database for glare detection, in which the location, extent, and
severity of glare was rated by human subjects for a collection of images. Testing on our ground-truth database revealed that the
proposed algorithm can reliably detect the locations and spatial extents of glare sources in a variety of images based on subjective
ratings and well-known quantitative measures.
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1. INTRODUCTION

A very common occurrence during navigation is the pres-
ence of overly intense light that can overwhelm the driver
or the visual sensors of an autonomous ground vehicle, and
thereby reduce visibility. When dazzled by a light source,
typical reactions by the drivers are (1) flipping down the
sunshades, which is not always effective, especially when
the glare is caused by a low-positioned external light source,
e.g., low sun or direct light from the headlights of an on-
coming vehicle;[1] (2) using one hand to occlude the strong
light source from the eyes of the driver, which is not safe and
can block the view of some important obstacles on the road;

and (3) wearing sunglasses, which has comfort issues.[2] For
autonomous vehicles, which depend on onboard cameras for
navigation, none of these reactions is possible, thus result-
ing in the partial or full loss of environment perception and
subsequent failures.

Although the detection of glare is an important problem,
there are relatively few publications on glare detection us-
ing digital cameras.[3–10] The existing approaches to glare
detection generally rely on one or two simplistic image prop-
erties, followed by ad-hoc thresholding. The obvious and
most commonly used feature is light intensity,[3, 4] which can
certainly detect the light source(s), but which cannot differen-
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tiate these sources from other bright regions (e.g., clouds), as
demonstrated in Figure 1. Note that these bright regions also
saturate the camera CCD array, and thus a hard threshold

cannot separate them from the main glare source.

Figure 1. Using light intensity alone to detect the glare regions also captures bright, non-glare regions. Left: Original
image. Right: Binarized intensity values using a threshold of 95% of the maximum value

To overcome this limitation, other approaches supplement
intensity with hue, followed by spatial filtering or transfor-
mations.[5, 6] However, the color of the sun changes based
on its elevation; thus, hue alone often fails to delineate the
boundaries of the glare region(s), particularly when the im-
age is subject to compression, as demonstrated in Figure 2.
In our previous work,[9] we used saturation instead of hue,
taking advantage of the fact that glare regions typically have

low saturation; however, many other regions in the scene
also have low saturation. Instead of analyzing the scene,
another class of approach has focused on analyzing an image
of the driver’s face.[7, 8] Unfortunately, this approach cannot
be used in autonomous systems nor in scenarios where the
driver’s environment is different from the actual to-be-driven
location (e.g., in remote navigation).

Figure 2. HSV color space components of an image with glare. Left: Intensity values (V channel). Middle: Hue values (H
channel). Right: Saturation values (S channel). Previous approaches have used intensity and hue; part of our approach uses
intensity and saturation, the latter being more reliable at detecting the spatial extent of each glare region

Deep learning has been utilized in the work by Jatzkowski
et al.[13] to determine whether overexposure (which is not
always as detrimental to the driver’s vision as glare) exists in
an image. Although this work shows relatively high accuracy,
it cannot locate the overexposure source in the image and so,
it cannot be used for glare suppression. Furthermore, subjec-
tive ratings were not reported to confirm the visual impact
of the overexposure as judged by different observers. The
authors mentioned that there is no large database on glare im-
ages and the number of training images (almost 12,000) they

used is not sufficient for training a deep neural network. They
also admitted the problem of bias in training a convolution
network and the fact that their training set only covers a por-
tion of what can be seen in real-life conditions, which makes
it impossible to guarantee this method’s accuracy when being
tested on different images.

In this paper, we present an algorithm for glare detection
that can detect the presence of glare from a single frame,
and which can be used in autonomous or remote navigation
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settings (i.e., which does not rely on the analysis and co-
presence of a human driver). Our approach employs an adap-
tive combination of features which remain computational
simplistic, but which can reliably detect both the location(s)
and extent(s) of the glare region(s). We specifically use a
combination of: (1) the intensity, saturation, and local con-
trast of the input frame; (2) the solar azimuth and elevation
computed based on the position and heading information
from the GPS (used under daylight conditions); and (3) the
difference in color from the expected sun’s color given the
solar elevation information. These data are used to generate
a glare occurrence map that indicates the center location(s)
and extent(s) of the glare region(s).

The main contributions of this work are as follows: To the
best of our knowledge, our approach is the first to use a com-
bination of photometric, colorimetric, and GPS information
to perform glare detection. For the photometric/colorimetric
approach, we propose a combination of lightness, color dis-
tance, saturation, and local contrast that performs more reli-
ably than previous approaches, and which does not require
facial analysis of the assumed co-located driver. In addition,
to the best of our knowledge, our approach is the first to make
use of the sun’s azimuth and elevation to further refine the
localization process. Furthermore, we have created a large

database of glare images with human subjective markings of
the glare center, boundary, and visibility impairment ratio,
and we have analyzed the performance of our algorithm on
this database. This is the first such database of glare images
with subjective ratings, which can be used as a benchmark
for evaluation of glare detection algorithms.

