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Abstract 
In this paper we introduce a new optimization method for the examinations scheduling problem. Rather than attempting 
direct optimization of assignments of exams to specific time-slots, we perform permutations of slots and reassignments of 
exams upon the feasible (but not optimal) schedules obtained by the standard graph colouring method with Largest Degree 
ordering. The proposed optimization methods have been evaluated on the University of Toronto, University of 
Nottingham and International Timetabling Competition (ITC2007) datasets. It is shown that the proposed method delivers 
competitive results compared to other constructive methods in the timetabling literature on both the Nottingham and 
Toronto datasets, and it maintains the same optimization pattern of the solution improvement on the ITC2007 dataset. A 
deterministic pattern obtained for all benchmark datasets makes the proposed method more understandable to the users.  
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1 Introduction 
Timetabling problems exist in numerous areas including educational timetabling, nurse rostering, transportation 
timetabling, sports timetabling and so on. Of all the timetabling problems, it was reported that the educational timetabling 
is one of the most widely studied problems [19]. Examples of educational timetabling include school timetabling, university 
course timetabling and university examination timetabling. In this study, we focus on the examination timetabling 
problem. 

Exam timetabling represents a challenging computational problem due to the strong inter-dependencies between exams 
caused by the many-to-many relationship between students and exams. In the exam timetabling problems, the general 
objective is to generate feasible schedules, which satisfy basic constraints. It is very difficult to define a standard 
examination timetabling problem due to different constraints present in different academic institutions. Consequently, the 
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effectiveness of the timetabling methods and algorithms is measured by their performance on a representative set of 
benchmark problems. 

Two types of constraints defined in the timetabling literatures are: 

Hard Constraints 

These are the constraints that must be fulfilled at all times. The primary hard constraint is that two exams with a common 
student cannot be scheduled in the same slot. Another hard constraint that needs to be conformed is the room capacity; i.e. 
there must be enough space in a room to accommodate all students taking a given exam. A timetable which satisfies all 
hard constraints is called a feasible timetable. 

Soft Constraints 

Soft Constraints are not absolutely crucial but satisfaction of these constraints is beneficial to students and/or the 
institution. An example of a soft constraint is a requirement to space out exams taken by individual students as widely as 
possible across the examination session so that they have adequate revision time between their exams. Normally one 
cannot satisfy all soft constraints thus there is a need for a performance function measuring the degree of fulfillment of 
these constraints.  

Feasible timetable can have exam orderings which do not satisfy many of the soft constraints. Consequently, a separate 
optimization process needs to be deployed to obtain better quality schedules. In general, optimization can be seen as a 
process that maximizes the benefits while minimizing the investment in resources that facilitate these benefits [24]. 
Optimization can be applied to many areas and disciplines. In the area of the examination scheduling, optimization 
methods include Constraint Logic Programming [15] and Ant Colony [14] etc, in addition to metaheuristics in recent  
years [19].  

1.1 Overview of the proposed optimization method 
This study has adopted an approach to the design of the exam schedule optimization that focuses on promoting 
understandability of the optimization process. To this end, we have avoided random exploration of the solution space such 
as that widely proposed in the literature, and have adhered to the deterministic evaluation of the search direction during the 
optimization process. In this study we used benchmark datasets (University of Toronto, University of Nottingham and 
International Timetabling Competition (ITC2007)). A key step in the proposed exam scheduling method was the 
pre-processing of constraints prior to the generation of a feasible timetable. This is done through the abstraction of 
essential features of the exam scheduling problem from the original student-exam data.  

This data abstraction process constitutes a significant methodological contribution of this study, as it enables subsequent 
optimization of the examination schedule without the need to refer to the voluminous student-exam data in the course of 
the optimization. The approach was inspired by the insights from our previous studies on industrial process optimi- 
zation [1, 4, 17] and has been formalized as a Granular Computing methodology [5-7, 16]. We propose that the transformation of 
the problem domain is an effective methodological approach to dealing with complex examination timetabling problems. 
By performing an appropriate pre-processing of the original student-exam data into an exam conflict matrix and a spread 
matrix we have mapped the original problem expressed in the multi-dimensional space of exams and students into a space 
with  a reduced dimensionality of exams and exam-slots. We will refer to this approach to solving the timetabling problem 
as the domain transformation approach.  

The exam conflict matrix is a square matrix of dimension equal to the number of exams. Entries in this matrix at position 
(i,j) represent the number of students causing conflict between exams i and j. The spread matrix [20] is a square matrix of 
dimension S, where S is a number of slots. Entries in the spread matrix at position (p,q) represent the number of students 
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who take both an exam from slot p and slot q. The matrix is symmetrical with diagonal elements being omitted because 
students can take only one exam in any given exam slot.  

The exam conflict matrix is generated by incrementing the value at position (i,j) by 1 for each student taking exams i and j 
when the student-exam list is traversed. Using this information (exam conflict matrix), together with an initial grouping of 
exams information through the early pre-processing stage, the spread matrix is then generated. This is done by 
incrementing the value at position (p,q) by 1 if exam p and exam q are not grouped together in the early allocation process 
(means they are clashing). 

