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ABSTRACT

The frequency of occurrence and intensity of floods is a huge threat to environment, human existence, critical infrastructure and
economy. Flood risk assessments depend on probabilistic approaches and suffer from non-existence of appropriate indices of
acceptable risk, dearth of information and pieces of knowledge for explicit view and understanding of the characteristics and
severity level of flood hazard. This paper proposes a hybridized intelligent framework comprising fuzzy logic (FL), neural network
and genetic algorithm for clustering and visualization of flood data, prediction and classification of flood risks severity level. A
multidimensional knowledge model of flood incidence using star, snowflake and facts constellation schemas was proposed for the
knowledge warehouse. A six-layered adaptive neuro-fuzzy inference system implementing mamdani’s inference mechanism
was design to evaluate input features based on fuzzy rules held in the multidimensional data model. The system is aimed at
predicticting and classifying flood risk severity levels. The perception of emergency risk management is very important in modern
society. Therefore, this work provides a framework for the practical applications of data mining techniques and tools to emergency
risk management. The work would assist to identify locations with significant flood risk.

Key Words: Neural networks, Fuzzy logic, Genetic algorithm, Knowledge mining, Clustering, Visualization, Knowledge
warehouse, Knowledge marts, Star schema, Snowflake

1. INTRODUCTION tistical techniques applied to the treatment of flood risks are

unable to effectively process huge data repositories largely
The trend of floods worldwide and their accumulative eco- pecause of vagueness of input features and cannot perform
nomic impacts is increasing. Flooding is a critical envi- {etail searches in the course of pattern discovery and ex-
ronmental issue and a leading hazard in most developing (raction. More so, the traditional methods of referencing
economies. It disrupts the effective functioning of urban jatabase objects produce degraded results that cannot sup-
ecosystems, especially in the areas of infrastructure and ser- port meaningful decision making. Hence, the need for the
vice delivery, which are vital to a sustainable high standard  jpegration of intelligent tools capable of adapting in a noisy
of living. Flood hazard data are massive, vague and compli- 45,4 complex environment, as well as handling imprecision

cated; therefore exhibit high level of ambiguity especially  qata. In addition, efforts to deal with flood disasters are
those associated with the input features. The conventional sta-
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time consuming, ineffective and expensive because there is
no explicit understanding of the characteristics and sever-
ity level of flood hazard.!'*# Flood risk assessment suffers
from non-existence of specific metrics of determining accept-
able flood risks, dearth of data and presence of stochastic
distribution.!3!

The complex nature of natural disasters and the vagueness of
their determinants make Fuzzy Logic (FL) a necessary tool in
the treatment of risks. Four key indexes to effectively classify
and predict the degrees of severity of disaster were discov-
ered from mining dataset consisting flood disaster incidence
in thirty cities of China in 2008 using fuzzy cluster analysis
driven by the equivalent relations of fuzzy systems.!!! The
resultant fuzzy matrices are mined by means of transitive
closure methodology to obtain cluster graphs indicating the
various classes based on risk severity index. The results
demonstrate the suitability of fuzzy cluster techniques in par-
titioning of flood disaster dataset. However, every indicator
in the input space performs distinct function in the model,
although some weights have significant influence, making
the outcomes more fitting with the realities, which this study
would address.

In Ref.,!! an application of Triangular Fuzzy Number (TFN)
and Fuzzy Analytic Hierarchy (FAH) methods to flood risk
analysis is proposed, with the ranking flood risk factors, per-
form the overall flood risk assessment and selection of risk
response measures, as specific objectives. The methodol-
ogy spans a review of TFN and FAH, characterization of
risk indicators and the development of a structured ranking
of risk and response elements. Although, risk factors were
ranked based on the relative weights of various factors, the
work was limited to high subjectivity since weight indices
must be computed manually prior to the application of FAH
technique.

