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Abstract  
Independent Component Analysis (ICA) is a method for blind source separation of a multivariate dataset that transforms 
observations to new statistically independent linear forms. Infinite variance of non-Gaussian α-stable distributions makes 
algorithms like ICA non-appropriate for these distributions. In this note, we propose an algorithm which computes mixing 
matrix of ICA, in a parametric subclass of α-stable distributions. 
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1 Introduction 
Independent component analysis is a solution for blind source separation problem. The goal of Independent Component 
Analysis (ICA) is to find a linear transformation of multivariate data such as random vectors such that its components 
becomes statistically independent. Independent components also are called sources and input vectors are known as 
observations. 

If we have a vector of observation ( )1,...,
T

MX X=X  and a source vector ( )1,...,
T

NY Y=Y  the ICA model follows as:

A=X Y , where M NA ´  is a mixing matrix. The de-mixing process needs to invertA . In most of the literature, it’s 

supposed the number of mixtures and sources are equal so the ICA can be solved by: 

ˆˆW WA AA= = =Y X Y Y  

W is usually an estimation of 1A-  to make the components as independent as possible. Readers are referred to [1-4] and 

their references for more details on ICA.  
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Considering stable random vectors as an input for ICA requires a new assumption rather than Central Limit Theorem that 
says the standardized sum of Independent and Identically Distributed (IID) random variables converge to a random 
variable with Gaussian distribution, but Generalized Central Limit Theorem informally states that a normalized sum of a 
sequence of IID random variables with infinitive variance converges to a non-Gaussian stable random variable [5]. 

In this work, we consider non-Gaussian stable sources and propose a parametric ICA as an especial case of Kidmose’s 
suggestion described in [6, 7]. Sahmodi et al. [8] introduced a BSS method for the symmetric class of stable distributions. 
Extension of [8] to the case of random matrix A is given in [9] by a semi-parametric approach. 

In section 2 we are introducing stable distributions and an ICA algorithm is proposed in section 3. Simulation results and 
comparisons are given in section 4. The paper is concluded in section 5. 

2 Stable distributions 
A random variable X  is said to be a stable (a -stable) random variable if its characteristic function, ( )X tF  has the 

following form: 
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where sign( ) 1, 0,1u = - if u <= , or 0>  , respectively. Univariate stable distributions are parameterized by four 

parameters, 0 2a< < , index of stability, 0g ³ , scale, 1 1b- £ £ , skewness, and m , location. Since stable 

distributions characterized by these four parameters, it's denoted by ( ), , ,S a b g m  and we will write ( ), , ,X S a b g m  to 

say that a random variable X  has ana -stable distribution. 

A random vector 1( ,..., )TMX X=X  is said to be stable if there are parameters ( )1,...,
T M

Mm m= Î m , and a finite 

measure G , called the spectral measure, on the unit sphere ( ){ }1,..., 1
T T

M MS s s= = =s s s  such that: 
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where ( )1,...,
T

Mt t=t .  

Multivariate stable distributions are semi-parametric and can be identified uniquely by the pair of ( ),Gm . A parametric 

subclass of stable distributions is stable random vectors with discrete spectral measure. A discrete spectral measure of a 

M -dimensional stable random vectorX , with N  pair of directions { }, , 1,...,n n n N- =s s , can be considered as 

follows:  

( ) { } ( ) { } ( )( )1 1

2 2
1

. . .n n

n n

N

n n
n

b ba ag d g d+ -
-

=

G = +åX s s
    (3) 
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where ( ) ( )( ) ( ) ( )( )n n n n nb = G -G - G +G -s s s s , ( )1 2n n
ab g ’s are the weights, and { }nd s ’s are point masses (Dirac 

measures of mass 1) at the points n MSÎs . The characteristic function (2) with the spectral measure (3) reduces to: 
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A M -dimensional stable random vector X  has independent component if and only if its spectral measure is discrete and 

concentrated on the intersection of the axes with the unit sphere MS . For more information on stable distributions, the 

reader can refer to [10]. 