This paper is organized as follows. In the Algorithm section,
we provide details of the algorithm. In the Ground-Truth
Glare Database section, we describe the procedures and im-
ages used in our glare-rating experiment. In the Results and
Analysis section, we evaluate and discuss the performance
of the algorithm. General conclusions are provided in the
Conclusions section.

2. METHOD

In this section, we describe the proposed algorithm, which
operates by using a combination of image-based and GPS-
based features. A block diagram of the algorithm is shown
in Figure 3. The input is an RGB digital image (or single
video frame), along with GPS information (if available). The
output is a map denoting the location and extent of the glare.
In the following subsections, we describe the algorithm’s
two main analysis stages.

Figure 3. Block diagram of the proposed algorithm. The input is an RGB digital image or single video frame, along with
GPS information (if available). The final output is a map denoting the location and extent of the glare. See Section 2 of the
text for details.
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2.1 Image-based glare occurrence map

Glare regions in an image often have characteristic photomet-
ric and colorimetric properties that can be used to detect glare
regions given an input image/frame. The most obvious visual
feature for glare detection is brightness. Regions in an image,
which have the greatest intensity, are good candidates for
glare regions. However, high intensity alone can give rise to
false positives; thus, in addition to intensity, we also employ
saturation and contrast features. Specifically, glare regions
not only tend to be of high intensity, but also generally have
low color saturation and low luminance contrast. Finally, we
observe that the color of the sun can be estimated based on
the date, time, and global position; thus, we employ color
distance as a fourth feature. In this section, we describe how
these features are computed and combined into a predicted
glare occurrence map.

2.1.1 Lightness

To estimate the perceived intensity at each location, we use
the lightness channel from the CIE 1976 (L∗, a∗, b∗) color
space (CIELAB). Let IR′G′B′ ∈ ZW×H×3 denote the input
RGB digital image with pixel values in the range from [0,1],
where W and H denote the image’s width and height in
pixels respectively. We convert the image into the CIELAB
color space assuming sRGB as the input color space and D65
(daylight) as the illuminant.

LetR′, G′, B′ denote the nonlinearR,G, andB color values
at a particular location of the input image. The conversion
to CIELAB is implemented by first linearizing the R′,G′,B′

values to be proportional to light energy, assuming the sRGB
color space:

(1)

The linearized IR , IG , IB values are then converted to the
CIE XYZ color space as:

(2)

(3)

(4)

Finally, the L∗, a∗, b∗ values are given by:

(5)

(6)

(7)

where Xr = 0.950456, Yr = 1, Zr = 1.088754 are the CIE
XY Z tristimulus values of the D65 reference white point;
and the function g is given by:

(8)

For input R′, G′, B′ values in the range [0, 1], L∗ has a pos-
sible range of [0, 100], and a∗ and b∗ both have a possible
range of [-110, 110].

Note that equations (1) to (8) and all the coefficients used in
them are standard conversion formulas between RGB and
CIELAB color spaces.

We compute L∗(x, y), a∗(x, y), b∗(x, y) for each pixel (x, y)
of the input image. Our brightness feature map, denoted by
V ∈ ZW×H is given by the lightness values normalized to
span the range [0, 1]:

(9)

for all pixel coordinates x and y in the ranges and x ∈
[0,W − 1] and y ∈ [0, H − 1].

The second column of Figure 4 shows the resulting lightness
maps for several example input images (shown in the first
column of Figure 4); larger values denote higher lightness.

2.1.2 Saturation

Regions with low color saturation are also good candidates
of the central glare sources. We use the a∗ and b∗ values to
obtain the color saturation of each pixel. Let S ∈ RW×H
denote this saturation feature map, which is computed as
follows:

(10)

where the denominator 110
√

2 serves to normalize the
S(x, y) values to lie in the possible range of [0, 1]. Equation
(10) is applied for all pixel coordinates x and y in the ranges
x ∈ [0,W − 1] and y ∈ [0, H − 1].
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The third column of Figure 4 shows the resulting saturation
maps for the example input images; note that reverse satura-

tion maps (1− S) are shown in which larger values denote
lower saturation.

Figure 4. Four example input images and the resulting lightness, saturation, contrast, and color-distance maps. Note that
the leftmost three maps are shown with a reverse intensity scale (i.e., 1−M, where M = S, C, or D) so that larger map
values denote greater predicted glare.

