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ABSTRACT

Relief occupies a niche among feature selection methods for data classification. Filters are faster, wrappers are much slower.
Relief is feature-set-aware, same as wrappers. However, it is thought being able to deselect only irrelevant, but not redundant
features, same as filters. Iterative Reliefs seek to increase the separation margin between classes in the anisotropic space defined
by weighted features. Reliefs for continuous domains are much less developed than for categorical domains. The paper discusses
a number of adaptations for continuous spaces with Euclidean or Manhattan metric. The ability of Relief to detect redundant
features is demonstrated. A dramatic reduction of the feature-set is achieved in a health diagnostics problem.
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1. INTRODUCTION

Filter methods of feature selection assess strength of indi-
vidual features of the data in predicting the data class.[1–3]

As only designated, single-feature sets are evaluated each
time, the filter methods are fast, making it possible to quickly
exclude any irrelevant features. These features would score
very poorly. Although this does not guarantee that the fea-
tures are irrelevant, filtering them out may be a necessary pre-
processing step when it is anticipated that irrelevant features
can be many, as in the genome-wide association studies.[3–6]

Information gain (IG) from a feature is a popular measure
of feature association with data class, a special feature.[1, 7, 8]

Wrapper methods of feature selection assess predictive power
of different feature-sets (the subsets of data attributes) with
regard to the data class.[1–3] These schemes have a classifica-
tion method at the core, upon results of which they decide
the fitness of a particular feature-set. Engaging a classifi-
cation method, besides involving many features, is not as

simple as the straight application of a class association mea-
sure in the filter approach, and therefore wrappers are much
slower than filters. Also, because feature combinations are
prolific, encompassing them all is impractical. Some con-
cessions are usually made. Particularly, the technique of
recursive elimination, starting from the full set of features,
can be adopted.[1] One feature is removed at a time based
on how adversely it affects the current set fitness. Likewise,
one feature a time can be added to an existing feature-set
in the snowball rolling fashion, based on how fitness of the
resulting set is improved[1] if there exists a sufficiently strong
initial set to be reliably evaluated by the classifier at the wrap-
per core. Wrappers are methods of choice if the aim is to
succinctly describe the concept of data. This is because they
remove not only irrelevant features but also redundant ones.
Same as with irrelevant features, though, the redundancy
of discarded features cannot be guaranteed. This cannot be
achieved even theoretically as this would mean the concept
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of data is fully known, and so there is no need to learn it. In
many cases, the problem of classification can be reduced to
the problem of placement of a hyperplane best-separating a
pair of data classes in a space swept by numerical features.
Working out this hyperplane would involve weighting of
features the space is sprung on. This illustrates existence
of another class of feature selection methods known as the
embedded.[2, 3] Generally, the feature-set extracted from a
classification method which does its own selection would be
the best in a certain sense. Some, but not all classification
methods with the embedded feature selection are sensitive to
presence of features that would appear mutually redundant,
which does not lead to a solution unless a pre-selection is
performed or some regularisation applied.[2, 9] A good exam-
ple of embedded feature selection / classification method is
the Decision Tree[2, 3] although it does not readily weight the
features it is eventually spanning. In the standard setting, the
decision tree is tolerant to redundancies and reasonably fast
to expand.[10] Despite being an embedded method, it actually
incorporates the IG filter, although in a non-linear manner.
So much so, in the Random Forests framework[2, 3, 6, 11] the
classifier merely plays part of the wrapper engine. Despite
the search is random, the decision tree use allows for re-
duction of the search space. This demonstrates different
architectures of the feature selection methods and that the
modes of processing can be highly intertwined in the quest
for higher efficiency.