In Ref.,l”) the analysis of flood disaster risks with FL meth-
ods; Improved Information Diffusion Method (IIDM) and
fuzzy sets technique, are presented. That paper reviewed
the application of Variable Fuzzy Sets (VFS) and IIDM ap-
proaches in the construction of an integrated model. The
proposed method aimed at evaluating catastrophic risks by
combining several factors and transforming ambiguous ones
into crisp values using specific criteria. The application of FL
methodologies to flood disaster risk assessment successfully
replaced stochastic estimations with realistic and determin-
istic results capable of supporting efficient decision making
for flood disaster risk management. The work was only sim-
ulated and lacks intelligence to give sufficient information
for flood risk management.

In Ref.,® a multi-objective optimization algorithm for
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drainage system flood risk management is presented. The
specific objectives of the research are to improve the compu-
tational efficiency of the multi-objective genetic based flood
risk model and to test and verify computational efficiency
of the proposed methodology. However, the work is only
simulated considered urban drainage flood system and failed
to handle uncertainty likely to come from the flood incident
data used.

In Ref.,[® a flood hazard risk evaluation and monitoring
model based on intelligent learning model and Random For-
est (RF) is presented. RF is a machine learning algorithm
which features combination method based on statistical prin-
ciples used for classification and predictive modeling. The
specific objectives of that research are to develop systematic
procedure for flood risk assessment using RF, demonstrate
feasibility and practicality of RF solution to flood risk as-
sessment and implement the proposed solution based on the
flood hazard risk allotment of the review area.

The application of tree-based approaches (decision trees,
bagging, RF, regression trees and boosting) in the quantifica-
tion of the impact of floods is reported in Ref.!'” The main
objective of the work was to perform a detailed and com-
plete exploration of flood fatalities held in Vietham DANA
database. The work provided a significant insight into flood-
related fatalities in Vietnam and by extension provided a
suitable framework for application in other databases. How-
ever, the generated models suffer from over fitting because no
sensitivity analysis was carried out on the input parameters.

This paper aims at proposing a hybridized system framework
driven by intelligence provided by FL, NN and GA for the
collation, cluster analysis and visualization of data and infor-
mation as well as knowledge for the management of flood
disaster risks.

2. CONCEPTUALIZATION OF A HYBRID IN-
TELLIGENT SYSTEM

The architecture of a Hybridized Intelligent System for Flood

Risk Management (HISFRM) is presented in Figure 1. HIS-

FRM is made up of Knowledge Warehouse, Knowledge

Mining Engine, Decision Support System Engine and User

Interface.

2.1 Knowledge warehouse

Knowledge Warehouse (KW) of the HISFRM is the domain
where facts are processed into knowledge, stored and prop-
agated. It is structured as a network of logically connected
static and dynamic sub-components, each of which are mod-
elled in a relational form.!''"131 The KW is an integration
of knowledge marts which provides intelligent analysis fa-
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cilities that boosts the knowledge management processes.
The design of knowledge marts follows the top-down ap-
proach presented in Ref.'#! and is viewed as composite of
multidimensional model, NN, FL and GA.
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Figure 1. Architecture of a HISFRM
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Figure 2. Star Schema for Emergencies Fact Table

2.2 Multidimensional knowledge modelling

The multidimensional knowledge is modelled as a cube of
facts and dimensions. Facts constitute the basic elements of
interest in a business process and are associated with dimen-
sions and measures. Dimensions are descriptive attributes
that specifies the aggregation (levels of summarization) for
the analysis of facts.!'>) Measures are attributes of facts, (nu-
meric or non-numeric) which denotes their performance rela-
tive to the dimensions. Star schema and Snowflake schemas
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described in Ref.['*! are used in providing the multidimen-
sional models for the knowledge items. The conceptualized
star schema of HISFRM knowledge warehouse for flood risk
fact table is presented in Figure 2 while Figure 3 gives the
conceptual star schema of HISFRM knowledge warehouse
for risks, fact and table.
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Figure 3. Conceptualized Star Schema of Risks Fact Table

The conceptualized star schema of HISFRM KW for commu-
nity fact table is presented in Figure 4 where location, type,
profile, hazard and stakeholders are the dimensions. The
knowledge captured by profile dimension are topography, de-
mography, infrastructure, communication links, emergency
logs and risk models. The star schemas are further normal-
ized into snowflake model thereby splitting some of the di-
mension tables into further dimension tables. Figure 5 shows
a snowflake schema of a conceptualized schema for knowl-
edge warehouse. The multidimensional knowledge model
acts as the platform for holding the pieces of knowledge,
their relationship and patterns.
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Figure 4. Star Schema for Community Fact Table
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3. NEURAL NETWORK MODEL FOR THE
MANAGEMENT OF FLOOD DISASTER
RISKS