2.1.3 Contrast

Glare regions also tend appear to be of low luminance con-
trast, due in part to the limited dynamic range and compres-
sive nonlinearity used in most imaging devices (including
the human visual system). We measure the root-mean-square
contrast[11] locally for each 8× 8 block of V , collecting the
results into a map. Let C ∈ RW×H denote this contrast
feature map, which is computed as follows:

(11)

where L(x, y) = [0.02874× 255× V (x, y)]2.2 denotes the
estimated luminance; where (x′, y′) denote the coordinates
corresponding to the 8 × 8 block centered at (x, y); and

L̄(x, y) denotes the mean luminance of that block. We use a
lower limit of 10 in the denominator to avoid disproportion-
ately large contrasts. We use non-overlapping blocks, and
thus Equation (11) is applied for every 8th pixel coordinate
x and y in the ranges and x ∈ [0,W − 1] and y ∈ [0, H − 1].
(i.e., x = [0, 7, 15, 23, ...] and y = [0, 7, 15, 23, ...]). The
remaining pixels are interpolated via bicubic interpolation.

The fourth column of Figure 4 shows the resulting contrast
maps for the example input images; note that reverse contrast
maps (1−C) are shown in which larger values denote lower
contrast.

2.1.4 Color distance
The color of the sun changes depending on the position of
the sun within the sky. At its highest position, the sun ap-
pears white, whereas a setting/rising sun appears much more
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orange. As we discuss later in Section 2.2, it is possible to
compute the elevation angle of the sun given the date, time,
and GPS information. We use this angle to compute an es-
timate of sun’s average b∗ value, and then compute a color
distance map based on the difference between each pixel’s
b∗ and the sun’s average b∗.

Let esun denote the solar elevation angle (see Section 2.2).
From esun, we use the following the empirically obtained
mapping to estimate the sun’s average b∗, denoted by b∗sun,
as follows:

(12)

Then, let D ∈ RW×H denote a color distance (specifically,
a b∗ difference) feature map, which is computed as follows:

(13)

followed by two adjustments: (1) normalization of D to span
the range [0, 1], and then (2) explicitly setting D(x, y) = 0
for extremely bright locations indicated by V (x, y) > 0.975.

The fifth column of Figure 4 shows the resulting color-
distance maps for the example input images; note that reverse
color-distance maps (1−D) are shown in which larger values
denote smaller distance.

2.1.5 Combination of feature maps

To detect regions that are jointly of high lightness, low sat-
uration, low contrast, and low color distance, we combine
the individual feature maps to obtain a single image-based
glare occurrence map, which we denote as Gimg. For this
combination, we use a simple pointwise multiplication, as
follows:

(14)

followed by normalization of Gimg to span the range [0, 1].
Thus, larger values in Gimg denote regions of high lightness,
low color saturation, low luminance contrast, and low color
distance, which we estimate to be the most likely candidates
of glare regions. Note that the power and multiplication
operators in Equation 14 are point-by-point operators.

The second column of Figure 5 shows Gimg for the same
example input images shown previously in Figure 4. The
lightness and color-distance maps are generally quite effec-
tive at capturing the full extent of the glare, whereas the
saturation and contrast maps can serve to refine this predic-
tion. Accordingly, in the product in Equation 14, we use a

power of 2 for the lightness and color-distance maps in order
to provide these maps extra influence over the final result.

2.2 GPS-based glare occurrence map
During the daytime, when GPS information is accessible,
the physical position of the sun (i.e., the solar azimuth and
elevation) can be computed based on the vehicle’s latitude
and longitude, and the date, time, and time zone. By using
this solar azimuth and elevation, and given the direction in
3D space in which the camera is facing, the position of the
sun within the image frame can be computed.

Let asun and esun denote the solar azimuth and elevation
angles, respectively. Let acam denote the camera’s heading
angle with respect to North, and let HFOV and VFOV de-
note the camera’s horizontal and vertical fields of view. Let
ecam denote the slope of the camera with respect to horizon-
tal (ground), which can be estimated based on the camera’s
mounting conditions and the vehicle’s recent elevation read-
ings.

The image coordinates of the sun’s center, denoted by xsun
and ysun, can be calculated via:

(15)

(16)

where, again, W and H denote the width and height of the
image.

By using (xsun, ysun), we generate a GPS-based glare oc-
currence map, denoted by Gsun ∈ RW×H , which is an
otherwise blank map containing a single Gaussian function
centered at xsun, ysun). Gsun is computed as follows:

(17)

where σ determines the size of the Gaussian, and thus the
size of the sun within the image.

Note that σ cannot be chosen arbitrarily; if σ is too small,
Gsun could miss a considerable portion of the glare region
(leading to false negatives), whereas if σ is too large, Gsun
might include unwanted non-sun regions (leading to false
positives). To estimate an appropriate value for σ, we use
Gimg as follows:

(1) First, we binarize Gimg using a threshold of 0.975 to
capture only those regions with high glare probability
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as estimated by the image-based features. We denote
the largest blob of this binarized image by Gblobimg .

(2) Next, we locate the two points in Gblobimg with maximum
spatial distance. We denote this distance by dsmax,
and we set σ as σ = max(dsmax

1.4 , [ min(W,H)
16 ]).

Before application of (17), we perform the following check
to ensure that the sun’s center is within the ranges [0,W − 1]
and [0, H − 1]:

(18)

(19)

If these conditions are met, Gsun is computed and then nor-
malized to span the range [0, 1]. Otherwise, or if GPS
information is not available, or under nighttime conditions,
Gsun is not computed.