Feature weighting is a representation aspect of feature se-
lection methods. Usually, higher absolute weights attached
to features signify their higher importance, that is, higher
informativeness from the view-point of concept learnabil-
ity. Also, setting some weights to zero effectively excludes
corresponding features from the feature-set. The current
discourse is particularly interested in the feature weighting
within the framework of lazy learners, specifically the Near-
est Neighbour classifiers.[12] Although any aspect of data
can be binarised, these algorithms are usually applied to data
with continuous features as opposed to nominal or discrete.
In the space defined by freely changing, numerically repre-
sented features, a neighbour to a data-point of choice, that
is, instance of data, is another point whose feature values
are close to those of the selected instance. The class of the
selected point should be similar to that of its neighbour. Of
course, the neighbours can be closer to, or further afield from
the query instance. Therefore, only the nearest neighbours
are drawn to establish the class of the instance concerned.
This earned the name k-NN for described methods, where k
refers to the size of locally drawn sample. Although k-NN
is really a framework, since any classifier can be applied
in conjunction with it once the sample is drawn[13] simply

counting instances in the sample by class and / or calculating
their distances to the instance in focus appeals for its sim-
plicity and can be improved via feature weighting. Usually,
the largest class in the sample is assigned to the instance in
question, unless there is a tie and then the class altogether
least removed from this instance is selected. Higher weights
make distances in corresponding directions longer to make
value changes count more, as they indeed should for more
informative features.

While Relief is a feature weighting method, it actually inter-
prets k-NN to achieve its goals.[4, 5, 14–17] In Relief, equally
sized samples of nearest neighbours are obtained for each
class in the two-class setting, and distances are calculated
feature-wise to the instance currently in focus whose class
is known. The weights are assigned in accordance with the
margin each feature is able to exert in separating own class
from the opposing class.[18, 19] All instances of the data-set
are encompassed or a data-wide random selection of test
instances is made.[4, 15, 20, 21] Relief is a method of choice in
the genome-wide association studies which typically han-
dle the “wide data”, where features are encountered in their
tens of thousands, but instances hardly score even one thou-
sand[3] due to high acquisition costs. At the same time, only
a small cohort of features (genes) is actually responsible for
a particular phenotype being studied. It is inconceivable to
make use of any of the wrapper methods. It is efficient to
run filters to purge a host of irrelevant features. However,
the straight answers, if not all in the past, can come only
by chance to a lucky few, as the association of many genes
rather than a single gene is often responsible for the pheno-
type in question[3, 6] because many genes have the pleiotropic
effects. Moreover, a change in a single nucleotide within a
gene can be a reason for suppression of other genes, the epis-
tasis. Hence, the actual features in these studies are the single
nucleotide polymorphisms (SNP) in the sense of DNA base
variation between individuals in a given position of DNA due
to the evolutionary factors. Relief occupies a niche between
filters and wrappers. It weights features in the context of a
given feature-set. So, it will allow to eliminate the irrelevant
features. At the same time, it is regarded being insensitive to
redundant features[4, 15, 22] as indeed its progenitor, the k-NN
classifier is. This may be a desirable outcome, though, by
offering the panoramic view, as opposing to a single-angle
view rendered by a wrapper. Relief is affordable in the wide-
data setting, as only the calculation of distances between
instances is computationally intensive and there are not too
many.

Since applications in genomics and proteomics promise sig-
nificant breakthroughs in the disease treatment or prevention
but often have to deal with all-categorical attributes, devel-
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opment of Relief went largely in this area.[4] However, the
calculation of distances between instances is almost invari-
ably based on the Hamming loss formula, also known as the
overlap metric. For a pair of instances, if given a feature
the values are different, the partial distance is 1, otherwise
0. The partial results are then summed across the feature-set
to obtain the distance. In the genome-wide association con-
text, the feature-wise difference is 0 if the genotypes of two
subjects at a SNP are identical, and it is 1 if their genotypes
are not identical. The distance between the subjects is then
the sum of the differences across all SNPs. More-flexible
metrics have been proposed.[6] Despite the simplicity of the
Hamming loss, it allows to elegantly circumvent the problem
posed by missing values since the difference in a given posi-
tion of the feature-set is limited. Setting the difference to 1,
the maximum, whenever any value in the pair is missing will
increase the overall distance and automatically remove in-
stances with many unknowns from the k-NN neighbourhood
of a given instance.[8] Albeit, the calculation can be more to
the point, having engaged in a guessing game based on value
probabilities.[5, 17]

