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Abstract 
Statistical process control, a recognized technique for improving quality and productivity, has been widely employed 
throughout various industries. The conventional Shewhart control charts are applicable only when the collected sample 
data are real-valued data. For the purpose of controlling uncertain information when interval-valued data inevitably appear 
in the manufacturing or service processes, in this paper an interval-data analysis methodology is first applied. We 

construct Shewhart control charts whose control limits, consequently as interval numbers, are obtained by using the united 
extension principle, which is an effective method for dealing with closed interval data. Then, to identify the special causes 
of variation and alarm the requirement for corrective actions, we propose new rules for classifying current conditions of 
the manufacturing process based on an acceptability function of two interval numbers constructed from interval-valued 
sample data. Finally, the proposed methodologies are illustrated by practical examples to show their potential applications. 
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1 Introduction 
Over the fast development of new technologies, data with low resolution gathered from manufacturing processes, such as 
the synthesis and characterization of nano-composite processes or surface roughness consisting of the finer irregularities 
of the surface texture, thus recorded as interval values are commonly seen [1, 2]. There are several situations and examples 
for interval observations are inevitable existing in today’s engineering processes. During earlier design phases of 
manufacturing processes, engineers may only know roughly in advance what the quality characteristics are looking for [3]; 
also, in the manufacturing period, timely and accurate numerical measurements of quality characteristics are sometime too 
costly to be obtained. Especially data gathered by human’s subjective senses are rarely measured on an exact numerical 
scale [2, 4, 5-7]. A typical example for vague observations is the colors of the visible light spectrum usually recorded as an 
interval number due to insufficient resolution [8]. Moreover, measurements collected from color intensity of pictures, the 
sharpness or fineness of images, and indicators of an analog equipment are laborious and sometimes controversial to be 
exact [9, 10]. Even readings on digital measurement equipments are not precise numbers but certain spans since there are 
only finite numbers of decimals available [11].  
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In monitoring and controlling manufacturing processes, many researches have carried out that data collected from the key 
quality characteristic are in the form of qualitative variables, which by convention are called linguistic variables or 
categorical variables. Spanos and Chen [12] presented an example in which quality characteristics are measured the 
roughness of etched sidewalls, then trained operators classify wafers into particular categories such as ''very rough'', 
''rough'', ''smooth'' and ''very smooth''. Fasulo et al. [13] investigated the surface quality of the thermoplastic olefin (TPO) 
nano-composites in an extrusion process, where surfaces quality is graded on a 5-point scale with 1 being the best and 5 
being the worst based on visual inspections. Wang and Tsung [2] studied a Deep Reactive Ion Etching (DRIE) process, in 
which categorical observations were collected for the determination of process adjustment. Trochim and Donnelly [14] 
pointed out that all qualitative data can be coded quantitatively. Then these quantitative values can be manipulated to help 
decision-makers achieve greater insight into the meaning of the data and further examine specific hypotheses. Obviously, 
while assigning the qualitative variables to be meaningful numerical values, a certain degree of uncertainty called 
vagueness other than randomness is involved and thus yields coded data virtually interval-valued [15-17].  

Statistical process control is a powerful collection of problem-solving tools that are useful in attaining the process stability 
and in improving the capability through the reduction of variability [18, 19]. A control chart is one of the major tools of the 
SPC that is commonly used to monitor and control the manufacturing process. The merits of the control charts lie in their 
ability to detect the process shifts and deviations and to indicate abnormal conditions [20]. Unfortunately, the conventional 
Shewhart control charts are applicable only when the collected sample data are real-valued data; that is, the manufacturing 

process is in control if the range ir  or the average ix  of the key quality characteristic is within the upper and lower control 

limits, and it is implied that the manufacturing process is out of control if the range ir  or the average ix  lies beyond the 

upper and lower control limits. In this case, the binary classification of “in control” or “out of control” is used to categorize 
the condition of the manufacturing process. For the interval-valued process data, this kind of two binary classifications 
might be too restrictive to make the right decision. While the interval-value process data are ubiquitous, an operative use 
for monitoring and controlling interval-valued quality data still has not been seriously treated. 