The third column of Figure 5 shows Gsun for the same ex-
ample input images shown previously in Figure 4.

Figure 5. Four example input images and their corresponding intermediate and overall glare occurrence maps. Second
column from left: Glare occurrence maps based on image features. Third column from left: Glare occurrence maps based
on GPS information. Leftmost column: Overall glare occurrence map. Larger map values denote greater predicted glare

2.3 Overall glare occurrence map

Finally, we combine Gimg and Gsun to generate an overall
glare occurrence map, which we denote by G ∈ RW×H .
There are numerous ways in which the maps can be com-
bined, and indeed, the requirements of each particular naviga-

tion setting can dictate the proper way to use and/or combine
the maps. For example, in an autonomous or remote navi-
gation setting, one reasonable goal would be to mitigate the
effects of the glare by obscuring the sun from the camera, or
by selectively darkening the glare regions either digitally of
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physically. In this case, the location, extent, and intensity of
each glare region is needed, and thus an overall map from
which this information can be extracted would be useful.

We have tested a variety of fast and simple methods of com-
bining Gimg and Gsun. We have found that the following
simple product tends to yield the good overall results across
a variety of scenes:

(20)

Note that the multiplication is a pointwise operation per-
formed on individual pixels of the maps.

Figure 5 shows Gimg, Gsun, and G for the example images
shown previously in Figure 4. Observe that the combination
of Gimg and Gsun is generally effective at refining the result
to better highlight the single strongest source of glare while
reducing erroneous detections.

Figure 6. Thirty original images used in the glare rating experiment and contained in the database

3. GROUND-TRUTH GLARE DATABASE

Because glare is a visual sensation, it is necessary to obtain
human judgments of glare as perceived when viewing the

captured image; this condition is a reasonable representation
of the condition faced when using the captured images for
navigation or decision-making. To this end, and to serve as a
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ground-truth dataset for both our current method and for fu-
ture use by other researchers, we created a database of images
containing various amounts of glare along with subjective
data. Specifically, for each image, human subjects labeled
the center and boundary of the primary glare region, and they
provided a rating of the perceived impairment caused by the
glare.

3.1 Database stimuli
Thirty images were used as stimuli in the rating experiment
and are contained in the database. All of the images were
captured outdoors, during the daytime, in Shizuoka Prefec-
ture, Japan, by using the rear-facing camera of an iPhone 6
(iSight) at its default exposure settings. The images were of
size 3264×2448 or 2448×3264 pixels, with 24 bits of color
resolution per pixel. The images were taken to expressly cap-
ture the sun and/or its reflections at various positions, colors,
shapes, and extents, across a range of times (early morning
until late afternoon). Figure 6 shows the 30 images.

The images were displayed on a DELL Inspiron-24 Model
3459’s monitor in a darkened room. The viewable area of
the monitor was 52.7 cm wide and 29.7 cm tall, and the
screen resolution was set to 1920 × 1080 pixels. The mon-
itor yielded minimum and maximum luminances of 0.34
and 250.9 cd/m2, respectively; an overall luminance gamma
of 2.58; and CIE (x, y) chromaticity coordinates of (0.636,
0.329), (0.306, 0.609), (0.149, 0.061), and (0.305, 0.337) for
the R, G, B primaries and white point, respectively; these
measurements were obtained via a Datacolor Spyder 5 PRO
(Lawrenceville, New Jersey, USA). Subjects were instructed
to use a viewing distance of approximately 60 cm.

Eight male subjects participated in the experiment: KK (the
second author), YK, DI, YO, YK2, YZ, KK2, and YM. All
subjects had self-reported normal or corrected-to-normal vi-
sion. The subjects ranged in age from 22 to 31 years old.

3.2 Database procedures
The images were presented to the subjects by using the GNU
Image Manipulation Program;[12] zooming and panning were
allowed, but other adjustments were prohibited. The subjects
were instructed to provide for each image the following data:

(1) Center: Subjects specified the center location of the
primary source of glare by using the pencil tool to
mark a dot on an separate layer in GIMP.

(2) Boundary: On a separate layer in GIMP, subjects used
the pencil tool to trace the boundary of what they con-
sidered to be the primary glare region; subjects were
also instructed to close the boundary.

(3) Impairment: A visual impairment rating (VIR) on a
scale from 0-10, where 0 denotes no impairment in

viewing the scene, and 10 denotes complete impair-
ment in viewing the scene.

The 30 images were divided into two sets of 15 images; each
subject viewed and marked one set of 15 images. Although
no time limit was imposed for the experiment, most subjects
finished each set within 60 minutes.

3.3 Database results
The results for the images in the database are provided in
Figure 7 and Table 1. Figure 7 shows the average perceived
glare occurrence map (computed from the boundary data)
for each corresponding original image shown previously in
Figure 7. The corresponding average center locations (com-
puted from the center data) and average VIR data are listed
in Table 1.