Where data types are mixed, the continuous attributes can
be discretised to force all features into the categorical
type.[8, 20, 23] The same applies to the classification problems
with all-continuous features (explanatory variables) and the
regression problems, where additionally the class attribute
(response variable) is also continuous.[5] However, the con-
version is lossy. Attempts were made to reformulate Relief
for all-continuous features, including the class.[17] There are
pros and cons of having a problem approached directly in the
all-continuous domains. For example, flexibility of the dis-
tance function is not an issue as may appear otherwise.[6] At
the same time, even if the missing value probabilities could
be estimated, a suggested transition from the data space into
the space of probabilities is not obvious.[17] Above all, while
two unrelated features are incomparable regardless of their
type, the value absolute differences for categorical attributes
are, but are not for continuous attributes.[24] Rather than sum-
ming up the class distance differences to obtain individual
feature scores, it was proposed to sum 1-s and 0-s where
the differences are positive or negative, respectively, that
is, the feature individually classifies or misclassifies the test
instance (or vice-versa).[7] However, there may be a loss of
sensitivity (in broad terms).

Whether domains are categorical or continuous, there is a
problem of setting the threshold below which scores are so
low that the concerned features should be discarded. With-
holding weak features reduces complexity of the problem,
which may be worthwhile despite the features can still be
relevant. The solver overall performance, as a trade-off be-

tween its computational speed and the admissible error, may
increase. Because the scores can be negative, it was pro-
posed that the concerned features are surely irrelevant.[15, 17]

However, this does not exclude that there may exist subsets
of data where the feature-wise class distance differences are
positive. A truly irrelevant feature would yield the score of
zero due to value distances being equiprobable by class or
between data classes[14] but the opposite is not necessarily
true; and then the balance can be shifted one way or the other
by chance, since not all of the data is known. Adjacent to
the former is the problem of setting the k parameter, as in
k-NN, the size of the sample extracted locally for each of
data classes[25] since this can affect the calculation of feature
scores. Generally, the value of k has to be small, comparing
to the amount of data, for the method to be regarded local,
that is, taking into account value-combination-specific in-
teractions between features. Although, strictly, a method is
local if feature weights vary across the instance space. In-
creasing k may avert the destabilising influence of possible
noise.[17] If k is infinitely increased, though, Relief becomes
a global method, with a measure similar to IG, so the method
degrades into a filter.[16, 17] However, even with a small k, the
impact of instances far away from the perceived boundaries
separating classes is much higher than of instances close to
the boundaries, because of the incomparable distances. This
seems having not received so far a due attention.

The original Relief was formulated for the two-class prob-
lems[14, 15] and indeed the majority of diagnostic problems
come in this setting. Usually, there are normal subjects,
or controls, and subjects affected by a specified abnormal
condition. This may have various applications, not only in
bioinformatics. In genomics, the population of “wild type” is
compared to individuals exhibiting a peculiar phenotype. In
the multiclass setting, the problem can be decomposed into
two-class subproblems, adopting either the “one against all
(others)” or the “pair-wise” classification approach. In the
first approach, the class incorporating the rest is sprawling
and surrounding the class standing alone, so the decision
boundary is complex. In the second approach, the pair-wise
decision boundaries are simpler, but the number of problems
is quadratic in the number of classes, comparing to the first
approach where it is linear.[26] Despite the number of sub-
problems to solve, the pair-wise approach captures all major
twists of the concept and this may be more desirable than
handling multiple classes simultaneously. At the same time,
perceiving a multiclass problem as a whole, one should be
interested in the feature selection applicable to this case. A
straight-forward generalisation of Relief, taking the “one
against all” view, is to regard all classes different from the
test instance own class as the other class.[16] Whether this
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or the pair-wise paradigm is embraced, it is assumed that all
classes are equally important. If this requirement is relaxed
then, for example, bigger classes can be consulted more.[5, 17]