The pre-processing of the original student-exam data into the exam conflict matrix and the spread matrix pays dividends in 
terms of minimizing the subsequent cross checking and cross referencing in the original data in the optimization process, 
thus speeds up the scheduling task. The essence of pre-processing is summarised by the pseudocode in Figure 1, and is 
elaborated in greater detail [20]. 

 

Figure 1. The pseudocode of the pre-processing 

The proposed method proceeds in the following stages: 

1) Problem domain transformation from student-exam to exam conflict and spread matrix data space (Figure 1) 

2) Generation of a feasible solution (Figure 2) 

3) Minimization of the overall slots conflicts (Figure 3) 

4) Minimization of the schedule cost by slot swapping (Figure 5) 

5) Minimization of the schedule cost by exam reallocation (Figure 7) 

6) Repetition of stages 4 and 5 until there is no improvement in the schedule cost. 
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Figure 2. The pseudocode of the allocations of exams to slots 

During the problem domain transformation (as in stage 1 above), initial allocation of exams to slots was done, i.e. grouping 
exams that are not conflicting in a group. This is based on the principle of an early allocation of exams with the highest 
number of conflicts to the available time slots. During this process, the number of conflicts of exams, which have not been 
scheduled yet, is recalculated to reflect the latest updated status of exams. Any unused slots are removed and provide a 
buffer-space for subsequent optimization. The output is an allocation flag, exam-to-slot vector which contains the slot 
number for all exams. At this point, the number of slots could be determined by the maximum value in the allocation flag.  

Generation of a feasible solution is done by allocating a group of exams to timetable slots which are verified by calling a 
verification procedure. The process continues by calling the splitandmerge procedure to reallocate exams. By splitting a 
slot p and reassigning constituent exams, the total number of slots may be reduced if every exam in slot p can be allocated 
to some other slot, i.e. not in conflict with exams in other slots. We then perform backtracking to further reduce the number 
of slots if any reduction is possible. The process is illustrated by the pseudocode in Figure 2. 

In this work, we develop optimization methods (see Section 2) to improve the initial feasible scheduled generated by the 
allocation method in Figure 2.  

For each exam i in the problem 
Obtain the slot number (where it is allocated) from the allocation flag 
Find the sum of the total slots conflicts, and set it as the lowest total slots conflicts 
For each slot (except the slot for exam i) 

Calculate the new total slots conflicts by reassigning exam i into a new slot 
If the new total slots conflicts is lower than the lowest total slots conflicts  

Set the new total slots conflicts as the lowest total slots conflicts 
    End 

Reassign exam i to the slot that produced the lowest total slots conflicts 
 End 
End 

Figure 3. The pseudocode for minimizing total slots conflicts 

 

Figure 4. An example of a spread matrix 
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Figure 5. The pseudocode for the block and slot permutations 

 
Figure 6. Illustrations of spread matrix after permutations of slots are done 

 

Figure 7. The pseudocode for the reassignments of exams 

2 Optimization methods 
The cost of the initial feasible schedule is normally fairly high. In order to minimize the cost, we perform the minimization 
of total slots conflicts, followed by further optimization on the initial schedule by the permutations of exam slots and the 
reassignment of exams between slots. 
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The standard objective of exam scheduling is to minimize the cumulative inconvenience implied by the proximity of 
consecutive exams taken by individual students. This is measured by the cost function originally proposed in [12] as 
follows: 
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where N is the number of exams, sij is the number of students enrolled in both exams i and j, pj is the time slot where exam 
j is scheduled, pi is the time slot where exam i is scheduled and T is the total number of students. Based on this cost 
function, a student taking two exams that are | pj - pi | slots apart, where | pj - pi | ={1, 2, 3, 4, 5}, leads to a cost of 16, 8, 4, 
2, and 1, respectively. 

The lower the cost obtained, the higher is the quality of the schedule, since the gap between two consecutive exams allows 
students to have extra revision time.   

2.1 Minimization of total slots conflicts 
The notion of a slot conflict is a generalization of the notion of exam conflict. We consider two exams i and j as being “in 
conflict” if there is a student that takes both exams. In a feasible schedule such exams are allocated to different exam slots. 
It is worth noting here that the conflict between exams is a binary property that does not increase in value if there are 
several students taking these two exams. Consequently, once we establish which exams are in conflict we do not need to be 
distracted, in the exam scheduling process, by the detailed student-exam data. This domain-transformation approach, 
motivated by the granular information processing paradigm [6], provides a key advantage of the proposed exam scheduling. 