The model of NN for flood risk management follows three
steps“é’m the selection of variables, NN architecture and
transfer function selection. This paper adopts a two layered
feed-forward, multi-input units and single output unit archi-
tecture as in Ref.['8! The configuration of the NN (see Figure
6) has input layer with flood risk indicators as nodes, flood
risk analysis as hidden layer and flood risk level is as the
output layer node. Suppose there are m neurons in the input
layer and input vectors « € R,z = (21, %2, - ,Zm), then
an input layer neuron ¢ is a component of the input vector
z;. Let the number of nodes in the hidden layer be repre-
sented by ¢,y € R,y = (y1,¥2,- -
are connected to one another in order to perform some tasks.
In addition, the connections determine whether it is possible
to inhibit or excite one another while the weights of the links
specify the influence of the input feature.

, Ym ). These neurons

A link is connection joining the th input layer neuron and
the jth neuron in the hidden layer, it is denoted by w; ; and
value of jth hidden neuron as 6, ;, the outcome of a neuron
in the hidden layer is as presented in Ref.:"’!

y; :f(netl‘]):f(ga)i)jxi —«9])
i-1 (1)

where i = 1,2,3,--- ,m; j = 1,2,3,--- ¢, f is sigmoid
function for neuron activation and is given as:
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Aw)=[1+exp (-u)]"
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The output layer neuron is given as:
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Figure 6. Architecture of HISFRM NN model

The flood risk indicators includes population density
(Inhabitants/km?), location of flood disaster area, day,
month and year of incidence, housing density (Houses/km?),
drainage network length (km), population without quali-
fications (% of total), number of death, drainage density
(km/km?), unemployment rate (%), purchase power (related
to the national mean), annual turnover (Naira), average an-
nual rainfall (mm), density of companies (number of compa-
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nies per km?), average annual flow (mm), number of dams.
GA is employed to evolve optimal connection weights and
topology for the NN model to fast track and improve the
predicative capability of the system.

3.1 Genetic algorithm model

In Refs.,2211 the GA was employed to optimize only the
connection weights of NN so that it could learn better. How-
ever, in this paper, GA is adopted for choosing the topology
and weights of the NN in the analysis and prediction flood
risks. GA optimizes HISFRM model training parameters
including number of nodes, membership functions, learning
and momentum rate, and was implemented in four steps;
generation of initial population, selection, crossover and
mutation as described in Refs.?>25! The basic GA imple-
mentation stages adopted are as follows steps:

* problem representation.

* initialize population randomly.

e calculate fitness value for each chromosome.

e perform selection.

¢ perform crossover.

* perform mutation.

* obtain the fitness values associated with every new
chromosome.

* add chromosomes associated with high fitness values
and delete those with lower fitness values.

* check for convergence, if the solution is not satisfac-
tory repeat steps d to i.

Suppose a back propagation feed forward NN configura-
tion presented in Figure 7, the detailed description of the
stages of GA is that the count of nodes in the input layer
is represented by ¢, h is the sum of nodes in the hidden
layer while p describes the amount of nodes in the out-
put layer. The weight vector from the input to the hid-
den layer is {w1,1,w1,2, -+ , W, q} While the weight vec-
tor from the hidden to the output layer is represented by
{w1,1,w1,2, -+ ,wq,}. Since there is a single node in the
output layer, ¢ = 1; the weight vector is therefore rep-
resented as {wy 1, w21, -+ ,w,1}. The binary encoding
scheme where each gene (connection weight) is represented
as a binary string has the advantage of eliminating irrelevant
values, but may cause significant loss of information. Real
value encoding is most appropriate for NN optimization.>*!
Though GA works with binary encoding, the cost function
requires real values.[*! These reasons account for the fusion
of binary and real-value encoding schemes. The stages in-
volve a 5-bit binary encoding of weights and conversion of
the encoded bits into real values using Equation 4. In 5-bit
binary string representation, the first bit represents sign bit, (1
for positive and O for negative), in the range [01010, 11010].