Be it in two-class or multiclass setting, though, there is a
problem of data balancing as the class size may hugely vary,
in other words, classes may have much different prior prob-
abilities.[8] In diagnostic problems, unless by design the
two classes are equally represented, the controls are usually
much more available than the abnormal cases, which spells
negative consequences for the results, even though the larger
sample is, the better. At least the criterion should be chosen
so that any effect of class imbalance is minimised. In Relief
this aspect seems to escape scrutiny.

Feature scores calculated by Relief are not the weights in the
sense of multipliers in the distance function. Particularly, the
scores can be negative. As mentioned, the negative scores
are zero-outed. It is possible to normalise the positive scores
with their sum and use them as weights.[18, 19] Since this leads
to improved classification results, the question arises whether
it is feasible to recalculate the scores using the weighted dis-
tance function in Relief and advance the results even further.
Encouraging results were reported by maximising the overall
margin, that is, the mean distance difference between the
opposite and own class of an instance.[18, 19]

2. NOTATION
Let A represent a data-set consisting of M instances on N

real-valued attributes, subdivided into C classes, so that (1)
holds, where c = 1 · · ·C is the class index. Let am be an in-
stance of the data in general, the element of A, m = 1 · · ·M .

(1)

The quadratic weighted Euclidean distance between two arbi-
trary points m1 and m2 (m = 1 · · ·M ) in the instance space
is defined by the expression (2) where the point indices ‘1’
and ‘2’ is the shorthand for the mentioned, and n = 1 · · ·N
is the attribute index. Without limiting the generality, feature
values and so their differences in Eq.2 in position n of the
feature-set are normalised by the applicable feature standard
deviation sn.

(2)

Likewise, the weighted Manhattan distance is defined by the
expression (3). While inessential, sn can be replaced with the
absolute mean deviation in this expression for consistency.
The Euclidean and Manhattan distances / space metrics are
commonly referred to as L2 and L1 norms, respectively, after

the summand exponent in linear expressions for d2
E and dM

given by Eqs.2&3.

(3)

The feature weights wn in Eqs.2&3 are positive, real-valued
numbers, subject to the constraint (4), or zero. In Eq.4 Ln is
the natural logarithm.

(4)

The choice of the Eq.4 constraint is prompted by the notion
of k-neighbourhood. In the Euclidean space this neighbour-
hood is circular in two dimensions if the features are un-
weighted (have equal weights of 1). If the weights change,
the neighbourhood is transformed into elliptical one where
the dimension with a larger weight is contracted and with
a smaller weight is expanded as the weight inverse. If the
sample is small and data is dense, which tends to be more
so with more data, the k-neighbourhood in the transformed
space will occupy approximately the same area as in the orig-
inal space. The area is proportional to the product of feature
weights. The same holds for the volume in three dimensions
and can be proved to hold for any number of dimensions.
In the weighted Manhattan space, the k-neighbourhood is
diamond-shaped in two dimensions, square if unweighted.
Nonetheless, the same considerations apply.

3. ALGORITHM

Initialise all feature weights with 1. Set scores of all features
to zero. For each instance am find k closets neighbours from
each class of the data. Let c1 point to the class of the current
instance and c2 point to a different class. For each pair of
classes indexed c1 and c2 find the mean radii r1m and r2m

of respective neighbourhoods. Let rm = max(r1m, r2m)
denote the maximum of the two for a pair. Add the quantity
(5) in respect of individual features n to their scores.