Table 1. Average center locations and average visual
impairment ratings for the 30 images contained in the glare
database; also shows are standard deviations (SDs) of the
means.

 

 

Image Avg. x SD x Avg. y SD y Avg. VIR SD VIR 

1 1514.5 4.36 300.3 4.03 3.3 1.09 
2 1748.5 4.51 680.3 4.79 4.6 1.19 

3 1088.5 22.52 1220.8 4.50 4.6 1.08 

4 1357.5 2.65 784.8 4.19 4.1 1.14 

5 1827.3 4.57 678.0 2.31 5.1 1.43 

6 1521.0 2.00 1323.0 2.94 3.4 1.92 

7 1295.5 6.61 1268.5 13.72 7.0 0.71 

8 1575.5 12.58 992.0 9.06 3.9 1.14 

9 1529.5 6.66 1559.8 4.57 5.9 0.54 

10 1176.8 13.74 1051.5 3.42 5.4 1.08 

11 2840.3 9.54 438.8 6.70 5.5 1.12 

12 1409.0 4.69 810.0 6.06 4.4 1.56 

13 1503.5 1.00 249.5 6.45 2.6 0.96 

14 1818.8 4.11 769.0 2.58 5.3 1.09 

15 1556.3 5.44 1889.8 6.13 2.9 1.43 

16 2051.0 1.83 732.3 2.22 4.9 1.02 

17 1479.0 3.83 1348.8 10.05 8.4 1.08 

18 1310.3 6.18 1276.8 6.18 7.4 0.65 

19 1967.3 8.77 681.5 5.92 5.1 0.54 

20 770.0 1.83 1411.8 2.87 2.9 2.07 

21 1268.0 3.37 1308.3 6.65 6.5 0.79 

22 1764.8 4.99 714.0 5.35 4.4 1.78 

23 1169.0 6.06 1254.8 4.99 7.9 1.52 

24 887.3 2.87 1264.3 3.50 6.3 0.43 

25 2139.8 4.79 1016.8 48.43 4.5 1.50 

26 991.0 1.15 1201.0 9.59 8.8 1.09 

27 811.8 9.00 946.5 15.42 7.3 1.03 

28 1726.5 5.20 1011.3 9.91 7.9 1.14 

29 1784.3 10.11 867.8 2.36 6.8 1.09 

30 1820.5 4.80 1047.3 4.50 6.8 1.09 

 

Specifically, from the subjective boundary data from all sub-
jects, we computed for each image a so-called average per-
ceived glare occurrence map. This map was generated by
first generating a binary map from each subject’s closed
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boundary, in which the center of the boundary was set to a
value of 1, and outside of the boundary was set to zero. Next,
the per-subject binary maps for each image were averaged
to generate the glare occurrence map. A value of 1 indicates
that all subjects considered the corresponding location to
contain glare, whereas a value of 0 indicates that no subject
considered the corresponding location to contain glare. As

can be seen from the results, this judgment varied between
subjects; in terms of the size of the boundary, the average
correlation coefficient between any given subject and the
average of all subjects was approximately 0.7. However, for
all images there was always a core area in which all subjects
agreed (denoted by a value of 1 in the resulting maps).

Figure 7. Subjective glare occurrence maps obtained for the 30 images contained in the glare database

From the center data from all subjects, we computed for each
image the average x-coordinate and average y-coordinate,
thus yielding a ground-truth center location for each image
(see Table 1). Overall, the subjects were in high agreement
with each other in regards to the center locations; the correla-
tion coefficient between any given subject and the average of

all subjects was consistently greater than 0.9.

From the VIR data, for each image, we computed the average
VIR and the standard deviation of this average across sub-
jects (also shown in Table 1). The subjects generally agreed
with each other; the largest standard deviation (of approxi-
mately 20%) occurred for image #20; the lowest standard
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deviation (4%) occurred for image #24. The average correla-
tion coefficient between any given subject and the average of
all subjects was 0.8.

4. RESULTS AND ANALYSIS
In this section, we present and discuss the results of the pro-
posed algorithm in terms of its ability to estimate the glare
occurrence maps in the database described in the previous
section. (We do not test the prediction of the center locations
nor the VIR ratings; although it may certainly be possible
to predict these latter data, the proposed algorithm was not
designed for this purpose.) For the results described here,

the original 3264× 2448-pixel or 2448× 3264-pixel input
images were resized via bicubic resizing with antialiasing to
816× 612 pixels or 612× 816 pixels, respectively.

4.1 Qualitative results

Figure 8 shows the input images, the average ground-truth
markings, the intermediate maps (Gimg and Gsun), and
the overall glare occurrence map (G) for the images in the
database. As demonstrated by these results, the proposed
algorithm is generally effective at capturing the center and
extent of the glare.