3 Parametric ICA algorithm for stable distributions 
Using the next theorem, that will be proved in the Appendix, we propose a blind source separation method for de-mixing 
the observation to independent components. The converse of this theorem is also true [6, 10]. 

Theorem: Let ( )1,...,
T

MX X=X  be a stable random vector with discrete spectral measure (3), location parameter 

MÎ m and ( ), ,1, 0n nY S a b , 1,...,n N=  be independent random variables. Then X  can be decomposed into

A= +X Y b , where 1( ,..., )TNY Y=Y  and b  defined in (5). M NA ´ is the mixing matrix with .n n ng=a s , 

1,...,n N=  as its columns, 

{ }
2

1 1 1( )  and ( ln( ),..., ln( )) .TN NA
p

d a b g b g= + =b c cm    (5) 

So in the case where the number of sources N M=  the de-mixing matrix yields by invertingA , to get an exact solution 
for ICA. In the other word, if the dimension of an observation vector is equal to the number of directions of the spectral 
measure then we can use the following parametric ICA Algorithm to recover independent components. 

Algorithm 1: 

Input: A random sample of M dimensional stable vector 1: ,..., LX X X . 

Output: A random sample of N dimensional stable vector with independent components   
1: ,..., LY Y Y . 

1) Estimate spectral measure of X  and its location parameter by the random samples 1,..., LX X . 

2) Construct the matrix M NA ´  using N  larger estimated directions of the spectral measure with maximum 

weights. 

3) Calculate b  in (5) and then calculate  

  1
( ), 1,..., .l lA l L

-
= - =Y X b                                    (6) 
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The theorem and the proposed algorithm in this section, actually is a precise description and complement of the Kidmose’s 
works [6, 7]. Although it may not be straightforward to have a precise theoretical solution in over-complete and 
under-complete case but we can do this in a way that compute independent components by choosing an arbitrary number 
of spectral measure point masses. 

The under-complete M N> , mixing matrix A  is produced by degenerate vector X . The spectral measure of a 

degenerate M dimensional stable distribution concentrates on NS  instead of MS
[10].  In this situation, we first could find 

the degenerate components of X , and then eliminate M-N degenerate components. Finally, independent sources can be 
recover through Algorithm I.  

In the over-complete case, M N< , we can compute several inverses, one possible choice is to use generalized inverse, 

Moore–Penrose pseudoinverse [11]. The algorithm would be the same as above but because we do not know the number of 
source components we can select N (the number of point masses of the spectral measure) based on a threshold level on the 
mass of the spectral measures. Then we choose a larger N point masses of the spectral measure. If the number of larger 
point masses is greater than M, it is necessary to use pseudoinverse in Algorithm 1.  

4 Simulation results  
In this section, we compare the precision of the proposed algorithm through three simulation studies. In the first one, the 
blind source separation results of the proposed algorithm are compared with some well-known ICA algorithms. To do the 
simulation we start with making independent components by generating independent α-stable random variables. A 
bivariate source vector with two independent components has the following parameters in two cases 1) symmetric, 

0,b =  and 2) asymmetric, 1b = . That is, the source vector Y has components ( ), ,1, 0nY S a b , 1,2n = . We also 

consider α varying in the range of 1 1.9a£ £ , for each case. With these parameters then we generate 10000 samples of 

our desired vector. Having Y as sources in BSS problem, we mixed them in following manner ,A=X Y where 

2 2 2 2

2 2 2 2
A

é ù-ê ú= ê ú
ê úë û

. X  is the mixed source we used as input for the algorithm. The mixing matrix ܣ could be any nonzero 

matrix. We choose this A because it does not scale the data; however it is possible to do a simulation for non-normalized 

mixing matrix. We show the estimated source vectors (of BSS problem) by  
1,..., LY Y . For generating stable random 