Taking an even a broader view on the exam conflict, a novel contribution of this study is the consideration of the exam-slot 
conflict. Since every exam that is in conflict with the exam i is allocated to some slot in the initial feasible solution, we can 
count the slots that contain conflicting exams. The exam-slot conflict is a binary property that does not increase in value if 
exam i has several conflicting exams in one slot. Consequently, if all the exams conflicting with exam i are allocated to the 
same slot, the exam-slot conflict for exam i will be the lowest (equal to 1). On the other hand, if the conflicting exams are 
allocated to different slots, the exam-slot conflict for exam i will be correspondingly higher (equal to the number of slots 
containing conflicting exams).  

In order to guide our exam schedule optimization process, we use the total count of exam-slot conflicts as a measure of the 
ability to re-schedule exams between the slots. If the total count is high, it means that, on average, exams are in conflict 
with many slots and consequently there are few slots available for rescheduling. Conversely, if the total count is low, on 
average, there are more slots that can be used for re-scheduling of exams. To the best of our knowledge, the potential for 
rescheduling of exams has not been quantified in the literature so far despite it being a key factor enabling the 
improvement of the initial feasible schedule.  

Recognizing the rationale for the maximization of the ability to reschedule individual exams between different slots, we 
start our optimization process by minimizing the total exam-slot conflict. 

The procedure starts by taking the first exam i in the dataset, and calculating the total slots conflicts. Next, we try to 
reassign exam i to all other valid slots (i.e. not in conflict with exam i) and calculate the new total slots conflicts. A slot that 
could lead to a maximum reduction of total conflicts will be selected as a new slot for exam i. The procedure is repeated for 
all other exams in the problem. The pseudocode for minimizing slots conflicts is presented in Figure 3. 
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By minimizing the total slots conflicts it is usually possible to reduce the cost of the exam schedule, as illustrated in Figure 
9. However, we consider this stage primarily as the enhancement of the potential for the subsequent minimization of the 
cost of the schedule. 

Nevertheless it is worth observing that although the cost formula (1) counts the spread of exams from the viewpoint of 
individual students, it is an integrative measure that is concerned with the average inter-exam spread. By reducing the total 
exam-slot conflict we achieve a greater packing of conflicting exams and, by implication, an increased possibility of 
separating the slots that have the largest number of conflicting exams.  

2.2 Minimization of cost by permutations of exams slots 
The second stage of the optimization is explicitly focused on the minimization of the cost function (1). The preparatory 
work of preparing the exam spread data structure, coupled with the maximization of the possibility of re-positioning 
(re-labeling) exam slots, brings dividends in terms of having a much smaller slot-optimization problem to consider while 
capturing the essence of the overall exam scheduling problem. Since the number of available exam slots is typically quite 
small, the optimization of the position of individual slots can be accomplished by the permutation of rows/columns of the 
spread matrix and the evaluation of the resulting cost (1). 

Figure 4 presents an example of a spread matrix. The cost function (1) assigns a weight “16” to exams that are 1 slot apart 
(entries in the spread matrix (1,2), (2,3), (3,4), etc.) and assigns a weight “8” to the exam of 2 slots apart (entries in the 
spread matrix (1,3), (2,4), (3,5), etc.), and so on. To put it in a slightly more formal way, the weight “16” in the cost 
function is associated with the “first minor diagonal” entries of the spread matrix; weight “8” is associated with the 
“second minor diagonal” entries, etc. Assuming that the total number of students is 2749, the cost function (1) evaluates to: 

[[(1044 + 1349 + 1282 + 921 + 684 + 546 + 79 + 35 + 25) * 16] + 

[(1108 + 1119 + 1198 + 518 + 733 + 92 + 140 + 12)* 8]  + 

[(918 + 1302 + 575 + 656 + 159 + 23 + 43) * 4] + 

[(948 + 593 + 786 + 95 + 194 + 45) * 2] + 

[(708 + 753 + 166 + 181 + 33) * 1] ] / 2749 

= 56.99 

The potential for the reduction of this cost lies in the possibility of re-ordering the slots so as to replace the big numbers in 
first minor diagonal with the smaller entries that on subsequent minor diagonals. 

The reordering of slots has been implemented as a simple greedy optimization process that involved swapping of the 
position of individual slots and also swapping of the position of groups of adjacent slots. If a swap operation improved the 
cost function (1) the swap was accepted and the exam slots were rearranged accordingly. Recognizing however that the 
greedy optimization may lead to local optima we have adopted a simple measure of restarting the optimization from 
several initial orderings of exam slots and picking the best solution from a pre-defined number of runs. 

It is worth pointing out that while the optimization by permutation of slots does benefit from the prior minimization of the 
exam-slot conflict it does not affect the total count of the exam-slot conflict because the allocation of individual exams to 
slots does not change. 