(5)

In Eq.5, the expression under the sum has to be positive to
be counted; the overbars denote averaging of ‘projections’ p

across respective class neighbourhoods, where ‘1’ is short
for c1 the class index of am, and c is the same as c2. Each
projection contributing to the averages in Eq.5 is a difference
of the form pm,n = |av,n − am,n| where av is an instance
from a respective class-dependent k-neighbourhood in the
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vicinity of am. Find the feature with the largest score. Set
weights to zero for features whose scores are less than the
highest score by a set factor. Calculate weights of all other
features by redistributing evenly any discrepancy in the con-
straint given by Eq.4, having substituted weights there with
the scores. Reiterate a number of times with so obtained
initial weights.

Note that in practice more instances than k have to be in-
cluded in the k-neighbourhood of a specified instance due to
the limited precision feature values can be generally obtained
with. Particularly, there may be repeating instances. There-
fore, after exactly k closest instances are drawn, instances
that have the same radius as the farthest instance, but not in
the sample, have to be added to the neighbourhood for the
statistical evaluation to be fair.

The original Relief[14–17] calculates only the scores which
can be used as weights if the negative scores are zero-outed.
It does not recalculate the scores. The original Relief score
update element, equivalent to Eq.5, is given by the expression
(6) using the notation in this article.

(6)

Instead of sn the maximum-less-minimum for the variable
can be used to force all scores into the [-1,1] range. Un-
like in Eq.5, no summation is performed in Eq.6 because
no provision is made for more than two classes. The mul-
tiplier in front of the sum in Eq.5 is a normalisation under
the pair-wise classification approach[26] but is not essential.
Assuming the two-class setting for the moment, and apart
from recalculating the scores and setting weights for the fea-
tures, the major differences between the proposed method
and its archetype are as follows. Firstly, instead of the full
margin in Eq.6 for a variable, only the margin gain is ac-
counted for in Eq.5. Any margin loss is not contributing. Put
differently, the margin gain is then zero. It can be argued
that the more the gain is, the less the loss. Secondly, no
locality normalisation, as given by rm in Eq.5, is applied in
Eq.6. This may necessitate setting k too high (of the same
order as M ).[5, 6] Thirdly, the normalisation with regard to
the number of instances in Eq.5 is done only in respect of the
own class of the test instance, so M in Eq.6 is replaced with
M1 in Eq.5. This is a class balancing element, analogous to
reporting sensitivity in respect of the diagnostic condition
class and specificity in respect that of controls, instead of
the overall success rate (accuracy) regardless of class, when
classifying the data.

A depiction of the above algorithm is given in Figure 1. It fea-

tures three nested loops: for each iteration, for each instance,
and ultimately for each feature. Calculations are performed
at the beginning, in the middle, or after completion of a loop.
Major stop-over points are as shown. This includes setting
or revaluation of feature weights at the beginning of each
iteration, then feature score initialisation before launching
a pass over instances. For each instance class neighbour-
hoods are then evaluated. The next step is to update feature
scores one-by-one. This design would be typical for iterative
Reliefs. The input parameters thus include the number of
iterations I , of instances M , and of features N . Of course,
the input has also to include the data-set itself where M and
N are derived from. To compute the class neighbourhoods,
the sample size k is required. Additionally, a small number ε

in the sensitivity level capacity is required to nullify weights
for very small scores, relative to the highest score.

Figure 1. Schematic of iterative Relief cycle

An analogue of the feature score for a feature-set can be ob-
tained by substituting the weighted, normalised projections
in Eq.5 with distances. The quantity (7) is the counterpart of
Eq.5 in this generalisation, using the notation previously in-
troduced for radii. The total of Eq.7 results over all instances
is referred to in this text as the overall, normalised margin
gain. This entity concerns the verification agenda and is not
directly related to the algorithm. By contrast, the quantity in
Eq.5 is the partial, normalised margin gain feature-wise.

(7)

When reviewing or benchmarking different algorithms, it is
convenient to refer to them by name.[4, 5] Main descriptors
of the proposed algorithm are that it is iterative, the margin
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gain, instead of the whole margin, orientated; it also features
a weight constraint interpreted for higher dimensions. There-
fore, the algorithm can be named appropriately the ‘Imagine’
Relief, applying the existing informal convention.