Figure 8. Original images, subjective glare occurrence maps, and predicted glare occurrence maps for the 30 images
contained in the glare database

Regarding detection of glare region boundaries, predictions
by our algorithm match the ground-truth data the best for
images #1, #3, #5, #7, #8, #10, #11, #15, #19, #20, #22, #27,
#28, #29, and #30. For images #3, #5, #7, #8, #15, #19, #20,
#22, #27, #29, and #30, the algorithm can even capture the
soft boundary around the primary glare region. However, for
images #2, #9, #12, #16, #17, #18, #21, #23, and #24, the
algorithm cannot find the entire extent of the glare region.
A common property of these latter images is the existence
either (1) long sun rays; or (2) large halo regions around the
sun with an orange/red color; these features are suppressed in
our algorithm due to the use of a Gaussian kernel of limited
size for Gsun (suppresses long sun rays) and the use of an
experimentally-determined color for the sun which is closer
to yellow than red (suppresses the halo). Also, note that for
images #27 and #28, the algorithm cannot fully capture both

the halo regions and the long rays at the same time, although
it is able to achieve a reasonable balance.

It worth mentioning that sun rays do not occupy large areas
of the camera field of view and thus will not be as impairing
as the center region of the glare. Since the halo regions have
smaller light intensities, they are not as dazzling as the center
glare region. Our algorithm detects these center regions in
most of the images (as the Gaussian kernel intensity also
drops as one moves away from the center) but might not
detect the entire halo region. Therefore, using a simple Gaus-
sian kernel for Gsun might be preferred over more advanced
kernels (e.g. fan filters that might also detect rays) due to its
smaller computational burden.
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4.2 Overall prediction performance
Table 2 lists the quantitative results of the proposed algo-
rithm on each of the 30 images in the database. We evaluated
the ability of the algorithm to predict the ground-truth glare
maps in terms of linear correlation coefficient (CC), Kull-
back Leibler divergence (KLD), and root mean-squared error
(RMSE) between the ground-truth map and the predicted

map. We also evaluated the ability of the algorithm to act
as a binary classifier to determine the presence or absence
of glare at each location) by using Precision, Recall, and
Fα. For the binarization needed in the latter evaluation, we
used thresholds of 0.5 and 0.75 (with maps ranging from 0
to 1), corresponding to at least 50% and at least 75% of the
subjects agreeing that a particular location contained glare.

Table 2. Linear correlation coefficient (CC), Kullback Leibler divergence (KLD), root mean- squared error (RMSE),
precision, recall, and F-value between the ground-truth and predicted maps

 

 