Segupta and Pal [21] indicated interval numbers can be thought as the extension of real numbers as well as subsets of the 

real line  . They convey the extent of tolerance that the key quality characteristic can possibly take. When a set of 
interval-valued sample data is collected for identifying if the special causes of variation exist or signaling if corrective 
actions are required, some key issues must be carried out to make control charts capable of being used. They are (1) the 
construction of the interval-valued upper and lower control limits; (2) the comparison of two interval numbers; (3) the 
categorization of the manufacturing process conditions. To fulfill these requirements, this paper is organized as follows. In 

Section 2, we briefly review the development of the equations for constructing the control limits on the Shewhart X  and 

R  charts. In Section 3, the definition of interval numbers and the united extension principle are introduced. In Section 4, 

we develop the X and R  control charts with the interval-valued sample data. The interval upper and lower control limits 
are derived according to the united extension operations of interval analysis. In Section 5, a new method for comparing 
interval numbers so as to categorize the conditions of the manufacturing process is proposed Finally, the proposed 
methodologies are demonstrated by a practical example to show the potential application. 

2 Control charts for real-valued data 
We now briefly review the development of the equations for constructing the control limits on the X  and R  control 

charts. Suppose that X  is the key quality characteristic, which has normal distribution 2( , )N   . Usually, the 

parameters   and   are numerically unknown. They need to be estimated by using the sample data taken from the 

process that is thought to be in control. These estimates should usually be obtained based on at least 20 to 25 samples. 
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Assume that we have collected the sample data 1 2( , , , )i i inX X X , 1,2, ,i m  , which consist of m  subgroups and 

each subgroup contains n  observations. The average of sample i  is 

1

1 n

i ij
j

X X
n 

   for 1,2, ,i m       (1) 

Then the best estimator of the true process average   is the grand average 

1

1 m

i
i

X X
m 

  .      (2) 

On the other hand, in many applications of statistics to the quality engineering problems, it is convenient to estimate the 

standard deviation   by the range method. The range of each sample is the difference between the largest and smallest 

observation. Let iR  be the range of the i -th sample, that is, 

1 2 1 2max{ , , , } min{ , , , }i i i in i i inR X X X X X X    for 1,2, ,i m  . 

An unbiased estimator of the standard deviation   of a normal distribution is 2ˆ iR d  . The values of 2d  for various 

sample sizes 2 25n   are available in the textbooks or literature of quality control (e.g., see Montgomery [19]). Since 

there are m  subgroups, the average range R  is given by 

1

1 m

i
i

R R
m 

        (3) 

The usual three-sigma control limits for the X  control chart are given by 

         
2

3
XLCL X - R

d n
                                          (4)  

 XCL X                                                                                 (5) 

                 
2

3
XUCL X+ R

d n
                                                                      (6) 

where CL  is a center line and UCL  and LCL  are referred to as the upper control limit and the lower control limit, 

respectively. 

The estimators of the R  chart with the usual three-sigma control limits are 

3XLCL D R       (7) 

XCL R                                                                               (8) 
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4RUCL D R       (9) 

The values of 3D  and 4D  for various sample sizes 2 25n   are also available in the textbooks or literature of quality 

control [19]. 

3 Interval numbers and united extension 
In the following, we use lower case and boldface letters to denote real numbers and interval numbers or closed intervals on 

 , respectively. Let { : , } [ , ]l u l ua a a a a a a    A   be a closed interval number, where la  and ua  are the 

left and right endpoints of the interval A  on the real line  . If l ua a , then the interval number A  degenerates to be a 

real number, [ , ]a a a A . We define the following quantities: 

   1
2

u lc a a A  and    1
2

u lw a a A     (10) 

where ( )c A  is the center of A  and ( )w A  is the width of A . Therefore, the interval A  can be equivalently expressed 

as ( ), ( )c wA A A . In order to construct the X and R control charts for interval-valued data, the following 

proposition developed in the interval analysis is very useful. 