18

R -
Rl_logz(b,xz ) “

[ Determune approprize network ]

LY
rd

[ Random Instial Generation I

[M:sp gt & OUtpat values Lo ANN ]

No Adiust Weight

1 Compute hadden luyer values ]

Mugation

A 4

Commgate cutpat values
Crossover

Calculate fitness value
(URMSE)

IfRMSE<E

Tramn the network using
ANN with zelected

v

Test Data

Figure 7. Flowchart for Hybridized NN and GA Algorithm

where m, is the gene length and b; represents the sign
bit, R; gives the real-value representation of the ith gene,
t=2,3,---5. g; is a function (defined in Equation 5) that
returns a value corresponding to the sign bit.

71
gz__l

The encoding of the chromosome with real values suitable
for NN implementation is of the form {R — 1,R — 2, R —
3,--+,Rm}. The flowchart representing the NN genetic
hybrid algorithm is as shown in Figure 7.

if b =1

if & =0 )
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The NN in this hybridized model is a backward propagation
network (BPN) with 4-3-1 configuration of nodes. The four
input layer nodes are the flood hazard attributes: the hidden
nodes represent the likelihood of flood risk analysis. The NN
configuration of (4-3-1) produces a total of fifteen (15) con-
nection links, each with weights (w;). The initial population
of chromosomes are generated randomly encoded in a fixed
order, from left to right, from top to bottom and placed in a
list — Chromosome = {wy, wa, w3, - - - , w5 . A population
size (P) is set to 2N (where N is the total number of nodes
in the network) and given as in Equation 6. The quality of
each individual chromosome to the environment is measured
by evaluating the fitness function (f;) defined in Equations 6
and 7.

(6)

fi )

1+ E2
where the ith error value is represented by E;, (high error
implies low fitness), T; represents the ith expected output,
Y; represents the ith observed output and f; represents the
fitness value of the ith chromosome. Reproduction is im-
plemented by a selection operator. Selection is strategic for
enhancing population or ‘survival of the finest’ operator. It
adds structures with higher fitness values and drops structures
with insignificant fitness values. The fitness proportionate se-
lection technique is adopted. The fitness function is devised
using algorithm in Refs.[?”28] Normalization of the Fitness
values are derived from each individual chromosomes using
Equation 8:

®)

where T; represents normalized fitness of the chosen chromo-
some while n is the sum of nodes inthe NN,i=1,2,---n
and f; is the likelihood of the ith chromosome chosen for
crossover and mutation operations.

6]

Arrange the population of chromosomes in descending
order of its fitness values.

(2) Calculate and agglomerate the normalized fitness val-
ues O Pfy).

Randomly choose and fix a number R between 0 and
1.

Select the first individual whose normalized fitness
value is greater than or equals to R (P fo> R).

3)

“4)

Published by Sciedu Press

The selection parameters are presented in Table 1. The
crossover operation follows the selection operator; the pair
of chromosomes with the best fitness subjected to crossover
operation to produce new offsprings at the rate of 0.5.

Table 1. Selection Parameters for Flood Risk Analysis
Chromosomes Pf; Accumulated fitness (pf)

1 {gene;, gene,, genes geney, genes}  Pf; Pf;
2 {gene;, gene,, gene; geney, genes} P, Pf, + Pf,
3 {geney, gene,, gene; geney, genes}  Pfg Pf, + Pf, + Pf3

P {gene;, gene,, gene; geney, genes}  Pf Pfy + P, + ... + Pf,

The mutation operator is performed by selecting k non-input
units and accumulation of a random variable that lies be-
tween -1.0 and +1.0 to the weights on the edge for each
incoming edge to those k units and ends after completing 2N
epochs, with the selected individuals having better fitness
values to represent the optimal weight vector of the NN.