A single run of the optimization process outlined in Figure 5 on the spread matrix from Figure 4 results in the spread 
matrix presented in Figure 6. The large entries on the first minor diagonal in Figure 4 are replaced with much smaller 
values that were before positioned on higher order minor diagonals. The cost (1) after permutations of slots is: 
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[[(575 + 23 + 194 + 33 + 33 + 95 + 47 + 628 + 753 ) * 16] + 

[(342 + 684 + 25 + 921 + 12 + 918 + 79 + 1044)* 8]  + 

[(1198 + 45 + 181 + 159 + 7 + 656 + 118) * 4] + 

[(9 + 518 + 35 + 948 + 43 + 1119) * 2] + 

[(1282 + 92 + 222 + 733 + 9) * 1] ] / 2749 

= 31.81 

2.3 Minimization of cost by reassignments of exams between slots 
In the third stage of the optimization, exams that make large contribution to the first minor diagonal entries of the 
reordered spread matrix are reassigned to slots represented by higher minor diagonals (preferably of order 6 or higher). 
Shifting an exam from one slot to another has a chain effect. Changes not only happen at the spread matrix level but also 
happen in the slot conflict matrix. Alteration of exam slots to reduce the cost function value could further reduce the 
overall conflict count or increase the value for the current solution. This is because the insertion of an exam to a slot can 
only happen if the slot contains exclusively exams that do not conflict with it. This action forces us to reevaluate the slot 
conflict count, which changes based on the slot location of all exams that is within the same chain as the shifted exam. The 
bigger the chain of the exam the bigger effect it will have to the conflict count. There are two methods of reassignment, 
single reassignments and group reassignments. 

The single reassignments optimization move throughout the search space to identify an exam that has the biggest reduction 
to the cost function (1) if it were to be moved to other slots. The algorithm looks for a conflict-free slot which leads to the 
biggest cost reduction for all exams. The process of identifying the possible slots and calculating the cost function 
contribution is made simple by a data structure that combines the slot location and the penalty values generated by each 
exam for a slot.  

The group reassignments optimization moves throughout the search space to identify an exam which could lead to the 
biggest reduction to the cost function. The optimization process evaluates the reduction from moving an exam to all other 
slots, and the best combination or total reduction configuration will be selected as the move that will be executed. 

During the process of optimization the generated possible moves are evaluated against a history of moves two steps 
behind. The purpose of this is to eliminate possible cyclic moves in the optimization process. The group reassignments 
move exams to another slot if a reduction can be obtained. This may push other exam(s) out of the selected slot to 
alternative slots. There is a possibility that these exams switch slots and keeps on giving an improvement to the Carter cost 
thus keeping the optimization process ongoing. This will not stop if these two exams keep on exchanging slots. This kind 
of moves must be identified to eliminate infinite swapping. The process continues until there is no more improvements 
available and the number of iterations is more than half of the number of exams. 

Both the single and group reassignments start by evaluating each exam one at a time and look for possible slot locations 
that could accept the exam without any clashes. The main difference is that the evaluation criteria to shift and the number 
of exams for every shift. The single reassignment will end up with solutions within the local optima due to the minor 
changes made to the initial placement of exams.  

However, the group optimization has the possibility of moving solutions out from the local optima, resulting in a better 
result. This is due to the larger changes made at each step where all exams are evaluated and shifted at each cycle. 

The effect of reassignments on the schedule is illustrated in Figure 9. It is shown that cost (1) has been reduced at the 
expense of some increase of the total slots conflicts. 
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The pseudocode for the reassignment process is outlined in Figure 7. 

3 Experiments, results and discussions 
The study was performed on all 13 datasets in the Toronto benchmark repository [ftp://ftp.mie.utoronto.ca/pub/ 
carter/testprob] and also on the Nottingham dataset [http://www.cs.nott.ac.uk/~rxq/files/Nott.zip] that, for the sake of 
comparability with other studies, is considered here as an uncapacitated scheduling problem, where the total room capacity 
in each slot is not considered. 

According to [19], to indicate the density of the conflicting exams in each of the instances, a Conflict Matrix C is defined 
where each element cij = 1 if exam i conflicts with exam j (have common students), or cij = 0 otherwise. The Conflict 
Density represents the ratio between the number of elements of value “1” to the total number of elements in the conflict 
matrix.  

The characteristics of all the datasets are listed in Table 1. For the Toronto dataset, according to [19], 8 out of 13 problem 
instances exist in 2 versions. We will use version I of the datasets which are widely tested by other researchers. 

Table 1. Benchmark Datasets Used in the Timetabling Research 

Name of Dataset No of Exams No of Students No of Enrollments Required No of slots Conflict Density 

Nott (Nottingham a 
or Nottingham b 

 
800 
 

7896 33997 23 0.03 

car-s-91 (I) 682 16925 56877 35 0.13 
car-s-91 (II) 682 16925 56242/56877 35 0.13 
car-f-92 (I) 543 18419 55522 32 0.14 
car-f-92 (II) 543 18419 55189/55522 32 0.14 
ear-f-83(I) 190 1125 8109 24 0.27 
ear-f-83(II) 189 1108 8014 24 0.27 
hec-s-92(I) 81 2823 10632 18 0.42 
hec-s-92(II) 80 2823 10625 18 0.42 
kfu-s-93 461 5349 25113 20 0.06 
lse-f-91 381 2726 10918 18 0.06 
pur-s-93 (I) 2419 30029 120681 42 0.03 
pur-s-93 (II) 2419 30029 120686/120681 42 0.03 
rye-f-92 486 11483 45051 23 0.07 
sta-f-83(I) 139 611 5751 13 0.14 
sta-f-83(II) 138 549 5689 35 0.14 
tre-s-92 261 4360 14901 23 0.18 
uta-s-92(I) 622 21266 58979 35 0.13 
uta-s-92(II) 638 21329 59144 35 0.13 
ute-s-92 184 2749 11793 10 0.08 
yor-f-83 (I) 181 941 6034 21 0.29 
yor-f-83 (II) 180 919 6012 21 0.29 