Proposition 3.1 Let : nf    be a continuous real-valued (degenerate intervals) or even a continuous interval- 

valued function and let 1 2, , , nA A A  be n  interval numbers of  . By the united extension defined in Moore [22-24], we 

can induce an interval-valued function : ( ) ( ) ( ) ( )f   I I I I       via the real-valued function 

1 2( , , , )nf a a a ; that is, 1 2( , , , )nf A A A   is a interval subset of  . The united extension 1 2( , , , )nf A A A   is 

given by  

1 1 1 1

1 2 1
{( , ): , , }

( , , , ) ( , , )
l u l u

n n n n

n n
a a a a a a a a

f f a a
   

A A A
 

    . 

4 Control charts for interval-valued data 
Now, we are in a position to present the X  and R  control charts for monitoring the process average and variability with 
interval-valued sample data. 

4.1 X  control chart 
Let ijx  be interval observations (interval-valued data) for 1,2,i m   and 1,2, ,j n  , which consist of m  

subgroups and each subgroup contains n  observations. Of course, the interval-valued data are assumed as interval 

numbers, i.e., [ , ]l u
ij ij ijx xx , 1, 2, ,i m   and 1,2, ,j n  . With these interval-valued data, it suffices to present 

the constructing procedure for the interval upper and lower control limits by using the united extension principle. 

From Eq. (4), XUCL  is a function of real sample data ijX , 1, 2, ,i m   and 1,2, ,j n  . Therefore, we can write 

1( )ijXUCL f X , 1,2,i m   and 1,2, ,j n  . In other words, for any given interval observations, the 
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corresponding real-valued data ijx  for 1, 2, ,i m   and 1,2, ,j n   can form the estimate of upper control limit 

1( )ijXucl f x , 1,2,i m   and 1,2, ,j n  .  

Based on the united extension principle, the estimate of interval upper control limit for the X  control chart can be 

obtained. For notational convenience, we denote the estimate of interval upper control limit by Xucl . By Proposition 3.1, 

Xucl  is an interval number, i.e, [ , ]l u
X X

ucl uclXucl . Therefore, from Eq. (6) and Proposition 3.1, the left-endpoint 

l
X

ucl  and right-end point u
X

ucl  can be given by 

1
{( ): , 1,2, , ; 1,2 , }

min ( )
l u

ij ij ij ij

l
ijX x x x x i m j n

ucl f x
   


 

    (11) 

and 

1
{( ): , 1,2, , ; 1,2 , }

max ( )
l u

ij ij ij ij

u
ijX x x x x i m j n

ucl f x
   


 

    (12) 

Similarly, according to Eq. (4) and Proposition 3.1, the estimate of lower control limit is 2( )ijXlcl f x , 1,2,i m   

and 1,2, ,j n  . The estimate of interval lower control limit [ , ]l u
X X

lcl lclXlcl  is shown below 

2
{( ): , 1,2, , ; 1,2 , }

min ( )
l u

ij ij ij ij

l
ijX x x x x i m j n

lcl f x
   


 

    (13) 

and 

2
{( ): , 1,2, , ; 1,2 , }

max ( )
l u

ij ij ij ij

u
ijX x x x x i m j n

lcl f x
   


 

    (14) 

In order to realize whether the interval average of i -th sample lies within the interval upper and lower control limits. From 

Eq. (1) and Proposition 3.1, the estimate of the interval average of i -th sample is 3 1 2( , , , )i i i inx f x x x  , 

1, 2, ,i m  , and the estimate of the interval average of i -th sample [ , ]l u
i i ix xx  can be obtained by solving the 

formulae 

1 1 1 1 1
3 1

{( , , ): , , , 1,2, , }
min ( , , )

l u l u
i in i i i in i in

l
i i in

x x x x x x x x i m
x f x x

    