Image CC KLD RMSE 
T = 0.5 T = 0.75 

Prec. Recall F-val Prec. Recall F-val 

1 0.977 0.249 0.022 0.981 0.962 0.975 0.988 0.972 0.983 

2 0.929 0.250 0.041 1.000 0.406 0.672 0.990 0.835 0.932 

3 0.900 0.614 0.043 0.812 0.979 0.861 0.927 0.970 0.941 

4 0.898 1.662 0.049 0.839 0.917 0.863 0.899 0.989 0.927 

5 0.915 0.558 0.039 0.926 0.981 0.944 0.928 0.949 0.935 

6 0.802 0.831 0.063 0.515 1.000 0.614 0.784 0.972 0.838 

7 0.956 0.228 0.034 0.806 0.973 0.855 0.946 0.926 0.939 

8 0.752 0.901 0.050 0.431 0.999 0.532 0.571 0.991 0.665 

9 0.748 6.451 0.074 0.748 0.983 0.812 0.895 0.961 0.916 

10 0.934 0.292 0.047 0.715 0.988 0.788 0.916 0.905 0.912 

11 0.956 0.345 0.039 0.959 0.786 0.893 0.979 0.931 0.962 

12 0.862 0.842 0.077 0.689 0.973 0.763 0.919 0.991 0.942 

13 0.770 0.960 0.026 0.961 0.414 0.667 1.000 0.265 0.519 

14 0.918 0.336 0.030 0.983 0.446 0.701 0.944 0.805 0.893 

15 0.783 0.912 0.106 0.476 0.987 0.575 0.800 0.970 0.849 

16 0.861 6.160 0.043 0.939 0.712 0.849 0.970 0.834 0.920 

17 0.843 0.604 0.118 1.000 0.245 0.493 0.996 0.886 0.957 

18 0.828 0.787 0.085 0.757 0.932 0.807 0.666 0.990 0.747 

19 0.818 0.986 0.056 0.731 0.807 0.755 0.930 0.844 0.899 

20 0.899 0.531 0.033 0.862 0.942 0.887 0.635 0.978 0.719 

21 0.714 1.723 0.066 0.991 0.673 0.857 0.774 0.944 0.823 

22 0.815 0.997 0.057 0.680 0.980 0.757 0.719 0.987 0.791 

23 0.849 0.631 0.057 1.000 0.269 0.524 0.999 0.305 0.568 

24 0.647 3.122 0.057 0.941 0.646 0.817 0.734 0.696 0.721 

25 0.717 1.733 0.087 0.841 0.591 0.737 0.911 0.568 0.758 

26 0.877 0.593 0.067 0.771 0.736 0.759 0.897 0.922 0.905 

27 0.899 0.599 0.070 0.914 0.941 0.923 0.845 0.966 0.882 

28 0.870 0.490 0.074 1.000 0.255 0.507 0.968 0.608 0.808 

29 0.926 0.367 0.031 0.976 0.713 0.869 0.938 0.753 0.867 

30 0.900 0.508 0.034 0.887 0.722 0.824 0.881 0.821 0.860 

Average 0.852 1.175 0.056 0.838 0.765 0.763 0.878 0.851 0.846 

Std. Dev. 0.082 1.517 0.023 0.161 0.251 0.135 0.116 0.191 0.116 

 

As shown in Table 2, the algorithm generally demonstrates
good predictive performance in terms of CC, KLD, and
RMSE. The best correlation coefficients (CC > 0.92) oc-
curred for images #1, #2, #11, #7, #10, and #29. Images #1,
#2, #11, #7, and #10 also yielded the best KLDs (KLD < 0.3).

Images #1, #13, #7, #14, and #29, #20, #30 yielded the best
(lowest) RMSEs (RMSE < 0.035). The worst result in terms
of CC was obtained for image #24, due to the inability of the
algorithm to capture the full spatial extent of the glare cast
below the sun indicated by one of the subjects. The worst
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result in terms of KLD was obtained for image #9 due to the
algorithm not being able to fully capture the long rays. In
terms of RMSE, the worst result was obtained for image #17,
due to the inability of algorithm to fully capture the relatively
large diameter of the glare indicated by two subjects.

In terms of the ability of the algorithm to determine the pres-
ence or absence of glare, the performance is also generally
quite good. On average, Fα is greater than 0.75 for detecting
the presence/absence of glare using a binarization threshold
of 0.5; and Fα is greater than 0.84 for detecting the pres-
ence/absence of glare using a binarization threshold of 0.75.
For the T = 0.5 condition, the best results occurred for images
#1, #5, #11, #20, and #27. The worst results occurred for
images #17 and #28 (the algorithm does not fully capture the
extent of the glare surrounding the sun). For the T = 0.75
condition, the results are satisfactory for most of the images
with the exception of underestimates of the glare extents in
images #13 and #23.

4.3 Contributions of the individual features

To examine the contributions of each of the individual fea-
ture maps used in the algorithm to the overall prediction
performance, we generated predictions by using only one or
two of the feature maps at a time. Specifically, we generated
predictions by using only (Gimg , only Gsun, only (Gsun and
V, only (Gsun and S, only (Gsun and C, and only (Gsun and
D. Because the final maps predicted by using only selective
feature maps generally predicts broader glare areas than the
ground-truth maps, values less than 0.25 were set to zero,
and the remaining values were rescaled to span the range [0,
1]; this scheme generally allowed the individual predictions
to perform much better than by using only the raw predic-
tions. For the performance measure, we used correlation
coefficient. Evaluations are shown in Table 3.

The first column of Table 3 shows the CC values for the full
algorithm (repeated from Table 2). The second and third col-
umn show the CC values obtained using only Gimg (i.e., no
Gsun) and only Gsun (i.e., no Gsun), respectively. Observe
that although there certainly are cases in which only Gimg
or Gsun can perform equal or even better than the combina-
tion used in the proposed algorithm, always using just Gimg
or always using just Gsun does not yield consistent results
across the images. For these images, the combination yields
a higher CC approximately 60% of the time.

The fourth through seventh columns of Table 3 show the CC
values obtained using a product of Gsun and only one of
the constituent features maps from Gimg (V or S or C or D).
Again, although there certainly are cases in which only Gsun
and an individual map can perform equal or even better than

the combination used in the proposed algorithm, much more
consistent performance across all of the images is obtained
by using the full combination. Comparing the average CC
values for the individual constituent maps, V and D appear
to have a greater contribution to the overall performance as
compared to S and C. The proposed combination provides a
reasonable balance between leveraging the strengths of the
individual maps and compensating for the weaknesses of
sometimes-erroneous detections on certain images/regions.

Table 3. Linear correlation coefficient (CC) performance for
individual features

 

 