4. EVALUATION

Data for around 4,100 participants on 200 attributes was
extracted from the US National Health and Nutrition Exami-
nation Survey (NHANES) for 2013-14.[27] About half of the
features behind the attributes are continuous and the rest are
categorical, although mostly binary features. A small num-
ber of features are calculated using the core data consisting
of demographics, clinical history, anthropometrics, examina-
tions, blood and urine tests, cognitive ability. Statuses were
set for the type 2 diabetes mellitus (DM), cardiovascular dis-
ease (CVD) and hypertension (HT). The statuses are binary
(‘yes’ or ‘no’) attributes. The three chronic conditions have
vast consequences for health. About 10%-15% of values
are missing in the data. These were substituted as previ-
ously reported.[28, 29] In this evaluation DM exemplifies the
class attribute. The prevalence of DM is 18% in the featured
population.

Figure 2. Feature-set relative to initial size at the beginning
of algorithmic cycle for L2 and L1 norms

5. RESULTS
The algorithm was run for continuous features only, although
excluding a range of known strong and even ‘perfect’ pre-
dictors of DM (all glucose, insulin and tell-tale symptoms
related features)[28] to let weaker feature weights evolve.
Weights were zero-outed if the scores became 100 times less
than the maximum. The sample size k was set to five in-
stances. The results are similar for either distance measure.
Over 50 cycles, a feature-set reduction by about 4/5 was
achieved (see Figure 2), arriving at the same set regardless
of the space metric used. It was observed that the (overall,
normalised) margin gain increased, initially fast, and then
asymptotically reaching a level about 4.5 times higher than
the initial (see Figure 3) be the space metric Euclidean or
Manhattan. The feature-set size reduction, although initially
slow, exhibited a similar pattern to the margin gain increase
(see Figures 2&3).

Figure 3. Margin gain at the end of algorithmic cycle for L2
and L1 norms

More features were removed at early stages, and faster for
the Manhattan than Euclidean metric, than at later stages,
with the feature-set eventually reaching its optimum by size.
Table 1 shows the 15 selected features out of the initial 82.
Throughout the selection process, weights change slightly
if the feature-set does not contract. Some weights increase,
while some decrease continuously, eventually becoming very
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small. After some feature weights become less than the
threshold and nullified, a dramatic change is observed. The
major cause of this transformation is the balancing of big
weights with small ones in Eq.4. However, despite how this
may appear, the feature-set is altogether a different one, and
there is a redistribution of weight between features, although
consistent with how close the weights were previously. L1-
norm weights have a wider range than the L2 counterparts,
but if features are arranged by L2 weight as in Table 1, only
few minor distortions of order occur in the L1 section, as
shown in bold.

A dramatic and fast increase of classification accuracy, com-
paring to the unweighted feature-set, was observed (see Fig-
ure 4). A higher gain was achieved in the Manhattan than
Euclidean space. k-NN with a matching distance function to
the feature weighting method and k set to five was used for
this testing, paired with the leave-one-out validation resam-
pling. However, the accuracy does not change long into the
process. The classifier was explained in the introduction. It
is applied to the interim results of feature weighting. Zero
weight features are effectively switched off. The very slight
fall of accuracy past the growth stage can be explained by
the gross reduction of the feature-set and a longer time for
the weights to adjust in the aftermath.

Figure 4. Classification accuracy by k-NN at the beginning
of a specified cycle for L2 and L1 norms

With very little exception, all features in the initial set are
thought to be relevant, and no irrelevant features were added
on the purpose. Besides, any universally irrelevant features
would have been deselected after a single pass. Irrelevant fea-
tures can confuse a classifier.[13] Conversely, noise can render
features irrelevant. Therefore, removal of irrelevant features
is expected to lead to more accurate predictions. This is in-
deed what occurs. Removal of any weakly relevant features
should already have negative consequences for the accuracy
of classification. Instead, after the weight redistribution, a
surplus effect is observed. Even though it gets eventually
exhausted, no reversal occurs, while features continue to be
removed. It is evident that different equipotent solutions to
the problem exist, but the weakest features are not irrelevant
ones. In perpetuity, one should expect that all persistent re-
dundant features but their steadfast representatives also get
deselected.