  
     (15) 

and 

1 1 1 1 1
3 1

{( , , ): , , , 1,2, , }
max ( , , )

l u l u
i in i i i in i in

u
i i in

x x x x x x x x i m
x f x x

    


  
     (16) 

Clearly, Eqs. (11)-(16) are nonlinear programming problems with bounded variables, the built-in optimization subroutine 
called ``fmincon'' provided in the commercial software Matlab is used to construct the interval values in Eqs. (11)-(16).  

It can be noted that the function 3 1 2( , , , )i i i inx f x x x   in Eqs (15) and (16) is monotonically increasing, in this case, 

the expressions and computations can be simplified.  
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1

1 n
l l
i ij

j

x x
n 

   and 
1

1 n
u u
i ij

j

x x
n 

   for 1,2,i m  .    (17) 

Note that the interval upper and lower control limits in Eqs (11)-(14) cannot possess this kind of simple expressions. 

4.2 R  control chart 
From Eqs. (7) and (9) and Proposition 3.1, similarly,  the estimates of upper and lower control limits are 4 ( )R ijlcl f x  

and 5( )R ijlcl f x , 1,2,i m   and 1,2, ,j n  , respectively, and the estimates of the interval control limits for R  

control chart, i.e., [ , ]l u
R Rucl uclRucl  and [ , ]l u

R Rlcl lclRlcl  are 

4
{( ): , 1,2, , ; 1,2 , }

min ( )
l u

ij ij ij ij

l
R ij

x x x x i m j n
ucl f x

   


 
    (18) 

4
{( ): , 1,2, , ; 1,2 , }

max ( )
l u

ij ij ij ij

u
R ij

x x x x i m j n
ucl f x

   


 
    (19) 

5
{( ): , 1,2, , ; 1,2 , }

min ( )
l u

ij ij ij ij

l
R ij

x x x x i m j n
lcl f x

   


 
    (20) 

5
{( ): , 1,2, , ; 1,2 , }

max ( )
l u

ij ij ij ij

u
R ij

x x x x i m j n
lcl f x

   


 
    (21) 

In order to realize whether the interval range of i -th sample ir  lies within the interval upper limit Rucl  and lower control 

limit Rlcl . The estimate of the average of i -th sample is 6 1 2( , , , )i i i inr f x x x  , 1,2,i m  . According to Eq. (3) 

and Proposition 3.1, the estimate of the interval average of i -th sample [ , ]l u
i i ir rr  can be obtained by solving formulae 

1 1 1 1 1
6 1

{( , , ): , , , 1,2, , }
min ( , , )

l u l u
i in i i i in i in

l
i i in

x x x x x x x x i m
r f x x

    


  
     (22) 

and 

1 1 1 1 1
6 1

{( , , ): , , , 1,2, , }
max ( , , )

l u l u
i in i i i in i in

u
i i in

x x x x x x x x i m
r f x x

    


  
     (23) 

Similarly, Eqs. (18)-(23) are nonlinear programming problems with bounded variables, which can be solved by using the 
“fmincon” function in Matlab. 

5 Methods for classifying manufacturing processes 
When setting up the interval X  and R  control charts, it is the best to begin with the interval R  chart. Since control 

limits on the interval X  chart depend on the process variability, unless the process variability is in control, these limits 
will not have much meaning. 