For each dataset, as explained previously, the experiment starts by the pre-processing on the student-exam data, running 
the allocation method to generate a feasible solution and followed by the backtracking process to reduce the number of 
slots. Optimization then takes place. Recall that the optimization involves three processes: 1) Minimisation of the total 
slots conflicts, 2) Minimisation of cost by permutations of exams slots, and 2) Minimisation of cost by reassignments of 
exams. 
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Accepting that the Permutations of Exams Slots based on the greedy optimization may lead to local optima, we have 
investigated the sensitivity of this optimization to the number of starting points so as to ensure sufficient exploration of the 
search space and promote the convergence to the global optimum. However, no claim is made about the exhaustive 
exploration of the search space and instead we offer the plots of the convergence trajectories in the “exam conflict – 
schedule cost” space as an indication of the robust performance of the proposed method. 

3.1 Different parameters for permutations of slots 
We have tested different combinations of parameters in order to find the ideal or sufficient combinations that would lead to 
local optima. We have used 6, 9 and 12 starting points; and performed experiments for 4, 8, 10 and 12 iterations. All 
combinations were tested and the results for all datasets are recorded in Table 2. 

Table 2. Optimized number of starting points and repetitions of the permutations of exam slots for different benchmark 
problems 

Dataset 

Carter Cost Before 
Permutations  
of Slots (Before  
Optimizations) 

Number of Starting  
Points Providing 
Best (local) 
Optimum 

Number of Repetitions 
Providing Best (local) 
Optimum 

Carter Cost After 
Permutations of 
Slots 

CPU Time 
(seconds) 

Nott 36.25 6 6 10.74 15.95 
car-s-91  10.73 9 6 6.36 201.50 
car-f-92  8.85 12 4 5.29 101.72 
ear-f-83 67.84 6 4 39.54 18.59 
hec-s-92 16.81 6 4 11.49 10.77 
kfu-s-93 34.52 12 4 15.91 18.25 
lse-f-91 23.32 6 4 14.11 9.14 
pur-s-93  13.85 9 6 6.64 277.27 
rye-f-92 25.97 6 4 12.34 18.70 
sta-f-83 195.53 9 6 173.36 6.05 
tre-s-92 13.66 6 4 9.75 14.42 
uta-s-92 6.75 9 4 4.28 149.08 
ute-s-92 38.35 6 4 30.85 1.34 
yor-f-83  51.07 6 4 39.94 34.45 

The study indicated that a combination of 12 starting points and 6 iterations provided the best (sub-optimal) results on the 
benchmark dataset and that the increase of the number of iterations did not produce any improvement of cost. In order to 
enhance even further the exploration of the search space we have adopted 24 random starting points and 6 iterations in all 
subsequent experiments. Please note that this is possible because of the relatively computationally inexpensive 
optimization of the slot ordering. 

3.2 The final results and discussions 
The final results for all the datasets utilizing 24 number of starting points and 6 iterations are therefore presented in Table 
3. Using the data gathered from the experiments on all the datasets, we have plotted graphs for the cost (1) versus the Total 
Slots Conflicts in Figure 8. 

We can observe that the general pattern of the lines (graphs) consists of 3 stages, we name them as section (a), (b) and (c) 
from right to left, as illustrated in Figure 9. Decrease of the total slots conflicts in section (a) is typically (but not 
necessarily) coupled with the decrease of the exam schedule cost. In the second stage, in section (b), the exam schedule 
cost is reduced without any augmentation of the total slots conflicts. The third stage, represented in section (c) involves 
reassignment of exams that reduces the exam schedule cost but increase the total slots conflicts. Please note however that 
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for some datasets (hec-s-92(I), lse-f-91, pur-s-93(I) and rye-f-92), only section (b) and (c) can be seen in the graph because 
they managed to record the best results even without running the minimization of the slots conflicts procedure. 