Table 1. Feature-set in diminishing L2 weight order at the
beginning of 50th cycle for L2 and L1 norms

 

 

Feature L2 weight L1 weight 

Selenium 2.94 5.10 
Copper 2.83 3.98 
Zinc 2.48 3.39 
Cardiovascular risk by BMI 2.23 3.30 
Low density lipoprotein cholesterol 2.06 2.71 
Atherogenic index of plasma 1.96 2.25 
Digit symbol substitution 1.85 2.21 
Word recall 1.70 1.73 
ApoB lipoprotein 1.40 1.16 
Cognitive animal fluency 1.29 1.28 
Sagittal abdomen 1.23 1.13 
Word intrusion in recall 0.48 0.16 
Waist to height ratio 0.22 0.13 
Triglyceride 0.09 0.07 
Osmolality 0.08 0.08 

 

6. DISCUSSION
From the domain knowledge[28, 29] the final feature-set in Ta-
ble 1 contains features regarded to be fair predictors of DM.
At the same time, some of their ‘duplicates’ were removed.
For example, there are two versions of the cardiovascular
risk but only the stronger one was selected. This version is
based on the body mass index (BMI) and prevails because
the other one is not corrected for use of medication affect-
ing the cholesterol components replacing BMI in the risk
formula.[29] The risk variables are anticipated to top the list-
ing, though, as there is a correction in place for DM. This
inconsistency, despite being slight, compromises either ver-
sion of the risk as a DM predictor variable, but using them
in the probe capacity is appropriate here. Also, BMI is a
part of the standard protocol for identifying persons predis-
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posed to DM.[28] The waist circumference to height ratio
(WCHR) is regarded to be a better measure in the same line
as BMI.[28, 30] Indeed, WCHR appears in Table 1 and BMI
does not. Nevertheless, WCHR is outweighed by the sagittal
abdominal diameter, also in Table 1. The diameter is an
emergent measure similar to waist circumference.[30] Neither
waist circumference nor weight to height ratio, a simplified
version of BMI[30] appear in Table 1. So, of the five BMI-like
measures only two were retained. Two of the four cognitive
function features in Table 1, all preserved so far, come from
the same test, but one is auxiliary to the other (word recall
/ intrusion). In a longer run, features at the bottom of the
list get also removed. Evidently, the proposed algorithm has
the ability to deselect weaker redundant features in the same
line, but it may take indefinitely, if not infinitely, long to have
the feature-set reduced to a desired size. Obviously, the end
result is also dependent on the initial feature-set.

Relief interprets k-NN, but its fortunes arise from the use of
distances rather than the ability to predict classes.[14, 15] Com-
paring Figures 3 and 4, the highest accuracy of classification
is reached just after a handful of iterations. Yet, the capacity
to improve on the margin lingers, allowing for the feature
selection to continue. With a sufficiently weak set of features,
the ability to classify by k-NN should shut completely, yet
with Relief it may be still possible to differentiate between
features. To a large extent, this applies to the chosen exam-
ple where the “gold standard” features were intentionally
withheld beforehand. This explains the niche status of Relief
which, taking away the distance paradox, would have to be
placed into the wrapper category.