For the purpose of realizing whether the plotted interval average ir  lie within the interval upper control limit Rucl  and 

interval lower control limit Rlcl , we develop a method ranking interval numbers among the set of all interval numbers. 
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Let I  be the set of all closed intervals in  . According to Eq. (10), Sengupta and Pal [21] proposed an acceptability 

function ( ) ( ) [0, )  I I A :    

( ) ( )
( )

( ) ( )





 c c
w w

B A
A B

B A
A  for ( ) ( )c cA B ,    (24) 

where ( ) ( ) 0w w A B . The values of ( )A BA  are interpreted as the grade of acceptability of A  to be inferior to 

B . Their possible values and interpretations are 

0, ( ) ( )

( ) (0,1) ( ) ( )

1 ( ) ( )

 
   
  

 u l

u l

if c c

if c c and a b

if c c and a b

A B

A B A B

A B

A     (25) 

 If ( ) 0A BA , then the premise '' A  is inferior to B '' is not accepted. 

 If ( ) (0,1)A BA , then the decision-maker accepts the premise A B  with a satisfaction grade ranging from 0 

to 1. 

 If ( ) 1A BA , then the decision-maker is absolutely satisfied with the premise A B . If the value of 

( )A BA  is large, then B  is superior to A  in a very strong sense. 

5.1 R  control chart 
Considered the process variability, if the value of ( )iRucl rA  is large, e.g., ( ) 1i Rucl rA , then it implies that the 

process is out of control. Conversely, if the value of ( )i Rr uclA  is large, then, theoretically, the manufacturing process 

seems good, since the process variability is small in the interval sense. However, under this condition, the decision-maker 
should be cautious, because the result often does not represent a real improvement in the manufacturing process. In many 
situations, it may be caused by errors in the inspection process due to inadequately trained or inexperienced inspectors or 
the inspectors deliberately ignoring the nonconforming items or reporting the fictitious data. Therefore, the decision- 
maker still has to check carefully what the assignable causes are. Sometimes, if the manufacturing process really improves, 
the decision-maker can take this chance to record all the settings of current manufacturing process for the future reference. 
Finally, two other rules are suggested as follows: 

 if ( ) (0,1)iA  Rr lcl  and the set-up cost is small, then the manufacturing process is intervened to record 

the beneficial factors or to remove the non-beneficial causes; 

 if ( ) (0,1)iA  Rr lcl  and the set-up cost outweighs the expected quality gains, the manufacturing 

process continues. 

Under the above rules, the conditions of the manufacturing process are categorized as follows. 

(i) The process is in-control if ( ) 1i Rr uclA  and ( ) 1i Rlcl rA . 

(ii) The process is out-of-control if ( ) 1i Rucl rA  or ( ) 1i Rr lclA .  

(iii) The process is rather out-of-control with degree [0,1)   if ( )i Rucl rA  or ( )i Rr lclA .  

(iv) The process is rather in-control with degree [0,1)   if one of the following situations is observed: 

 ( ) 1i Rr uclA  and ( )i Rlcl rA . 
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 ( ) 1i Rlcl rA  and ( )i Rr uclA . 

 1( )i Rr uclA  and 2( )i Rlcl rA , where 1 2, (0,1)    and 1 2min{ , }   . 

5.2 X  control chart 
Similarly, we can categorize the manufacturing process by monitoring X  control chart as follows:  

(i) The process is in-control if ( ) 1i Xx uclA  and ( ) 1i Xlcl xA . 

(ii) The process is out-of-control if ( ) 1i Xucl xA  or ( ) 1i Xx lclA .  

(iii) The process is rather out-of-control with degree [0,1)   if ( )i Xucl xA  or ( ) (0,1)i  Xx lclA .  

(iv) The process is rather in-control with degree [0,1)   if one of the following situations is observed: 

 ( ) 1i Xx lclA  and ( )i Xlcl xA . 

 ( ) 1i Xlcl xA  and ( )i Xx uclA . 

 1( )i Xx uclA  and 2( )i Xlcl xA , where 1 2, (0,1)    and 1 2min{ , }   . 

In the sequel, the X  and R  control charts with practical interval-valued data are provided to illustrate the applicability of 
proposed methodologies. 