 

 

 

Figure 8. Cost (1) vs. the Total Slots Conflicts For Nott and Toronto Dataset 
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Figure 9. The Predicted Pattern of the Graph with the Proposed Approach 

Table 3. Computational Results of the Proposed Approach Applied to the Toronto Dataset 

Dataset 

Re- 
quired 
No of 
Slots 

Initial 
Cost 

Total 
Slots 
Conflicts 

Minimiza- 
tion of Slots 
Conflicts 

Total 
Slots 
Conflicts 

Cost Before 
Further 
Optimiz- 
ation 

Reassign- 
ment 
(G:group 
/S:single) 

Cost 
After 
Swap 
1 

Cost 
After 
Reassign 
I 

Total 
Slots 
Conflicts 

Cost  
After 
Swap 
II 

Cost  
After 
Reassign 
II 

Total 
Slots 
Conflicts 

Nott 23 38.99 8589 YES 8090 31.95 S 10.94 7.34 9979 7.34 7.34 9979 

car-s-91 (I) 35 11.77 17169 YES 16665 10.43 S 6.26 5.19 18847 5.19 5.19 18847 

car-f-92 (I) 32 9.43 12332 YES 12217 8.89 G 5.36 4.52 13558 4.52 4.49 13535 

ear-f-83(I) 24 72.69 3582 YES 3544 62.57 S 40.45 37.57 3707 37.57 37.57 3707 

hec-s-92(I) 18 22.83 1263 NO 1263 22.55 G 12.52 11.85 1266 11.62 11.47 1260 

kfu-s-93 20 37.79 4616 YES 4544 29.89 G 16.06 14.36 5174 14.36 14.36 5174 

lse-f-91 18 23.77 3739 NO 3739 22.42 S 14.63 12.41 4077 12.35 11.90 4107 

pur-s-93 (I) 42 14.91 49821 NO 49821 14.27 G 6.69 4.92 60005 4.92 4.88 60532 

rye-f-92 23 31.50 7178 NO 7178 28.55 G 12.68 9.80 7664 9.80 9.80 7664 

sta-f-83(I) 13 201.95 1507 YES 1505 193.47 G 158.43 158.25 1507 158.25 158.25 1507 

tre-s-92 23 14.81 4392 YES 4251 13.25 G 9.84 8.77 4714 8.77 8.74 4719 

uta-s-92(I) 35 8.71 15859 YES 15416 8.28 S 4.24 3.59 16792 3.59 3.59 16792 

ute-s-92 10 60.71 1200 YES 1149 46.57 G 29.82 27.37 1274 27.37 27.37 1274 

yor-f-83 (I) 21 59.04 3336 YES 3256 56.31 G 43.36 41.35 3412 41.27 41.10 3378 

In order to obtain better schedules with lower cost, we have performed the permutations of exam slots and the 
reassignment of exams between slots.  

In order to test the flexibility and ensure that our approach can work well on other datasets, we have further tested the 
methods on the International Timetabling Competition 2007 (ITC2007) dataset that can be obtained from [http://www.cs. 
qub.ac.uk/itc2007/Login/SecretPage.php]. The ITC2007 dataset contains additional constraints including room capacities, 
period utilization, period related and room related in the objective function. Table 4 presents some important 
characteristics of the ITC2007 benchmark dataset. The results obtained for  all exams in this dataset can be seen in Table 5. 
The cost (1) vs. the Total Slots Conflicts is plotted in Figure 10. 

From all the results presented in Table 3, it is clear that the optimization of the initial feasible timetable resulted in an 
improved exam timetable with lower cost (1). For instance, for the “Nott” dataset, a reduction of the cost from 38.99 to 
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10.94 has been obtained after the permutations of exams slots on the initial schedule. The cost was further improved to 
7.34 after the reassignments of exams.  

Table 4. The characteristics of the ITC2007 dataset 

Name of Dataset No of Exams No of Students Required No of Slots Conflict Density 

Exam1 607 7891 54 5.05 
Exam2 870 12743 40 1.17 
Exam3 934 16439 36 2.62 
Exam4 273 5045 21 15.0 
Exam5 1018 9253 42 0.87 
Exam6 242 7909 16 6.16 
Exam7 1096 14676 80 1.93 
Exam8 598 7718 80 4.55 

For the ITC2007 dataset, results reported in Table 5 also show significant reductions of the exam schedule cost compared 
to the cost of the original feasible schedule. For example, the cost of the exam schedule evaluated for the benchmark 
problem Exam8 in the ITC2007 dataset was reduced from 25.15 to 0.32 by permutation of exam slots and was further 
improved to 0.14 by reassignments of exams. It is worth noting that for this benchmark problem a second round of slot 
swapping and exam reassignment resulted in further improvement of cost from 0.14 to 0.13. However, for most 
benchmark problems a single round of optimization was sufficient to achieve a competitive exam schedule that could not 
be improved in the second round.  