The original Relief selects the features whose scores are pos-
itive, not smaller than a threshold, and the rest is discarded.
The features can be weighted according to the scores with
weights of discarded ones set to zero. This weighting is sup-
posed to improve the accuracy of k-NN. It seems only natural
that, in the weighted distance function context, it is sufficient
to reiterate with the weights so obtained[31, 32] to achieve even
a better result, especially after normalising them in accor-
dance with Eq.4. This is indeed how the proposed algorithm
works. It has been argued that Relief improves the overall
margin, as previously explained, and therefore the update
procedure should undertake to maximise the margin.[18, 19]

The algorithm in the current paper appears to maximise the
(overall, normalised) margin gain, and since the accuracy
of classification also improves, minimise the loss, although
no attempt is made to enforce this. However, applying the
scores obtained on each cycle can be seen as moving in the
direction of gradient of the margin gain, as the objective of
optimisation; while the redistribution of any discrepancy in
Eq.4 after substituting the feature scores for weights inter-

preted as the rate-of-advancement setting arrangement on the
path to the maximum.

An alternative listing is presented in Table 2. These are 15
(out of 82) features whose IG was the highest[8] to match
the number of features in Table 1. The IG results were con-
verted to weights using Eq.4. In both tables, three features
that do not appear in the other table are dimmed out. As
expected[8] IG approximates fairly the reduced feature-set,
both component- and arrangement-wise, but without limiting
redundancy. For example, both cardiovascular risk variables
are listed; the waist circumference, its ratio to height, and the
sagittal abdominal diameter are all listed. Of note, the very
action of filtering out reduces redundancy of the feature-set
because some of the redundant features are also ‘weakly’
relevant as are, for example, BMI and weight to height ratio
that do not show up in Table 2.

Table 2. Top 15 features weighted by information gain
 

 

Feature Weight 

Cardiovascular risk by BMI 2.34 
Cardiovascular risk by cholesterol 2.05 
Selenium 1.55 
Atherogenic index of plasma 1.31 
Triglyceride 1.30 
Low density lipoprotein cholesterol 1.09 
Waist to height ratio 0.94 
Sagittal Abdomen 0.90 
Copper 0.85 
Waist Circumference 0.81 
Digit symbol substitution 0.77 
Osmolality 0.71 
Cognitive animal fluency 0.69 
Zinc 0.59 
Urinary albumin to creatinine ratio 0.56 

 

Weighted by IG, the cardiovascular risk variables are topping
the list in Table 2. It seems phenomenal that only one of
them is retained when weighted by the Imagine Relief, as
evident from Table 1. Ousting of the second variable, which
by itself is only slightly weaker a version the first one, occurs
in a number of steps with its weight gradually reduced until it
becomes infinitesimal and nullified. The iterative component
of the proposed algorithm is thus essential for the feature-
set redundancy reduction. In this connection, it may seem
counterintuitive that all cognitive function variables coalesce
in Table 1, including the mentioned two from the same test
that do not appear in Table 2. However, same as the metals
in Table 1, the three cognitive tests targeting, in the order of
listing, the abilities to concentrate, to memorise, or to bring
to mind - are all functionally different.

The k-NN accuracy of the weighted feature-set from Table 2
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is inferior to that from Table 1. The comparison is given in
Table 3.

Table 3. k-NN accuracy for different feature selection
methods and space metrics

 

 

Method Space Sensitivity % Specificity % 

IG Euclidean 69.4 96.5 
Imagine Euclidean 73.5 96.9 
IG Manhattan 75.0 97.3 
Imagine Manhattan 78.8 98.1 

 

As previously noted, the multiclass setting is not typical for
the diagnostic problems. The data example brought up in
this paper is no exception despite its versatility. Hence, the
provision in Eq.5 for situations when there are more classes

than two is yet to be exercised. However, the proposed treat-
ment which follows the path of pair-wise classification[26] is
different from the approaches pursued elsewhere.[5, 16, 17]

Relief algorithms can be fooled by many features being
weak or irrelevant, which may affect the calculation of
distances.[15] This is offset by drawing larger samples of
nearest neighbours by class, an antinoise measure.[17] Also,
noise can be separately treated.[13] Same as other Reliefs,
the proposed method thrives on features having contrasting
strengths.[15]

The data has to be in full supply for the algorithm to work.
Methods of data completion in situations when some of it is
missing were previously developed[8, 28, 29] and some indeed
applied to the test data in the current work.
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