6 A practical example 
The applications of Light Emitting Diodes (LEDs) are growing rapidly, since the long life span and high intensity of 
solid-state illumination with wide range of colors have been recently developed and become available, which enabled the 
applications of LEDs in a wide variety of areas such as automotive lighting, computer displays, liquid crystal display 
televisions, signaling and general lighting, etc. The example investigated here is taken from a LED-based lighting fixture 
(LED-LF) manufacturer, which is located on Tainan Industrial Park in Taiwan. 

The luminous intensity of LED sources is the critical characteristic for one type of LED-LFs, which highly determines 
their conforming level of the LED-LFs. The luminous intensity value is generally rated in terms of millicandela (mcd). All 
light measurements and rating systems until now somewhat depend on the perception of the human eye, or imprecise 
terminology and calibration standards [25]. During the period of inspection, limitations of human's sensitivity, visual 
perception, visual fatigues, and inconsistent detection cause the indispensable subjectivity. That is, the randomness is not 
the only aspect of uncertainty for the fraction of nonconforming data of the LED-LFs. The occurrence of vagueness 
provides another uncertainty that should be taken into account in the problem. 

The LED fabrication process is used in conjunction with the luminous intensity of one type of LED-LFs manufacturing. 

The time interval between samples or subgroups is one hour. The interval-valued data (interval numbers) ijx  for 

1,2, ,24i    and 1,2, ,4j    (twenty-four samples (subgroups), where each sample (subgroup) has size four) have been 

collected when we think the process is in control. These interval-valued data of the luminous intensity values of LED-LFs 

are shown in Table 1. We wish to establish the statistical control of the luminous intensity by using the interval  X  and R  
control charts. 

To find the control limits on the interval R  chart, we use 4D =2.114 and 3D =0 for samples of size n =4 (see 

Montgomery [19]). With the data in Table 1 and executing Eqs. (18)-(24), we have the interval upper control limit Rucl , the 
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interval lower control limit Rlcl  and the interval range of each interval sample data ir  for 1, 2, , 24i    which are 

shown in Fig. 1. The interval values of Rucl , Rlcl  and ir  and the values of the acceptability function ( )i Rr uclA , 

( )iRucl rA , ( )i Rr lclA , and ( )iRlcl rA  for 1, 2, , 24i    are also listed in Table 2, indicating the process 

variability being in control. 

Table 1. The luminous intensity values ( 310 mcd) in the LED fabrication process 

Sample Number i  
LED-LFs 

1 2 3 4 

1 [22.51,24.60] [22.57,23.22] [27.12,28.52] [25.26,27.22] 
2 [27.75,30.29] [25.22,28.03] [27.20,32.11] [26.02,28.24] 
3 [27.14,31.51] [21.53,23.04] [24.79,24.83] [24.22,26.03] 
4 [27.40,28.10] [24.19,24.24] [23.67,25.03] [24.63,25.93] 
5 [25.25,27.22] [28.54,29.93] [22.26,25.49] [22.65,25.15] 
6 [23.22,24.01] [25.14,25.68] [25.67,26.36] [23.06,25.16] 
7 [24.07,24.48] [23.47,29.02] [22.02,25.42] [24.66,28.06] 
8 [25.29,27.95] [26.25,28.12] [22.07,25.95] [24.97,25.25] 
9 [26.58,28.58] [20.62,22.02] [25.11,25.54] [27.33,27.45] 
10 [24.04,24.52] [24.76,27.60] [24.42,26.25] [25.35,26.21] 
11 [23.36,24.55] [23.55,24.31] [25.70,25.77] [22.15,26.46] 
12 [27.43,28.19] [25.19,25.24] [23.67,25.03] [24.63,25.93] 
13 [24.32,27.47] [25.97,26.22] [22.60,24.17] [27.16,27.49] 
14 [22.61,24.70] [22.67,23.32] [27.02,28.42] [25.26,27.22] 
15 [26.30,27.39] [25.63,27.08] [24.67,25.47] [26.74,27.54] 
16 [26.26,29.94] [26.31,26.50] [26.42,29.66] [21.93,24.01] 
17 [23.96,25.17] [28.23,28.35] [26.09,28.92] [24.23,26.15] 
18 [25.59,29.00] [24.92,27.11] [24.27,28.36] [24.32,25.24] 
19 [24.21,28.94] [25.77,26.23] [24.61,24.88] [26.06,28.33] 
20 [26.92,29.02] [23.21,25.19] [23.03,26.45] [26.28,27.29] 
21 [25.24,25.75] [27.07,31.26] [27.11,29.12] [28.05,28.13] 
22 [28.79,31.25] [27.25,28.44] [27.04,27.73] [28.21,28.96] 
23 [23.22,25.19] [25.76,27.10] [24.19,26.00] [25.30,27.96] 
24 [24.11,26.62] [23.00,25.22] [21.27,22.37] [17.26,18.62] 