Image All Gimg Gsun 
Gsun and only the map listed below

V S C D 

1 0.977 0.947 0.762 0.895 0.802 0.780 0.982

2 0.929 0.842 0.890 0.896 0.893 0.891 0.842

3 0.900 0.905 0.662 0.856 0.689 0.761 0.830

4 0.898 0.911 0.792 0.859 0.813 0.801 0.916

5 0.915 0.937 0.777 0.851 0.799 0.808 0.957

6 0.802 0.599 0.780 0.835 0.809 0.788 0.834

7 0.956 0.826 0.843 0.939 0.854 0.876 0.878

8 0.752 0.743 0.595 0.721 0.609 0.668 0.715

9 0.748 0.670 0.637 0.755 0.654 0.672 0.712

10 0.934 0.780 0.858 0.919 0.866 0.894 0.881

11 0.957 0.970 0.771 0.897 0.802 0.777 0.979

12 0.862 0.864 0.702 0.831 0.721 0.719 0.893

13 0.770 0.544 0.522 0.761 0.522 0.522 0.521

14 0.918 0.782 0.936 0.911 0.949 0.962 0.920

15 0.783 0.573 0.699 0.796 0.714 0.746 0.780

16 0.862 0.901 0.682 0.765 0.718 0.685 0.850

17 0.843 0.782 0.859 0.789 0.844 0.856 0.796

18 0.828 0.796 0.741 0.778 0.764 0.769 0.800

19 0.820 0.567 0.624 0.765 0.698 0.646 0.793

20 0.899 0.861 0.754 0.842 0.839 0.809 0.864

21 0.714 0.654 0.629 0.621 0.633 0.639 0.633

22 0.815 0.635 0.623 0.723 0.723 0.641 0.819

23 0.849 0.713 0.851 0.792 0.797 0.855 0.823

24 0.647 0.556 0.620 0.598 0.631 0.630 0.620

25 0.717 0.794 no sun 0.729 -0.011 -0.044 0.158

26 0.877 0.810 0.827 0.871 0.844 0.833 0.882

27 0.899 0.894 0.386 0.675 0.398 0.409 0.865

28 0.870 0.752 0.654 0.750 0.653 0.664 0.895

29 0.926 0.734 0.949 0.950 0.970 0.950 0.958

30 0.900 0.831 0.849 0.886 0.907 0.862 0.912

Average 0.852 0.772 0.734 0.809 0.730 0.729 0.810

Std.Dev. 0.082 0.125 0.128 0.090 0.188 0.191 0.163

 

4.4 Relative computation times

Finally, we briefly analyzed the relative run-times required
for computing the various features used in the algorithm. Al-
though our current implementation of the algorithm consists
only of an unoptimized Matlab version, it is still informative
to compare the relative amounts of time required for each
major computation of the algorithm. This timing analysis
was performed on a desktop PC with the following specifica-
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tions: CPU: Xeon X5670 @ 2.9 GHz; RAM: 12 GB DDR3;
Software: Matlab 2016b (Version 9.1). The code was not
explicity written to use multiple cores. The timing results
are shown in Table 4; these results represent the average run-
times (and the standard deviations) for the first 10 images in
the database.

Table 4. Run-times for the various feature computations in
the proposed algorithm

 

 

 
Computation 

Avg. Time 

(sec) 

Avg. Time 

(%of total)
SD 

Gimg 

RGB to L*a*b* 
(including Lightness 
map) 

0.218 40.6% 0.007 

Saturation map 0.004 0.7% 0.001 

Contrast map 0.198 36.9% 0.009 

Color difference map 0.007 1.2% 0.001 

 Gsun 0.098 18.3% 0.005 

 G (total time) 0.536 100% 0.026 

 
As can be seen from the data in Table 4, the two most time-
consuming computations are the color-space conversion from
RGB to L∗a∗b∗, and the computation of the contrast map.
The exponentiations (power operators) in Equations (1) and
(8) account for much of the time required for the color-space
conversion; if these can be approximated or possibly im-
plemented differently, significant time-savings could likely
be realized. The computation of the contrast map is also
relatively time-consuming due both to the exponentiation
and the block-based local contrast computation; the latter
was implemented via two nested loops in Matlab, which is
notoriously inefficient. Although the current total time of
this Matlab implementation is approximately 0.5 seconds per
image, we believe that significant speedups could be realized

by using parallel computations and a different programming
language.

5. CONCLUSIONS
In this paper, we have presented an algorithm for glare de-
tection and a database for its evaluation. The proposed al-
gorithm uses a combination of photometric, colorimetric,
and GPS features to detect the location and spatial extent
of glare within captured images. Specifically, feature maps
using lightness, saturation, contrast, and color distance are
computed, combined, and then refined based on the sun’s
predicted location from the GPS information. Testing on the
database revealed that the proposed algorithm can reliably
detect the locations and spatial extents of glare sources in a
variety of images based on subjective ratings and well-known
quantitative measures. Furthermore, our testing revealed that
no single feature alone could provide consistent detection
performance across all of the images in database; the pro-
posed combination of all of the feature maps, however, was
able to achieve a relatively consistent performance.

6. FUTURE WORK
We have considered the following goals for our future work:
The first goal is real-time implementation of our algorithm in
driving vehicles in order to effectively darken the windshield
and suppress the glare source without entirely occluding the
driver’s field of view. The second goal is to create a large
database for glare images from a variety of real-life situa-
tions that can be used by other researchers and to train a deep
neural network for locating the glare source in the captured
frame and then to compare the accuracy and computational
speed of deep leaning vs. our photometric and GPS features.
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