Table 5. Computational Results of the proposed Approach Applied to the ITC2007 Dataset 

Dataset 

Re- 
quired 
No of 
Slots 

Unopti- 
mized 
Cost 

Total 
Slots 
Conflicts 

Minimiza- 
tion Of 
Slots 
Conflicts 

Total 
Slots 
Conflicts 

Cost  
Before 
Further 
Optimi- 
zation 

Re- 
assign- 
ment 
(G:group
/S:single) 

Cost  
After  
Swap 
 1 

Cost  
After 
Reassign 
 I 

Total 
 Slots  
Conflicts 

Cost   
After  
Swap 
 II 

Cost  
After 
Reassign 
II 

Total 
 Slots 
Conflicts 

Exam1 54 23.90 7522 YES 7414 23.49 G 2.02 1.12 10787 1.12 1.12 10787 
Exam2 40 26.92 4740 YES 4709 26.92 G 0.48 0.22 5359 0.22 0.22 5359 
Exam3 36 28.53 9114 YES 8928 28.53 G 3.35 1.84 12584 1.84 1.84 12584 
Exam4 21 33.84 4001 YES 3958 28.49 G 14.62 12.06 4326 12.06 12.06 4326 
Exam5 42 41.79 5156 YES 5118 41.79 G 0.83 0.37 5736 0.37 0.37 5736 
Exam6 16 13.32 1652 YES 1647 13.32 G 5.50 4.70 1960 4.69 4.61 1954 
Exam7 80 23.38 9949 YES 9839 23.55 G 0.16 0.07 11066 0.07 0.07 11066 
Exam8 80 25.15 6843 YES 6706 25.15 G 0.32 0.14 7374 0.13 0.13 7374 

An important feature of the proposed optimization is its deterministic pattern that is preserved for all the datasets. The 
minimization of the total slots conflicts has proven to be a useful preparatory step for the subsequent minimization of the 
cost of the exam schedule. By minimizing the slots conflicts we have achieved the greatest “packing” of conflicting exams 
and, by doing so, have enhanced the possibility of reduction of the schedule cost in subsequent steps. It is worth noting that 
this is beneficial even if, in some rare circumstances (see Exam7 in the ITC2007 dataset, Table 5; cost increase from 23.38 
to 23.55) the reduction of the total slots conflicts comes at the expense of some increase of the schedule cost. This 
enhanced potential for subsequent reduction of the schedule cost is fully capitalized on in the subsequent step of 
permutation of exam slots; with the cost reduction to 0.07.  

The permutation of exams slots is a very simple approach and yet it typically produces a very significant reduction of the 
cost (1) of the initial exam schedule.  By splitting the exam scheduling problem into three sub-problems of minimization of 
slots conflicts, minimization of cost by slot swapping and minimization of cost by reassignments we have achieved a clear 
deterministic progression of the optimization process that lends itself to easy interpretation. 

The reassignments of exams also never fail to reduce the cost (1). Looking into details, group reassignments outperformed 
single reassignments in most of the datasets. The effect of these reassignments can be seen from the third data point to the 
fourth data point in each line in the graphs given. There is a very clear pattern, whereby for each line, the graph is going up 
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in a diagonal to the left. This means that the exam schedule generated at this stage has a lower cost but from an increase of 
the overall total slots conflicts.  

 

 

Figure 10. Cost (1) vs. the Total Slots Conflicts for ITC2007 Dataset 
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While the single reassignment follows the strict minimization of the cost (1), in group reassignment we may benefit from 
the inherent interaction of effects of reassignment of exams in a group. Although the individual exams in a group have 
been selected according to their potential to reduce the cost (1), when reassigned to another slot, taken together with other 
exams in a group, this potential for reduction of cost (1) may be eroded or indeed reversed. Although this is unwelcome, it 
allows the search to escape from local optima, thus improve on the single reassignment solution. An alternative strategy 
might be to perform a different type of optimization with single reassignment that would allow the search to escape from 
local optima (e.g. simulated annealing) but the benefits need to be weighted against computational cost. 

It is interesting to note that the feasible solutions with the lower total slots conflicts appear to offer advantage in terms of 
their increased capacity to minimize the cost (1) through simple re-ordering of slots and subsequently through the 
re-assignment of exams between slots. However, while at the initial stages of optimization one is justified in making a 
positive correlation between the cost and the slots conflicts count (as is endorsed by the experiences of other researchers 
using max-degree pre-ordering of exams in their scheduling heuristics), it is clear that this correlation represents a 
potential for the reduction of cost by swapping of the slots. At the final stages of our optimization this potential is not 
relevant as the slots are deemed to have been optimally ordered already. In the rare circumstances where the reassignment 
of exams creates an opportunity for further cost reduction by swapping the exam slots, a second round of optimization 
delivers the expected improvement of the exam schedule. 

Table 6. Results of Our Method in Comparison with Some Other Constructive Methods in Literature (highlighted 
columns are for the methods that delivered results for all instances in the Toronto dataset) 

Dataset  [12]  [9]  [18]  [3]  [21] [11]   [22]  [23] Ours  

car-s-91 (I) 7.1 4.97 5.45 5.29 5.08 5.03 5.17 5.12 5.19 

car-f-92 (I) 6.2 4.32 4.5 4.54 4.38 4.22 4.74 4.41 4.49 
ear-f-83(I) 36.4 36.16 36.15 37.02 38.44 36.06 40.91 36.91 37.57 
hec-s-92(I) 10.8 11.61 11.38 11.78 11.61 11.71 12.26 11.31 11.47 
kfu-s-93 14 15.02 14.74 15.8 14.67 16.02 15.85 14.75 14.36 
lse-f-91 10.5 10.96 10.85 12.09 11.69 11.15 12.58 11.41 11.9 
pur-s-93 
(I) 