 

Figure 1. The R  control chart for the LEDs fabrication process. 
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Therefore, we may now construct the X  control chart. To determine the interval control limits for the X  chart, we use 

2d =2.059 for samples of size n =4 (see Montgomery [19]). Based on Eqs. (11)-(16) and (24), the interval upper control 

limit Xucl , the interval lower control limit Xlcl  and the interval average of each interval sample data ix  for 

1, 2, , 24i    are obtained and shown in Fig. 2. The interval values of Xucl , Xlcl  and ix  and the values of the 

acceptability function ( )i Xx uclA , ( )iXucl xA , ( )i Xx lclA , and ( )iXlcl xA  for 1, 2, , 24i    are also 

listed in Table 3. 

Table 2. R control chart 

Sample Number i  
 [11.27,25.09]Rucl   [0,0]Rlcl  

ir  ( )i Rr uclA  ( )iRucl rA  ( )i Rr lclA  ( )iRlcl rA  Process Status 

1 [4.00,6.01]            1.66 -- -- 4.98 In Control 
2 [2.64,4.27] 1.91 -- -- 4.24 In Control 
3 [4.10,9.98] 1.13 -- -- 2.39 In Control 
4 [3.16,4.43] 1.91 -- -- 5.98 In Control 
5 [3.39,7.67] 1.40 -- -- 2.58 In Control 
6 [1.67,3.30] 2.03 -- -- 3.05 In Control 
7 [3.58,6.04] 1.64 -- -- 3.91 In Control 
8 [2.70,6.05] 1.61                   -- -- 2.61 In Control 
9 [5.43,6.83] 1.58 -- -- 8.76 In Control 
10 [1.73,2.17] 2.28 -- -- 8.86 In Control 
11 [1.46,3.62] 1.96 -- -- 2.35 In Control 
12 [2.40,4.52] 1.85 -- -- 3.26 In Control 
13 [3.30,4.89] 1.83 -- -- 5.15 In Control 
14 [3.90,5.81] 1.69 -- -- 5.08 In Control 
15 [1.92,2.87] 2.14 -- -- 5.04 In Control 
16 [5.65,7.73] 1.45 -- -- 6.43 In Control 
17 [3.18,4.39]            1.92                   -- -- 1.92 In Control 
18 [3.12,4.73] 1.85 -- -- 1.85 In Control 
19 [3.45,4.12] 1.99 -- -- 1.99 In Control 
20 [2.10,5.99] 1.60 -- -- 1.60 In Control 
21 [2.89,3.37] 2.18 -- -- 13.04 In Control 
22 [1.23,4.21]     1.84 -- -- 1.83 In Control 
23 [1.91,3.88] 1.94 -- -- 2.94 In Control 
24 [6.60,9.36] 1.23 -- -- 5.78 In Control 

 

Figure 2. The X  control chart for the LEDs fabrication process. 
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Table 3. X  control chart  