3.2 Fuzzy logic model

The architecture of the FL sub-system for flood risk assess-
ment and monitoring, as shown in Figure 8, consists of fuzzi-
fication, fuzzy inference engine and defuzzification as major
modules. The decision variables and their implementation in
each of these modules are given as follows:

Rule Base

Flood risk 3
Indicators Fuzzification Fuzzy Inference Defuzzification | Cutput
—») Engine (Risk Level)
M N s
e ——
v /
Membership

function

Figure 8. Block Diagram of Fuzzy Logic Model

3.2.1 Fuzzification

The initial stage of every fuzzy system is the conversion
of the elements of the inputs space from the natural crisp
universe to fuzzy universe. Measures of flood hazard and
flood risks require likelihood (probability) of flood occur-
rence based on indicators, average volume of flood, mag-
nitude of flood, impact of flood and risks. The fuzzy sets
of each of these measures are expressed as functions while
the elements of the set are mapped to Membership Func-
tion (MF). Some of the commonly used MFs are gaussian,
triangular, trapezoidal, s-function and 1-function.’” The
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works of Refs.[?®2%) influenced the adoption of the Tiangular
Membership Function (TMF) defined Equation 9.

1, if x=>b
i ifa<x<b
= b-a
=
i ifb<x<c
c-b
0, oy

9

where, a and c are the limits of TMF, b is area of the triangu-
lar shape represented by the value of p(z) equals to 1 defined
as b = 1/2(a + ¢). The fuzzy variables are expressed with
elements of the set “very low”, “low”, “medium”, “high” and
“very high”. The linguistic expressions for the input values
and their membership functions are assessed as1-point and
2-point scores as defined in Equation 10 and 11 respectively.

"Very Low" if Var (x)< 0.1

" Low" if0.1<Var (x)< 0.4
Var(x)=1" Medium" if 0.4<Var (x)< 0.6

"High" if 0.6<Var (x)< 0.8

"Very High" if 0.8<Var (x)<1.0 (10)

"Very Low" if Var(x)< 0.2

"Low" if 0.2<Var (x)< 0.6
Var(x)=4"Medium" if 0.6<Var (x)<1.0

" High'" if1.0<Var (x)<1.5

"Very High" if1.5<Var (x)<2 (11)

3.2.2 Fuzzification of flood risks attributes
Suppose H is a set of flood risk hazard indicators (universe
of discourse), and the members of the set are denoted by z,
then the set / in H is denoted by:

h={(x, 2up(x)) IxeH, ui(x) €[0.1]} (12)
where up, () represents a set of MF of x in h and 1y, denotes
the degree of membership of  in h that ranges between 0
and 1. The flood likelihood is in the range [0,1]. The lin-
guistic terms “very low” is in the range [0,0.1,0.2], “low”
in the range [0.2,0.3,0.4] while “medium” is in the range of
[0.4,0.5,0.6]. “high” is in the range [0.6,0.7,0.8] and “very
high” is in [0.8,0.9,1.0].

3.3 ANFIS Engine

The ANFIS engine is designed with the main objective of
extracting and evaluating rules from the the knowledge base
component and generating fuzzy outcomes. The model of the

20

ANFIS for flood risk assessment and monitoring is shown in
Figure 9. The model features are the likelihood of flood indi-
cators in the input layer and gives the conditional probability
(influence) of an attribute to the severity of flood derived
from the NN learning by the GA components follows:

p=t
: (13)
Py —>f =
‘ N\
b 2 4‘\\%"*!,1/:’5 .i
z N\
ol 1 A\‘\\\‘%&.’ll‘z’i.k\}m%
il s
S SRR~ X0
! XN OGN et
5 s RIS
= l":’i\%\'i\' .‘ N
: ,\"{,/" “)\‘_\“,/ Y] ;“{\7
P b /}i’%&\& 0
VAN '
0 LN Ky e
Py —> \

Linguistic value
of flood
magnitude

Likelihood of
Flood Indicators

Flood
magnitude

Degree of
membership

Flood analysis
layer

Figure 9. Neuro-Fuzzy Architecture for Flood Risk
Management

where, h denotes the sum of the neurons in the hidden layer
and P; is the likelihood of the ith attribute. The ANFIS
performs fuzzy inference in the stages detailed in Figure 10.