3.9 - - - - - 5.87 5.87 4.88 

rye-f-92 7.3 - - 10.38 9.49 9.42 10.11 9.61 9.8 
sta-f-83(I) 161.5 161.9 157.21 160.4 157.72 158.86 158.12 157.52 158.25 
tre-s-92 9.6 8.38 8.79 8.67 8.78 8.37 9.3 8.76 8.74 
uta-s-92(I) 3.5 3.36 3.55 3.57 3.55 3.37 3.65 3.54 3.59 
ute-s-92 25.8 27.41 26.68 28.07 26.63 27.99 27.71 26.25 27.37 
yor-f-83 (I) 41.7 40.88 42.2 39.8 40.45 39.53 43.98 39.67 41.1 

A comparison of our results to the results obtained with other constructive methods reported in the literature is presented in 
Table 6. It is clear that the listed methods have rather uneven performance. They perform well on some benchmark 
problems and less well on others. This is a rather unwelcome characteristic from the user’s perspective, as there is no way 
of predicting the quality of the solution that will be obtained using a particular method on a new dataset. In this context a 
mean percentage discrepancy between the solution delivered by a given method and the best solution reported in the 
literature together with the standard deviation of such discrepancies, evaluated on a representative set of benchmark 
problems, provide a measure of reliability of the exam scheduling method. In particular, small value of the standard 
deviation indicates that the method is delivering consistently good results. Table 7 shows that our proposed method is very 
competitive with the mean percentage discrepancy of 9.11% between its solutions and the best known ones, and is by far 
the most consistently reliable, as indicated by the standard deviation 9.77 of these discrepancies. 
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Table 7. Average Percentage Distance to the Optimal Cost 

Dataset 
 [12]          [22]  [23] 

Our Proposed 
Method 

Best Constructive  
Cost 

 Cost % Cost  % Cost  % Cost  %  

car-s-91 (I) 7.10 42.86 5.17 4.02 5.12 3.02 5.19 4.43 4.97 

car-f-92 (I) 6.20 46.92 4.74 12.32 4.41 4.50 4.49 6.40 4.22 

ear-f-83(I) 36.40 0.94 40.91 13.45 36.91 2.36 37.57 4.19 36.06 

hec-s-92(I) 10.80 0.00 12.26 13.52 11.31 4.72 11.47 6.20 10.80 

kfu-s-93 14.00 0.00 15.85 13.21 14.75 5.36 14.36 2.57 14.00 

lse-f-91 10.50 0.00 12.58 19.81 11.41 8.67 11.90 13.33 10.50 

pur-s-93 (I) 3.90 0.00 5.87 50.51 5.87 50.51 4.88 25.13 3.90 

rye-f-92 7.30 0.00 10.11 38.49 9.61 31.64 9.80 34.25 7.30 

sta-f-83(I) 161.50 2.73 158.12 0.58 157.52 0.20 158.25 0.66 157.21 

tre-s-92 9.60 14.70 9.30 11.11 8.76 4.66 8.74 4.42 8.37 

uta-s-92(I) 3.50 4.17 3.65 8.63 3.54 5.36 3.59 6.85 3.36 

ute-s-92 25.80 0.00 27.71 7.40 26.25 1.74 27.37 6.09 25.80 

yor-f-83 (I) 41.70 5.49 43.98 11.26 39.67 0.35 41.10 3.97 39.53 

Average Percentage 
 Difference To Best  
Constructive cost (%) 

mean = 9.06 
std = 16.44 

mean = 15.72 
std = 13.84 

mean = 9.47 
std = 14.72 

mean = 9.11 
std = 9.77 

 

One important point to note when comparing the performance of the various methods is that that several of the best results 
have been obtained by the methods that did not report any results for pur-f-93 and/or rye-f-92. This is significant because 
it highlights both the quality, consistency and the universal applicability of our method.  

4 Conclusions and future work 
The proposed optimization approach is very simple yet very competitive in generating reliably high quality exam 
schedules. We also believe that the domain transformation approach that facilitated transformation of a complex 
optimization problem into a sequence of more tractable optimizations has a potential for successful applications in a 
broader spectrum of problems. An important feature of our optimization method is that it preserves the feasibility of the 
initial solution throughout the whole of the optimization thus saving a considerable computational effort compared to other 
methods that require customized post-processing.  

The proposed method is also very reliable and stable in producing schedules on larger problem instances, for instance 
pur-s-93 in the Toronto dataset and Exam7 in the ITC2007 dataset. 

We expect that the proposed method can be adapted in a relatively straightforward manner to the capacitated scheduling 
problem by introducing appropriate granular data structures that will permit the requited domain transformation in the 
optimization process. Also, other constraints suggested at the 2nd International Timetabling Competition in 2007-08 
should fit into the general framework of the proposed method.  
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