Sample 

Number i  

 [27.08,27.56]Xucl   [21.41,23.42]Xlcl  

ix
 

A ( )i Xx ucl  A ( )iXucl x  A ( )i Xx lcl  A ( )iXlcl x  Process Status 

1 [24.37,25.89] 2.18 -- -- 1.53                   In Control 
2 [25.30,26.42]     1.82                    -- -- 2.19 In Control 
3 [24.42,26.35] 1.60 -- -- 1.50             In Control 
4 [24.97,25.83] 2.87 -- -- 2.08 In Control 
5 [24.68,26.95] 1.09 -- -- 1.58 In Control 
6 [24.27,25.30] 3.34 -- -- 1.56 In Control 
7 [23.56,26.75] 1.18 -- -- 1.05 In Control 
8 [24.65,26.82] 1.19 -- -- 1.58 In Control 
9 [24.91,25.90]     2.60                      -- -- 1.99                   In Control 
10 [24.64,26.15] 1.93 -- -- 1.69 In Control 
11 [23.69,25.27] 2.74 -- -- 1.15 In Control 
12 [25.23,26.10] 2.44 -- -- 2.25 In Control 
13 [25.01,26.34] 1.81 -- -- 1.95 In Control 
14 [24.39,25.92] 2.15 -- -- 1.54 In Control 
15 [25.84,26.87] 1.27 -- -- 2.58 In Control 

16 [25.23,27.53] 0.68 -- -- 1.84 
Rather in Control with 

Degree  =0.68 

17 [25.63,27.15] 0.93 -- -- 2.24 
Rather in Control with 

Degree  =0.93 

18 [24.7827.43] 0.78 -- -- 1.58 
Rather in Control with 

Degree  =0.78 

19 [25.16,27.10] 0.98 -- -- 1.88 
Rather in Control with 

Degree  =0.98 

20 [24.86,26.99] 1.07 -- -- 1.69 In Control 

21 [26.87,28.57] -- 0.36 -- 2.85 
Rather out of Control 

with Degree  =0.36 

22 [27.82,29.10] -- 1.30 -- 3.67 Out of Control 
23 [24.62,26.56] 1.42 -- -- 1.60 In Control 

24 [21.41,23.21] 4.38 -- 0.06 -- 
Rather out of Control 

with Degree  =0.06 

For subgroup 16, 17, 18 and 19, the manufacturing process is categorized as rather in control with degree  =0.68, 
=0.93,  =0.78 and  =0.98. For subgroup 21, the manufacturing process is categorized as rather out of control with 

degree  =0.36. In these cases, if the setup cost is small (or tolerable for the decision-maker), intervening the 

manufacturing process is suggested. For subgroup 22, the process is categorized as out of control; that is, special causes 
have occurred in the underlying manufacturing process.  

7 Conclusions 
An interval number can be thought as an extension of the concept of a real number, which signifies the extent of tolerance 
that the quality characteristic can possibly take. For monitoring and controlling the interval-valued data in the 
manufacturing or service processes, a certain degree of uncertainty other than randomness should also be incorporated in 
the analysis in order to avoid potential bias and loss of efficiency. In this paper, an interval-data analysis methodology is 

employed to construct X  and R  control charts whose interval control limits are obtained by using the united extension 
principle inherited from the interval number analysis. Then, for identifying the special causes of variation and alarming the 
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requirement for corrective actions existing in the underlying processes, an acceptability function is employed to compare 
and the set of closed interval numbers. The acceptability function approach provides the ability of making linguistic 
decisions like ``rather in control'' or ``rather out of control''. If the process is classified as ``rather in control'' and the setup 
cost is small or tolerable, intervening the manufacturing process to make the products more reliable is suggested. On the 
other hand, if the process is classified as “rather out of control” and the setup cost is large, it may not be required to 
interrupt the manufacturing process unless expected quality gains of products outweigh the cost. This kind of intermediate 
classifications can supplement the shortcomings of binary classifications of conventional Shewhart control charts when 
interval-valued data inevitably appear in the manufacturing or service processes. 
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