® Flood Hazard
® Types of flood
Cause of flood

Magnitude of flood
Likelihood

Average Volume of flood
Impact of flood

Fuzzification

A 4

Fuzzy Rule
Fuzzy sets and

Fuzzy AND
Fuzzy sets and operator Fuzzy Rule
membership i =| bership functionsl c 'l Implication
onsequence

Antecedent

Aggregation

v
Defuzzification
Crisp Value

Figure 10. Model of Fuzzy Inference Procedure

As presented in Figure 10, the process of obtaining the fuzzy
output consists of the following steps:

(1) Fuzzifying of linguistics variables.
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(2) Determining fuzzy implication (firing strength) of each
rule.

(3) Aggregating (OR operator) the fuzzy outputs of each
rules to obtain the final output.

(4) Defuzzification of the overall system output.

The antecedent and implication method is adopted in this
work which is driven by Mamdani’s inference mecha-
nism.3-32! The values are picked within the defined ranges
for flood hazard and the degree of membership (j7) from their
respective graphs of MF is derived. The values of the flood
hazard indicators and the degree of membership is presented
in Table 2.

Table 2. Membership Function of Flood Indicators
Likelihood of

Flood Indicators Fuzzy set Value(y) HY)
Type of flood Low 0.3 0.66
Location of flood High 0.7 0.5
Day of flood High 0.5 0.65
Month of flood Low 0.2 0.5
Cause of flood High 0.8 1.0
Year of flood High 0.5 0.17

From the rule definition, the AND logic operator is applied,
thereafter the Mamdani MIN operator is used to evaluate
the firing level « of the rule. The implication process is
performed on the rule consequent through a single value ob-
tained from the antecedent to produce the fuzzy implication
value. For example, a = 0.17 is passed to the implication step.
The weight value (w) of each rule is set to 1. The resultant
antecedent value is multiplied by the weight factor to give a
degree of support or firing strength for the rule F; = a;w;.
If w; = 1t, then

F,=q 14
During aggregation, fuzzy output sets of each rule derived
from the implication process are agglomerated through the
fuzzy MAX operator (OR operator) to produce a fuzzy set
as presented in Equation 15

Uy, 5 (x)=max [(uA(x), uB(x)]/ xeH (15)
Assume there are N rules for flood hazard assessment and the
fuzzy implication of each rule is denoted by F;. Then F; is
the fuzzy implication (firing strength) of the ith rule, where
t =1,2,---, N. Then, the aggregation operator generates
the final single fuzzy value.

F = max (Fy, F2, Fs,..., Fx) (16)
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This will return the largest value while the output fuzzy sets
has to be defuzzified to produce crisp value in the real world
domain. Centroid method which produces crisp value gen-
erated by centre of area under the curve!®¥! is chosen as the
defuzzification operator since it is the most commonly used
operator. This is presented in Equation 17:

n
2%,
oy =
Zai
i=1

Z
A7)

where Z is the expected crisp value in and now can be ap-
plied for real life decision making. «; represents the fuzzy
implication which the degree of activation of the rule to de-
termine the ith rule. The optimal parameters of each flood
hazard attribute for each level of flood risk magnitude rep-
resents the conditional probabilities of each indicator, the
combined probabilities are derived from the adaptive neuro-
fuzzy inference system (ANFIS).

3.4 Neuro-Genetic-Fuzzy hybrid platform

The algorithm for the design of hybrid platforms described in
Ref.?4 are reviewed and adapted in the KW design through
the fusion of NN and GA. In Figure 11, the NN is the hub of
the system as well as the front-end subsystem. The GA sub-
system provides a desirable set of parameters for optimizing
the link weights and node arrangement in the NN through
training while imprecision, and ambiguity of pieces of knowl-
edge and membership function evaluation were handled by
the FL sub-component. The NN unit offers generalization,
adaptation, fault-tolerance and parallelism capabilities to the
system. Therefore, the hybrid platform components com-
plement each other by utilizing the strengths of constituent
units while compensating for their weaknesses and adopt
production rules for knowledge representation.