vectors and estimating the spectral measure of random vectors the methods in [12, 13] are used, respectively. The algorithms 
that are compared, are FastICA [14], minimizing mutual information [15], ComonICA [3], JADE [16], Temporal Predictability 
ICA [17] and Infomax [18]. We compute two sample errors for each simulation. The first one is the sum of absolute value of 
the distance between the original source and the estimated one and the other is the first one raised by the power of (α – 0.1). 
These criteria are convergent for stable distributions with an index of stability greater than 1 and (α – 0.1), respectively. 
Two criteria for computing errors we used formulates as follows: 
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For each set of parameters (symmetric and asymmetric with ten different α ranged in	1 ൏ α	 ൏ 1.9 ) we simulate 
experiment 10000 times. Then we compute the errors which are defined (N=2) and the average value of errors. Figure 1 – 
Figure 4 are comparisons between our algorithm and the other methods. Figure 1 and Figure 2 illustrates the average value 

of errors in the symmetric case β = 0 and ten different α value (1 ൏ α	 ൏ 1.9) for EAbs and Eα-0.1, respectively. Fig. 3 and 
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Figure 4 shows the same comparison for asymmetric case, β = 1, for EAbs and Eα-0.1, respectively. The results of our 
proposed algorithm are called myStable in the figures which have the smallest value of errors compared with other 
methods. 

Figure 1. Symmetric case (β = 0 and 
1<α<1.9): Showing the average value of 
EAbs error-computed in 10000 simula- 
tions. It compares performance of 
different algorithms, our algorithm 
labeled as mystable 

 

Figure 2. Symmetric case (β = 0 and 
1<α<1.9): Showing the average value of 
Eα-0.1error computed in 10000 simula- 
tions. It compares performance of 
different algorithms, our algorithm 
labeled as mystable 

Figure 3. Asymmetric case (β =1and 
1<α<1.9): Showing the average value of 
EAbs error computed in 10000 simula- 
tions. compares performance of 
different algorithms, our algorithm 
labeled as mystable 



www.sciedu.ca/air                                                                                                         Artificial Intelligence Research, 2013, Vol. 2, No. 3 

                                        ISSN 1927-6974   E-ISSN 1927-6982 32

Figure 4. Asymmetric case (β = 1and 
1<α<1.9): Showing the average value of 
Eα-0.1 error computed in 10000 simula- 
tions. It compares performance of 
different algorithms, our algorithm 
labeled as mystable 

The second simulation experiment dedicates to the ICA problem of speech observation in chapter 6 of [15], called 
‘speech_1’ and ‘speech_2’; see the first row of Fig. 5. The observations are added to two independent simulated stable 

distributions with parameters ( )1.5,0,1,0S . Then, they mixed by the matrix A which is defined above. These signals are 

plotted in rows 2 and 3 of Fig. 5, respectively. ICA results using the proposed method (myStable) and FastICA are plotted 
in the two last rows of Fig. 5. The absolute errors are 1.3397 and 0.0569, respectively. 

 

Figure 5. First row speech signals, Second row speech signals added to two independent simulated stables, third row 
mixed signals, fourth row FastICA recovered signals, last row myStable recovered signals 

The third simulation study refers to over-complete case where the dimension of observations is smaller than the dimension 
of sources. In this situation, we consider three sources with two dimensional observations with the mixing matrix 
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2 2 0 1
  .
1 02 2
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 The average and standard deviation (sd) of AbsE for 10000 iterations are computed for three 

different indices of stability and it shows in Table 1 for symmetric and asymmetric cases. Since, the well known mentioned 
ICA methods are not appropriate in this situation, we only consider the proposed method. In comparison with the case of 
M=N it has almost two times error, although these errors are reduced when the index of stability increase.  

Table 1. The average and sd of  AbsE  for three different values of a  in the symmetric and asymmetric case. 

β 
1.1a =   1.5a =   1.9a =  

average sd  average sd  average sd 

0b =  12.505 1.494 4.421 0.588 2.857 0.498 

1b =  11.684 2.126 2.959 0.376 2.303 0.269 

5 Conclusions 
A parametric ICA for stable observations was proposed. An advantage of the proposed method is its precision and its 
disadvantage is a limitation on the number of point masses of the spectral measure of stable observed data, (i.e., M=N in 
(3)).This limitation can be relaxed [9] which is a modified semi-parametric principal component analysis of stable 
distributions to distinguish more important components. We proposed an alternative parametric approach to distinguish 
important components for stable distributions based on spectral measure.  
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