Weight Adj

GA

NN

Topology Adjustment

IFuzzification

FL

Input

Flood
risk level

Output

Fuzzifier Defuzzifier

Figure 11. Block Diagram of Neuro-Genetic-Fuzzy Hybrid

Figure 12 shows the interaction of the different components
as well as the procedure for the design of the KW. The de-
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sign of the hybrid platform begins with the multidimensional
knowledge model design, which acts as the platform for hold-
ing the pieces of knowledge, their relationship and patterns.
The community profiling is performed to identify the inputs
to the system which are fuzzified to make them suitable for
processing by the neural network models. The GA compo-
nent begins by creating an initial population of weights for
the neural network models. The fuzzified inputs variables

were initially encoded as 5-bit binary weights and thereafter
converted into real values using Equation 4 and fed into the
NN models. The adjustments of NN weights was performed
by using GA operators evaluated from the GA function using
Equation 8 until 2N epochs are completed and the desired
NN parameters are identified and subjected for processing
by ANFIS.

- Identify Measures

Ferform Cormmmunity Profile
- ldentity Elerments of Flood Hazard

- Characterize Flood Hazard Risks

: :

(Fuzzy Logic)
Fuzzification
Of input values

Design Neural Network

}

Randoraly create ingtial
Into population of weights

r= |

Meural Metwork models

Assign input variables and weights into

Adjust weights %
I >

Weights & Structure adjustrnent
UsingGenesticAgorithm

Compute Neural Metwork
Cutput values

Multidimensional Data Model
{with Training set and test data)

| Selection |

T Yes

Is

<217

| Mutation | 4,
1~ Evaluate fitness function

| Crossover | - >
+

number of
generations

Neuro-Fuzzy Inference system

'y

v

Defuzzification

!

b

Crisp output

Knowledge
Mining Engine

Figure 12. Procedure for neuro-fuzzy-genetic hybrid platform

A set of linguistic terms “very low”, “low”, “medium”,
“high”, “very high” was produced by the execution of the
fuzzifier and was passed to the ANFIS sub system. ANFIS
engine evaluates the input variables based on the rules in the
fuzzy rule held in the multidimensional data model, derives
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a set of outcomes from the rules by transforming them into
a crisp values (S) by the defuzzification sub-system. The
structure of the ANFIS as presented in Figure 13, consists of
two categories of nodes; fixed and adaptive, arranged in six
layers to implement the mamdani inference mechanism.
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Figure 13. Architecture of Neuro-Fuzzy Inference System

3.5 Decision Support Framework (DSF)

The DSF comprises of cognitive and emotional support en-
gines to assist the disaster mangers to form preferences in
making judgements and effective decisions. The emotional
component is based on the subjective feelings of the emer-
gency management team or personnel and gets its data from
the cognitive support engine. The cognitive support engine
analyses the alternative output reports of the inference engine
on the basis of the objective filling of the flood risk manage-
ment team. For example, the occurrence of extreme risk
from flood may call for immediate action which may include
clean-up of the debris. The cognitive support engine uses the
emergency risks information to objectively provide the line
of actions to be followed by the emergency response team.
Other classification of risks includes high risk (when a low
impact results from a risk with high chances of occurrence),
moderate risk (flood risks with low rate of occurrence but se-
vere impact on the ecosystem), low and negligible emergency
risks. The action plan for each class of risk is contained in

Layer 3

[
o

Layer 4 Layer 6

|
W‘V

|
|
I

the KW. For example, an instance of high rate of fatalities
or missing persons creates emotional reasoning modes like
fatigue, disappointment, stress, joy, sadness, anger, love and
hate.

4. CONCLUSIONS

A neuro-genetic-fuzzy hybrid framework and an illustration
of its potentials, strengths, and capabilities in the manage-
ment of flood risks is proposed. The framework would assist
to identify locations with significant flood risk severity. The
perception of emergency risk management is very important
in modern society; therefore this work provides a framework
for the practical application of data mining techniques and
tools to emergency risk management. The implementation
technique of the system for hybrid intelligent system for
flood risk management and evaluation of its performance
shall be reported in our next paper. In addition, cluster analy-
sis is necessary for the visualization of the relationships and
patterns exhibited by flood hazards features.
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